
1

Experimental evaluation of Cubic-TCP
D.J. Leith, R.N.Shorten, G.McCullagh

Hamilton Institute, Ireland

Abstract— In this paper we present an initial experimental
evaluation of the recently proposed Cubic-TCP algorithm. Re-
sults are presented using a suite of benchmark tests that have
been recently proposed in the literature [12], and a number of
issues are of practical concern highlighted.

I. I NTRODUCTION

In this paper we present the results of experimental tests on
the recently proposed high-speed TCP variant, Cubic-TCP[11].
Consideration of the Cubic algorithm is particularly topical in
view of recent discussions regarding its adoption in Linux[8].

In summary we find that,

1. Networks in which Cubic TCP is deployed suffer from
slow convergence. The dependence of the cubic increase
function on flow cwnd means that flows with higher
congestion windows are more aggressive initially than
flows with lower congestion windows. The resulting slow
convergence behaviour yields poor network responsive-
ness and prolonged unfairness between flows.

2. In common with other high-speed protocols, Cubic TCP
uses an aggressive additive increase action to maintain
short congestion epochs on high bandwidth-delay product
paths. We find that in unsynchronised environments, the
associated cost of “missing a drop” (whereby flows that
are not informed of congestion rapidly increase their
cwnd) is similar for both Cubic TCP and HTCP.

3. At bandwidth-delay products above about 5000 packets,
Cubic TCP reverts to a linear increase function. This
implies that in high-speed networks the congestion epoch
duration eventually scales linearly with BDP (and so
similarly to standard TCP).

4. At higher speeds, for buffer sizes below 30% BDP
the link utilisation achieved by Cubic TCP collapses
to around 50% of link capacity and is significantly
lower than the link utilisation achieved by standard TCP.
Although it requires further investigation, this behaviour
appears to be associated with the generation of large
packet bursts by the Cubic TCP algorithm.

5. For flows with different RTTs, Cubic exhibits unfairness
that is strongly dependent on the start time of the flows. It
is unclear at present why this non-convergence behaviour
occurs – it may be due to a fundamental stability issue
or perhaps associated with implementation issues.

II. EXPERIMENTAL SETUP

A. Hardware and Software

All tests were conducted on an experimental testbed. Com-
modity high-end PCs were connected to gigabit switches to
form the branches of a dumbbell topology, see Figure 1.

Dummynet

Router

TCP1

receiver

TCP2

receiver

TCP1

sender

TCP2

sender

GigE

switch

GigE

switch

Fig. 1. Experimental set-up.

Description

CPU Intel Xeon CPU 3.00GHz 1066 FSB
Memory 1 Gbyte

Motherboard Dell PowerEdge PE860
Kernel Linux 2.6.18 with Cubic bug fix[9]

txqueuelen 1000
max backlog 2500

NIC Intel Pro 1000PT PCIe x4
NIC Driver e1000 5.2.52-k4

TX & RX Descriptors 4096

TABLE I

HARDWARE AND SOFTWARECONFIGURATION.

Although all are not shown in Figure 1, a total of 14 end
hosts are available for traffic generation. All sender and
receiver machines used in the tests have identical hardwareand
software configurations as shown in Table I and are connected
to the switches at 1Gb/sec. The router, running the FreeBSD
dummynet software, can be configured with various bottleneck
queue-sizes, capacities and round trip propagation delaysto
emulate a wide range network conditions.

Apart from the router, all machines run an instrumented
version of the Linux 2.6.18 kernel. We note that the imple-
mentation of Cubic-TCP included in the Linux 2.6.18 kernel
distribution and earlier is known [9] to be incorrect (this has
subsequently been corrected). In our tests we use a corrected
implementation. To provide consistency, and control against
the influence of differences in implementation as opposed to
differences in the congestion control algorithm itself, weuse
a common kernel for all tests. It is known that the at high
bandwidth-delay products SACK processing etc in the Linux
network stack can impose a sufficiently high burden on end
hosts that it leads to a significant performance degradation
[1], [12]. We performed tests to confirm, on our hardware,
appropriate network stack operation over the range of network
conditions tested.

The kernel is instrumented using custom RelayFS monitor-
ing to allow measurement of TCP variables.

In order to minimise the effects of local hosts queues and
flow interactions, unless otherwise stated we only ran one

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by MURAL - Maynooth University Research Archive Library

https://core.ac.uk/display/297011163?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

long-lived flow per PC with flows injected into the testbed
usingiperf. Web traffic sessions are generated by dedicated
client and server PCs, with exponentially distributed intervals
between requests and Pareto distributed page sizes. This is
implemented using a client side script and custom CGI script
running on an Apache server. Following [10], unless otherwise
stated, we used a mean time between requests of 1 second and
a Pareto shape parameter of 1.2 and mean 6.0. Each individual
test was run at least ten minutes each. Tests collecting statistics
on unsynchronised operation were run for at least one hour in
order to ensure reliable statistics. In the case of tests involving
Standard TCP, we ran individual tests for up to an hour as
the congestion epoch duration becomes very long on large
bandwidth-delay products paths.

B. Comparative Testing

Our test setup corresponds to that in [12] and hence the
Cubic TCP measurements reported here can be directly com-
pared with previous measurements reported for Standard TCP,
High-Speed TCP, Scalable TCP, BIC-TCP, FAST-TCP and H-
TCP.

C. Range of Network Conditions

Similarly to [12], in this paper we consider round-trip
propagation delays in the range 16ms-200ms and bandwidths
ranging from 1Mb/s-500Mb/s. We do not consider these values
to be definitive – the upper value of bandwidth considered can,
in particular, be expected to be subject to upwards pressure.
We do, however, argue that these values are sufficient to
capture an interesting range of network conditions that charac-
terises current communication networks, and the behaviourof
protocols across this range. In all of our tests we consider delay
values of 16ms, 40ms, 80ms, 160ms, 200ms and bandwidths
of 1Mb/s, 10Mb/s, 250Mb/s and 500Mb/s. In addition, we
perform each test with various levels of competing bidirec-
tional web sessions. This defines a three-dimensional grid of
measurement points where, for each value of delay and level
of web traffic, performance is measured for each of the values
of bandwidth. Owing to space restrictions, we cannot include
the results of all our tests here. We therefore present results
for a subset of network conditions that are representative of
the full test results obtained. A more complete collection of
test results will be posted on the Hamilton Institute website.

III. C UBIC TCP ALGORITHM IN L INUX

Before proceeding, we briefly describe the Cubic TCP
algorithm used in Linux. Cubic-TCP combines the basic ideas
first proposed in High-Speed TCP, and H-TCP. Namely, the
cwnd additive increase rate is a function of time since the
last notification of congestion (as in H-TCP), and of the
window size at the last notification of congestion (similarly
to HS-TCP). Pseudo code for the main functionality of the
Cubic algorithm is shown in Algorithm 1. The features of this
algorithm can be summarised as follows,

1) Modified slow start. A modified slow start behaviour is
employed at startup. Oncecwnd rises above ssthresh

Algorithm 1 : Pseudo code of main functionality in Linux
2.6.18 Cubic algorithm

1: Initialise:
2: last max = 0; loss cwnd = 0; epoch start = 0; ssthresh = 100
3: b = 2.5; c = 0.4
4:
5: On each ACK:
6: delay min = min(RTT, delay min)
7: if cwnd < ssthresh then
8: cwnd++ //slow start
9: else

10: if epoch start = 0 then
11: epoch start = current time
12: K = max(0, 3

p

(b ∗ (last max − cwnd)))
13: origin point = max(cwnd, last max)
14: end if
15: t =current time+delay min − epoch start
16: target = origin point + c ∗ (t − K)3

17: if target > cwnd then
18: cnt = cwnd/(target − cwnd)
19: else
20: cnt = 100 ∗ cwnd
21: end if
22: if delay min > 0 then
23: cnt = max(cnt, 8 ∗ cwnd/(20 ∗ delay min)) //max AI rate
24: end if
25: if loss cwnd == 0 then
26: cnt=50 // continue exponential increase before first backoff
27: end if
28: if cwnd cnt > cnt then
29: cwnd++
30: cwnd cnt = 0
31: else
32: cwnd cnt++
33: end if
34: end if
35:
36: On packet loss:
37: epoch start = 0
38: if cwnd < last max then
39: last max = 0.9 ∗ cwnd
40: else
41: last max = cwnd
42: end if
43: loss cwnd = cwnd

44: cwnd = 0.8 ∗ cwnd // backoff cwnd by 0.8

(which is initalised to a value of 100 packets in Cubic),
Cubic exits normal slow start and changes to use a less
aggressive exponential increase wherecwnd is increased
by one packet for every 50 acks received or, equivalently,
cwnd doubles approximately every 35 round-trip times.
See lines 25-26 in Algorithm 1.

2) Backoff factor 0.8. On packet loss,cwnd is decreased
by a factor of 0.8 (compared with a factor of 0.5 in the
standard TCP algorithm). See line 44 in Algorithm 1.

3) Clamp on maximum increase rate. The additive increase
rate during AIMD operation is limited to be at most
20∗delay min packets per RTT, wheredelay min is an
estimate of the round-trip propagation delay of the flow.
See line 23 in Algorithm 1. Converting from packets
per RTT to packets per second, this clamp is roughly
equivalent to a cap on the increase rate of 20 packets/s
independent of RTT.

4) Cubic increase function. Subject to this clamp, the
additive increase rate used istarget−cwnd packets per
RTT. Note that the effect of this increase is to adjust

3

cwnd to be equal totarget over the course of a single
RTT. The value oftarget is calculated (see line 16 in
algorithm) from:

target = Wmax + c(t − 3

√

(b(Wmax − 0.8W))3 (1)

wheret is the elapsed time since last backoff (approxi-
mately – the value ofdelay min is added to this value,
see line 15) andWmax is related to the cwnd at last
backoff and is denotedorigin point in the code.W
is the cwnd value immediately before the last backoff,
so that0.8W is the cwnd value just after backoff has
occurred.

5) Adaptation of cubic function. The value ofWmax is
adjusted depending on whether the last backoff occurred
before or aftercwnd reached the previousWmax value.
Let W denote thecwnd value immediately before back-
off. Then,Wmax is set equal to theW whenW is larger
than the previous value ofWmax. OtherwiseWmax is
set equal to0.9W . See lines 38-42 in algorithm.

The Linux Cubic algorithm also includes code which en-
sures that the Cubic algorithm is at least as aggressive as
standard TCP, but this plays little role in our discussion and
we refer the interested reader to the Linux code for further
details.

A. Other Cubic Variants

It is important to note that a number of variants of the
Cubic TCP algorithm exist. In this paper we focus on the
algorithm contained in the standard Linux distribution as this
is both the most recent variant and the variant in production
use. This Linux Cubic algorithm differs from that describedin
the original Cubic paper [11], and from algorithms used and
documented in recent tests. Amongst other things, the original
cubic algorithm proposed in [11] lacks the clamp on increase
rate and the mode switch based on the parameterWmax in
Algorithm 1. The experimental results reported by the Cubic
authors[3] make use of a custom patch to the Linux 2.6.13
kernel1 which differs from Algorithm 1.

IV. FAIRNESS WITH SAMERTT

We begin by considering the simplest case of flows sharing
a single bottleneck and with the same round-trip time. A basic
requirement is for flows to be allocated bandwidth in a fair
manner in this situation. Figure 2 shows typical measured time
histories with Cubic TCP following startup of a second flow.
A number of features are immediately evident.

• Slow convergence, prolonged unfairness.It can seen from
Figure 2 that thecwnds converge very slowly. The rate
of convergence decreases as the bandwidth-delay product
(BDP) is increased, with convergence times in excess of
300s commonly observed in our tests.

• Long-term fairness.Provided tests are run for a suffi-
ciently long period, our measurements indicate that the

1See http://www.csc.ncsu.edu/faculty/rhee/export/
bitcp/tiny release/installbic 2.6.13.htm

flows do asymptotically converge to an approximately fair
share of the bottleneck bandwith. See also Figure 3.

• Linear increase at high BDPs.For cwnd’s above about
5000 packets it can be seen that the cubic increase
function becomes replaced by a simple linear AIMD
increase. This is particularly evident for flow 1 in the
lower plot in Figure 2. This implies that in high-speed
networks the congestion epoch duration eventually scales
linearly with BDP. This is similar to standard TCP.

We note that although in the examples shown in Figure 2
the flows are nearly synchronised (i.e. both flows experience
drops at most congestion events), we find that the slow con-
vergence behaviour isnot confined to such situations and that
the same qualitative behaviour is evident in unsynchronised
environments.

For example, Figure 4 shows the corresponding results when
tests are carried out with 200 bi-directional web flows sharing
the bottleneck link. Figure 4 plots the throughput time histories
of the two long-lived flows, averaged over 25 runs. This is
an ensemble average i.e. each time point is the average over
25 runs. We observe that while de-synchronisation of drops
sometimes speeds up convergence (e.g. when the newly started
flow misses drops), it also sometimes slows convergence
(when the incumbent slow misses drops) and on balance this
yields similarly slow convergence to synchronised situations.

A. Source of slow convergence.

We can gain some insight into the slow convergence exhib-
ited by Cubic TCP by noting that the cubic increase function
depends on the flowcwnd at the last congestion event.
Generally, flows with largercwnd’s are more aggressive than
flows with smallercwnd’s, and are consequently more able
to acquire bandwidth as it becomes available. New flows are
thus at a disadvantage and sustained unfairness can occur. We
comment that a similar feature has previously been highlighted
in other high-speed protocols, which are also known to exhibit
slow convergence [5], [4], [6], [7].

The key here is that the convergence behaviour is deter-
mined byinteractionsbetween competing flows. Hence, “bath
of noise” type mean-field analysis such as that used in the
popular Padhye fluid model provides little insight. Roughly
speaking, the convergence rate of the network depends on
two factors: (a) the rate at which individual flows release
bandwidth when informed of congestion; and (b) the rate
at which individual flows acquire available bandwidth. The
first depends on the backoff factors employed in the network,
the second on the additive increase strategy employed by the
individual sources. Together they determine the net rate at
which bandwidth can be distributed in the network.

In standard TCP flows with the same RTT probe for
available bandwidth at the same rate. Strategies such as H-TCP
seek to mimic this behaviour by making all sources probe in
the same manner (at least in the synchronised case). Other
strategies, such as High-Speed TCP, BIC-TCP and Cubic-
TCP, result in flows with larger window sizes probing more
aggressively than those with smaller windows. This basic
asymmetry between flows increase rates has the effect of
slowing convergence.

4

 0

 50

 100

 150

 200

 250

 300

 350

 0 100 200 300 400 500 600

cw
nd

 (
pa

ck
et

s)

time (s)

Convergence 10Mbit/sec Bottleneck

Flow 1
Flow 2

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 100 200 300 400 500 600

cw
nd

 (
pa

ck
et

s)

time (s)

Convergence 250Mbit/sec Bottleneck

Flow 1
Flow 2

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 100 200 300 400 500 600 700 800

cw
nd

 (
pa

ck
et

s)

time (s)

 Flow 1
 Flow 2

Fig. 2. Cubic TCP cwnd time histories following startup of a second
flow. Bandwidth is 10Mbits/s (top), 250 Mbit/sec (middle) and 500 Mbit/sec
(bottom). RTT is 200ms, queue size 100% BDP, no web traffic.

This effect is reinforced by changes to the AIMD backoff
factor. In standard TCP flows backoffcwnd by 0.5 on detect-
ing packet loss. Strategies such as BIC-TCP and Cubic-TCP
instead use a backoff factor of 0.8. As a result, flows release
bandwidth more slowly when informed of congestion, again
having the effect of slowing convergence.

B. Slow convergence implies prolonged unfairness.

One consequence of slow convergence is that periods of
extreme unfairness between flows may persist for long periods;
even in situations where flows do eventually converge to
fairness. Such situations are masked when fairness resultsare
presented purely in terms of long-term averages. However, this
behaviour is immediately evident, for example, in the time
histories shown in Figure 2 and it seems clear that it has im-

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100

F
ai

rn
es

s
R

at
io

RTT (ms)

Standard TCP
Cubici 10Mb/s

Cubic 250Mb/s

Fig. 3. Ratio of throughputs of two Cubic TCP flows with the same RTT
(also sharing same bottleneck link and operating same congestion control
algorithm) as path propagation delay is varied. Flow throughputs are averaged
over the last 200s of each test run and so approximate asymptotic behaviour,
neglecting initial transients. Results are shown for 10Mbit/sec and 250Mbit/sec
bottleneck bandwidths. The bottleneck queue size is 100% BDP, no web
traffic.

 0

 50

 100

 150

 200

 250

 200 250 300 350 400 450 500 550 600

(M
bp

s)

time (s)

Flow 1
Flow 2

Fig. 4. Impact of web traffic on convergence. Evolution of mean bandwidth,
averaged over 20 test runs, following startup of a second flow. 200 background
web flows (100 in each direction). Link bandwidth is 250 Mbit/sec, RTT is
200ms, queue size 100% BDP.

portant practical implications. For example, two identical file
transfers may have very different completion times depending
on the order in which they are started. Also, long-lived flows
can gain a substantial throughput advantage at the expense of
shorter-lived flows. The latter seems particularly problematic
as the majority of TCP flows are short to medium sized and
so a single long-lived flow may potentially penalize a large
number of users (akin to a form of denial of service).

With regard to the last point, the impact of a long-lived flow
on a short-lived flow is illustrated, for example, in Figure 5.
Here, we measure the completion time for a download versus
the size of the download. Measurements are shown (i) for the
baseline case where no other flow shares the bottleneck link
and (ii) for the case where a single long-lived flow shares
the link and competes for bandwidth. It can be seen that in
the baseline situation, Cubic-TCP, standard TCP and H-TCP
all exhibit similar completion times. It is perhaps initially
surprising that standard TCP performs so well in this test,
in view of concerns about performance in high-speed paths.
However, we note that the link in this example is provisioned
with a BDP of buffering. A standard TCP flow slow-starts to

5

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500 600 700 800 900 1000

M
ea

n
co

m
pl

et
io

n
tim

e
(s

)

Connection size (MB)

Standard TCP
Cubic
HTCP

Standard TCP baseline
HTCP baseline
Cubic baseline

Fig. 5. Completion time vs connection size for (i) baseline case with no
competing flows and (ii) with a competing long-lived flow. Measurements are
shown for standard TCP, Cubic-TCP and H-TCP. Bandwidth is 250 Mbit/sec,
RTT is 50ms, queue size 100% BDP.

fill the pipe and when it then backs offcwnd the buffer just
empties and the link remains fully utilised, hence achieving
low completion times. More interesting is the performance
when a long-lived flow is present. It can be seen that the
completion time of the short-lived flow approximately doubles
with H-TCP, as might be expected with two flows now sharing
the link. In contrast, the completion time for the short-lived
flow increases by more than a factor of four. This arises
because of the sluggishness with which the long-lived flow
releases bandwidth to the short-lived flow, so that the short-
lived flow is starved of bandwidth for a prolonged period. It is
interesting to also contrast this behaviour with that of standard
TCP. It can be seen that the completion time of the short-
lived flow is essentially the same both in the baseline and
competing long-lived flow cases. Further inspection reveals
that the throughput of the long-lived flow is much lower (by a
factor5) compared with that of the long-lived flow when using
H-TCP. The long-lived standard TCP flow releases bandwidth
but is very slow to regain throughput following losses induced
by startup of a short-lived flow.

The impact of slow convergence is not confined to situations
where new flows start up but is of importance more generally.
Figure 6 plots examplecwnd time histories measured in
conditions where packet drops are unsynchronised. While the
long-term (measured over a period of an hour) throughputs
of the flows are similar, it can be seen that sustained periods
(extending to hundreds of seconds) of unfairness occur. What
is happening here is that when a flow misses a drop, it is able
to grab a larger share of the available bandwidth and, owing
to the slow convergence behaviour of the congestion control
algorithm, the resulting unfairness is able to persist for long
periods.

C. Impact of “missing a drop”

A common feature of loss-based high-speed protocols is
their aggressive additive increase phase. This is perfectly
natural as it is the primary mechanism for ensuring that the
time between congestion events remains small on high BDP
paths. However, a consequence of this action is that flows
are able to rapidly grab additional bandwidth as a result of

 1500

 2000

 2500

 3000

 3500

 4000

 900 1000 1100 1200 1300 1400

cw
nd

 (
pa

ck
et

s)

time (s)

Flow 1
Flow 2
Flow 3

 1500

 2000

 2500

 3000

 3500

 4000

 2300 2400 2500 2600 2700 2800 2900

cw
nd

 (
pa

ck
et

s)

time (s)

Flow 1
Flow 2
Flow 3

Fig. 6. Two examples of Cubic TCP cwnd time histories. Three long-lived
flows sharing a bottleneck link with 25 on-off sessions (meantime between
requests of 10 seconds, connection sizes are Pareto distributed with shape
parameter of 1.2 and mean 600 packets). Bandwidth is 250 Mbit/sec, RTT is
200ms, queue size 100% BDP.

missing a drop at a network congestion event. This issue has
been previously discussed by a number of authors, e.g. see [2]
and references therein.

We begin here by first noting that under synchronised con-
ditions, where every flow sees packet loss at every congestion
event, the issue of missing a drop does not arise. The increase
function used by the original Cubic TCP algorithm[11] is
tailored to synchronised conditions. Namely, the inflection
point (centre point of the flat section) of the cubic increase
curve is placed at thecwnd value at which the last backoff
occurred. Under synchronised conditions this leads to concave
shape. The Cubic TCP algorithm algorithm as implemented
in Linux is modified to adapt the inflection point based on
whether thecwnd at backoff is increasing or decreasing
compared to its value at the last backoff, see lines 38-42 in
Algorithm 1. This adaptation improves the convergence rate
of Cubic TCP over the original algorithm. Under synchronised
conditions this adaptive action leads to a period two cycle,
illustrated in Figure 7 and is also evident in many of thecwnd

time histories shown elsewhere in the paper. Observe that in
every second period the cubic increase is aggressively probing
for bandwidth at the point of backoff.

Consider now the situation where flows are not synchro-
nised. When a Cubic TCP flow misses a drop, the cubic
increase function continues past the inflection point and probes
for additional bandwidth at a much faster rate than flows
recently experiencing a drop. This probing action is cubic in

6

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

time (s)

cw
nd

 (
pa

ck
et

s)

Fig. 7. Example of Cubic TCPcwnd evolution under synchronised
conditions.

shape i.e.cwnd increases as a cubic function. An example of
the resulting cubic increase is shown in Figure 8. The curves
markedCubic Wmax = 0.8W and Cubic Wmax = 0.8W in
Figure 8 correspond, respectively, to the two possible increase
functions that can occur due to the adaptation of the inflection
point noted previously. Note that due to the period two nature
of cubiccwnd evolution, missing a drop on the second period
leads immediately to an aggressive cubic increase as the
inflection point occurs earlier. In both cases the potentialfor
large excursions is evident, and is demonstrated experimentally
in Figure 10.

For comparison, also plotted on Figure 8 is thecwnd

increase function used by H-TCP. This is also a cubic increase
function, although lacking an inflection point. It can be seen
that on the right-hand side of the plot, corresponding to the
behaviour after missing a drop, the H-TCP cubic function is
similar to that of Cubic TCP2.

To confirm the similar natures of the Cubic-TCP and H-TCP
increases functions in unsynchronised environments, Figure 9
plots the measuredcwnd distributions for both algorithms.
To control for the differences in backoff factor used in Cubic
and the standard H-TCP algorithm, measurements are taken
using a backoff factor of 0.8 for H-TCP (but without any
other change to the algorithm). It can be seen that thecwnd

distributions are extremely similar, as might be expected from
the foregoing discussion. Note that this is in line with previous
simulation results reported in [2]. It appears that reported
differences between the coefficient of variation of thecwnd

distributions of Cubic-TCP and H-TCP may therefore be
primarily3 attributed to the differences in backoff factors used
by the algorithms, rather than to the increase functions.

On a broader note, a reasonable question, not yet answered,
is whether it in fact matters that high-speed TCP flows may

2The H-TCP cubic function is slightly less aggressive than that of Cubic
TCP. Sincecwnd increases slowly on the flat section in the Cubic TCP
increase curve, this must be compensated for by a more aggressive increase
rate in order to maintain a low congestion epoch duration.

3But possibly not solely. For example, different algorithmscan yield
different patterns of packet drops under the same network conditions, and
thereby affect the degree of synchronisation/unsynchronisation – this sort of
issue is well known in the context of pacing in standard TCP.

0 5 10 15 20 25 30 35 40 45 50
0

5000

10000

15000

time (s)

cw
nd

 (
pa

ck
et

s)

Cubic W
max

=0.8W

Cubic W
max

=0.9W

H−TCP

Fig. 8. Cubic TCP increase function for the situation where the cwnd at
last backoff is 10000 packets. The y-axis is normalised so that the origin
lies at thecwnd immediately after backoff, the dashed line then marks the
normalisedcwnd at last backoff. It can be seen that the inflection point of
the Cubic Wmax = 0.8W curve is located at this value.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 1000 2000 3000 4000 5000 6000

fr
eq

ue
nc

y

cwnd (packets)

Cubic TCP
H-TCP 0.8 backoff

Fig. 9. Measured distribution ofcwnd. Measurements are shown for both
Cubic-TCP and H-TCP using a backoff factor of 0.8. Experimental setup as
in Figure 6 – three Cubic flows and 25 background sessions. Bandwidth is
250 Mbit/sec, RTT 200ms, queue size 100% BDP.

exhibit large variations incwnd under unsynchronised con-
ditions. Firstly, we note that network paths contain extensive
buffering and so variations incwnd need not translate into
variations in throughput. Most applications also use receive
buffers to further smooth out variations in arriving traffic.
Secondly, TCP is designed for best-effort traffic. Traffic that
requires a nearly constant arrival rate, and which cannot use
buffering to ensure this, should probably use a congestion
control algorithm specifically targetted at this requirement,
such as TFRC. With this in mind, it seems reasonable to argue
that the most important features to consider when designing
new TCP congestion control algorithms are (i) the ability
to send packets quickly (short file transfer times), (ii) in a
fair manner (avoiding prolonged unfairness), and (iii) without
causing congestion collapse (maintaining the integrity ofthe
Internet). In this context, issues such as convergence rate,
fairness, the ability to fill the network pipe quickly, and how
these properties scale with increasing bandwidth, are surely
paramount, and fluctuations in flowcwnd’s area are a minor
secondary issue.

7

 500

 1000

 1500

 2000

 2500

 1600 1650 1700 1750 1800 1850 1900 1950 2000

cw
nd

 (
pa

ck
et

s)

time (s)

Flow 1
Flow 2
Flow 3

Fig. 10. Example of Cubic TCP cwnd time histories with three long-lived
flows sharing a bottleneck link with 50 on-off sessions (meantime between
requests of 10 seconds, connection sizes are Pareto distributed with shape
parameter of 1.2 and mean 600 packets). Bandwidth is 250 Mbit/sec, RTT is
200ms, queue size 100% BDP.

V. EFFICIENCY

To evaluate the link utilisation of Cubic TCP, we consider
two flows having the same propagation delay and measure
average throughput as the buffer provisioning is varied from
2.5% to 100% of the bandwidth-delay product, see Figure 11.
Results are shown for a 10Mb/s and a 250Mb/s link. As
a reference, also plotted on Figure 11 is the efficiency for
standard TCP.

In the case of a 10Mb/s link, it can be seen that for
buffers sized about 5% BDP Cubic TCP achieves greater link
utilisation than standard TCP. This is to be expected owing
to the larger AIMD backoff factor of 0.8 used by Cubic as
opposed to the backoff factor of 0.5 used by standard TCP
(so that Cubic decreasescwnd by less than standard TCP on
detecting packet loss). At buffer sizes below 2.5%, the link
utilisation achieved by both standard TCP and Cubic TCP
falls substantially, presumably due to micro-scale packetbursts
flooding the queue once it reaches such a small size.

Somewhat surprisingly, we observe quite different behaviour
at 250Mb/s. It can be seen from the lower plot in Figure 11
that for buffer sizes below 30% BDP the link utilisation
achieved by Cubic TCP falls to around 50% of link capacity
and is significantly lower than the link utilisation achieved by
standard TCP. Although it requires further investigation,this
behaviour appears to be associated with the generation of large
packet bursts by the Cubic TCP algorithm and might warrant
a modified implementation to mitigate this effect.

VI. FAIRNESS WITH DIFFERENTRTTS

Figure 12 shows the ratio of measured throughputs when
the propagation delay of the first flow is held constant at
162ms and the propagation delay of the second flow is varied.
Results are shown both for a bottleneck link bandwidth of
10 Mb/s and 250Mb/s. Results are shown when the queue is
sized at 100% BDP since, as discussed above, there appear to
be additional issues when smaller sized queues are employed.
Also marked on Figure 12, for reference, are the corresponding
measurements obtained using standard TCP. It can be seen that
Cubic TCP is generally significantly more fair than standard

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1

T
ot

al
 T

hr
ou

gh
pu

t (
M

bi
t/s

ec
)

Queue size (Fraction of BDP)

Standard TCP
Cubic 10Mb/s

Cubic 250Mb/s

Fig. 11. Aggregate throughput of two competing Cubic TCP flows with
10Mbit/sec and 250 Mbit/sec bottleneck bandwidths. Both flows have end-to-
end round-trip propagation delays of 100ms.

 0.01

 0.1

 1

 10 100

F
ai

rn
es

s
R

at
io

RTT (ms)

Standard TCP
Cubic 10Mb/s

Cubic 250Mb/s

Fig. 12. Ratio of throughputs of two competing Cubic TCP flowsas
the propagation delay of the second flow is varied. Results are shown for
10Mbit/sec and 250Mbit/sec bottleneck bandwidths. Flow 1 has RTT of
162ms, the RTT of Flow 2 is marked on the x-axis of the plots. Queue size
is 100% BDP, no web traffic.

TCP, with the ratio of flow throughputs never falling below
about 0.25.

It is perhaps unexpected, however, that there is in fact any
unfairness at all between Cubic TCP flows as the Cubic TCP
increase function used does not depend on flow RTT. That is,
the Cubic TCP increase function is defined as a function time
in seconds, in contrast to standard TCP where the increase
is specified per RTT. On closer inspection, we find that the
degree of unfairness in Cubic TCP is strongly dependent on
the start time of the flows. See for example Figure 13. It is
unclear at present why this behaviour occurs.

We note that at lowcwnd’s Cubic TCP is observed exhibit
gross unfairness. This is illustrated for example in Figure14,
where it can be seen that one flow is essentially starved of
bandwidth. This effect appears to be associated with quanti-
sation of the Cubic TCP increase function andcwnd backoff.

VII. B ACKWARD COMPATIBILITY

Figure 15 plots the ratio of measured throughputs of two
flows with the same propagation delay and a shared bottleneck
link. The first flow operates the standard TCP algorithm while
the second flow operates Cubic TCP variant. Results are shown
both for bottleneck link bandwidths of 10 Mb/s and 250Mb/s.

8

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 100 200 300 400 500 600

cw
nd

 (
pa

ck
et

s)

time (s)

Flow 1
Flow 2

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 100 200 300 400 500 600

cw
nd

 (
pa

ck
et

s)

time (s)

Flow 1
Flow 2

Fig. 13. Cubic TCPcwnd time histories following startup of a second flow.
Startup time of second flow is 93s in top plot and 98s in lower plot. 250Mbps
link, flow 1 RTT is 16ms, flow 2 RTT is 162ms, 100% BDP queue.

 0

 200

 400

 600

 800

 1000

 1200

 0 100 200 300 400 500 600

T
hr

ou
gh

pu
t (

K
bi

ts
)

time (s)

dest1ng
dest2ng

Fig. 14. Two Cubic TCP flows. 1Mbps link, flow 1 RTT 160ms, flow 2 RTT
16ms.

We note that at lowcwnd’s, Cubic TCP can exhibit gross
unfairness when competing with standard TCP flows. See for
example, Figure 16. As discussed previously, this appears to
be due to quantisation issues in the Cubic TCP algorithm.

VIII. S UMMARY

In this paper we present an initial experimental evaluation
of the recently proposed Cubic-TCP algorithm. Results are
presented using a suite of benchmark tests that have been
recently proposed in the literature [12], and a number of issues
are of practical concern highlighted. While some of these
issues may be considered minor (including questions surround-
ing transientcwnd fluctuations), a number are of significant

 0.01

 0.1

 1

 10 100

F
ai

rn
es

s
R

at
io

RTT (ms)

Standard TCP
Cubic 10Mb/s

Cubic 250Mb/s

Fig. 15. Ratio of throughputs of competing Cubic TCP and standard TCP
flows as path propagation delay is varied. Results are shown for 10Mbit/sec
and 250Mbit/sec bottleneck bandwidths. Both flows have the same RTT.
Queue size is 100% BDP, no web traffic. Results for two competing standard
TCP flows are also shown for reference.

 0

 200

 400

 600

 800

 1000

 1200

 0 100 200 300 400 500 600

T
hr

ou
gh

pu
t (

K
bi

ts
)

time (s)

dest1ng
dest2ng

Fig. 16. Cubic TCP (flow 1) and standard TCP (flow 2) flows. 1Mbpslink,
BDP queue, flow 1 RTT 160ms, flow 2 RTT 16ms.

concern. Amongst these, the issue of slow convergence that is
a feature of Cubic-TCP, and of other algorithms, seems most
worrying.

IX. A CKNOWLEDGEMENTS

This work was supported by Science Foundation Ireland
grants 00/PI.1/C067 and 04/IN3/I460. Discussions and ex-
perimental tests carried out by Yee-Ting Lee are gratefully
acknowledged.

REFERENCES

[1] D.J.Leith. Linux implementation issues in high-speed networks.
Hamilton Institute Technical Report.www.hamilton.ie/net/
LinuxHighSpeed.pdf, 2003.

[2] D.J.leith and R.N.Shorten. Impact of drop synchronisation on TCP
fairness in high bandwidth-delay product networks. InProc. Workshop
on Protocols for Fast Long Distance Networks, Nara, Japan., 2006.

[3] I.Rhee and et al.http://netsrv.csc.nscu.edu/highspeed/
convex-ordering/.

[4] C. King, R. Shorten, F. Wirth, and M. Akar. Growth conditions for the
global stability of highspeed communication networks. Accepted for
publication in IEEE Transactions on Automatic Control, 2007.

[5] R.N.Shorten, D.J.Leith, and F.Wirth. Products of random matrices and
the internet: Asymptotic results.IEEE Transactions on Networking,
14(6), pp. 616-629, 2006.

[6] R.N.Shorten, C. King, D.J.Leith, and J.Foy. Modelling TCP in drop-tail
and other environments. Accepted for publication in Automatica, 2007.

9

[7] U. Rothblum and R.N.Shorten. Analysis of high-speed congestion
control protocols: A contraction mapping approach. Accepted for
publication in SIAM, Control and Optimization, 2007.

[8] S.Hemminger. http://www.mail-archive.com/netdev@
vger.kernel.org/msg23215.html.

[9] S.Hemminger.http://kernel.org/pub/linux/kernel/v2.
6/ChangeLog-2.6.18.2.

[10] W.Willinger, M.S.Taqqu, R.Sherman, and D.V.Wilson. Self-similarity
through high-variability: Statistical analysis of ethernet lan traffic at the
source level.IEEE/ACM Trans Networking, 5, 1997.

[11] L. Xu and I. Rhee. CUBIC: A new TCP-Friendly high-speed TCP
variant. In Proc. Workshop on Protocols for Fast Long Distance
Networks, 2005, 2005.

[12] Y.Lee, D. Leith, and R.N.Shorten. Experimental evaluation of TCP
protocols for high-speed networks. Accepted for publication in IEEE
Transactions on Networking, 2007.

