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Abstract— Two problems that have received much attention
are those of finding the minimum channel signal to noise ratio
compatible with closed loop stability, and of finding the optimal
performance, in terms of disturbance attenuation, for a channel
with specified signal to noise ratio. In this paper, we study these
problems for the case in which the plant has relative degree
greater than one, and thus introduces a delay greater than one
time step. We show that, unlike the relative degree one case,
for the problem of stabilization linear time varying control
and communication strategies may have advantages over linear
time invariant strategies. We derive a lower bound on optimal
disturbance response at a fixed terminal time. If the encoder
has access to the state of the plant, then this bound is achievable
using linear time varying communication and control.

I. INTRODUCTION

Recent years have seen much interest in the limitations

imposed on a feedback system by the presence of a commu-

nication channel in the feedback path (e.g., [1]–[3], [5], [11]–

[14], [17], [18]). The goal of the stabilization problem is to

determine the minimal channel capacity required to stabilize

an open loop unstable plant. The solution to this problem

is known for noise-free data rate limited channels [14]

and additive Gaussian noise channels [2]. A more difficult

problem is that of determining the optimal performance,

in terms of the disturbance response, that is achievable

for a channel with given capacity. A lower bound on the

mean square value of the state vector of an unstable system

stabilized over a data rate limited channel is given in [14],

and an analogous bound for an unstable system stabilized

over a Gaussian channel is given in [8]. Except in special

cases, such as that of a first order system, one would not

expect this lower bound to be tight, thus complicating the

problem of finding the best achievable performance. An

alternate problem statement, considered in [6], [7], is to

consider the finite horizon problem of minimizing the mean

square value of the output of a discrete time system at a

specified terminal time. A lower bound is derived in [6] on

the best possible performance for arbitrary nonlinear causal

communication and control strategies. Moreover, under the

assumption that the plant has relative degree one, this lower

bound is achievable using strategies that are linear and time-

varying [7].

For data rate limited channels, it is shown in [14] that

time delay does not affect the data rate required for stabi-
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lization. However, the authors of [15] show that time delay

does worsen the performance, in terms of the mean square

response of the system state to a Gaussian disturbance. For

Gaussian channels, it is shown in [2] that if the relative

degree of the plant is greater than one (implying a time delay

of more than one step), then the channel capacity required

to stabilize with linear time invariant (LTI) control is strictly

greater than if the relative degree were equal to one.

In the present paper we suppose that the plant has relative

degree greater than one, and study the impact of the resulting

time delay on the problems of stabilization and performance

of a feedback system. The remainder of the paper is outlined

as follows. In Section II we define notation and discuss

preliminaries. In Section III we consider the problem of

finding the minimal signal to noise ratio required to stabilize

an unstable plant. For minimum phase plants with relative

degree one, this minimal value is known and is achievable

with LTI communication and control. We show that linear

time varying strategies may prove advantageous when the

plant has relative degree greater than one. The problem of

performance, in terms of disturbance response, for a system

that has been stabilized is considered in Section IV. A lower

bound that holds for general causal encoding and decoding

schemes is derived, and shown to guarantee a peak in the

disturbance response whose size increases with the length of

the delay. In Section V we consider only the finite horizon

performance problem of minimizing the mean square value

of the system output at a fixed terminal time. We provide a

lower bound on the disturbance response, and show that this

bound is achievable provided that the encoder has access to

the state of the plant. Conclusions and directions for further

research are provided in Section VI.

II. NOTATION AND PRELIMINARIES

We use upper case letters to denote random variables,

lower case letters to denote realizations of these random vari-

ables, subscripts to denote elements of a sequence, and super-

scripts to denote subsequences, e.g., xk , {x0, x1, . . . , xk}.

Denote the expected value of the random variable X by

E{X}. Given two random variables X and Y , denote the

conditional expectation of X given that Y = y by Ey{X} =
E{X|Y = y}, and the associated random variable by

EY {X}. Given X and Y = y, it is well known (cf. [10,

p. 504]) that the conditional expectation Ey{X} minimizes

the variance of the mean square estimation error with respect

to all other functions g(Y ): E{(X − EY {X})2} ≤ E{(X −
g(Y ))2}.
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Consider the linear system, or “plant”

xk+1 = Axk + Buk + Bdk, (1)

yk = Cxk, (2)

with state xk ∈ R
n, control uk ∈ R, process disturbance

dk ∈ R, and output yk ∈ R. Assume that x0 and dk are

realizations of zero mean Gaussian random variables X0 and

Dk, where X0, D0, D1, . . . are mutually independent, that

X0 has covariance Σ0|−1, and that Dk is stationary with

variance σ2
d.

Assume that the relative degree of the plant is equal to

τ ≥ 1, and thus that its transfer function may be factored as

G(z) = G0(z)z−(τ−1). (3)

Let (A0, B0, C0) be a state space realization of G0 with state

vector ξk ∈ R
m, where m+τ −1 = n. Then the assumption

that G(z) has relative degree τ implies that C0B0 6= 0. The

state vector and state equations thus have the form

xT
k =

[

ξT
k (uk−(τ−1) + dk−(τ−1)), . . . , (uk−1 + dk−1)

]

,

and

A =

















A0 B0 0 . . . 0
0 0 1 . . . 0
...

...
. . .

. . .
...

... 0
. . . 0 1

0 0 . . . 0 0

















, B =















0
0
...

0
1















, (4)

C =
[

C0 0 0 . . . 0
]

. (5)

Note that

CAℓB =







0, ℓ < τ − 1,

C0A
ℓ+1−τ
0 B0, ℓ ≥ τ − 1.

(6)

The control input is computed based on measurements of

the plant output received from a Gaussian communication

channel rk = sk + nk, where the channel noise nk is a

realization of an independent identically distributed Gaussian

random process with zero mean and variance σ2
n. The chan-

nel noise is assumed to be independent of the initial state and

process disturbance. Assume also that the channel input sk

must satisfy the instantaneous power constraint E{S2
k} ≤ P .

We shall be interested in communication and control

strategies in which the channel input depends on the se-

quence of plant states, sk = fk(xk), and the control input

depends on the sequence of channel outputs, uk = gk(rk).
Note that the encoder fk and the decoder gk are potentially

nonlinear and time varying.

Denote the conditional expectations of the plant state

Xk+1 given the channel output histories Rk−1 = rk−1 and

Rk = rk by x̂k|k−1 = Erk−1{Xk} and x̂k|k = Erk{Xk},

respectively, and the associated state estimation errors by

x̃k|k−1 = xk − x̂k|k−1 and x̃k|k = xk − x̂k|k. Similarly,

denote conditional estimates of the system output by ŷk|k−1

and ŷk|k, and the conditional output estimation errors by

ỹk|k−1 and ỹk|k. The variance of ỹk|k−1 is thus given

by E{Ỹ 2
k|k−1} = E{(Yk − ERk−1{Yk})

2}, and a similar

expression holds for E{Ỹ 2
k|k}.

III. STABILIZATION

It was shown in [2] that if the encoder has access to the

states of the plant, then the system (1)-(2) may be stabilized

using LTI communication and control strategies provided that

the channel signal to noise ratio (SNR) satisfies the lower

bound

P/σ2
n >

Nφ
∏

i=1

|φi|
2 − 1, (7)

where {φi : i = 1, . . . , Nφ} are the unstable eigenvalues of

A: |φi| ≥ 1. Hence the capacity of the channel, given by

C = (1/2) log(1 + P/σ2
n), must satisfy

C >

Nφ
∑

i=1

log |φi|. (8)

If the encoder has access only to the plant output, then

the minimal SNR required for stabilization with LTI com-

munication and control increases with the relative degree,

and thus the time delay, of the plant. We illustrate with a

special case.

Lemma 1: Assume that

G(z) =
z−(τ−1)

z − φ
, (9)

where |φ| > 1 and τ ≥ 1. Then stabilization with LTI

communication and control is possible if and only if the

SNR satisfies

P/σ2
n > (φ2 − 1)φ2(τ−1). (10)

Furthermore, use of the unity encoder sk = yk and the

decoder/control law

uk = (1/φ − φ) (φτ−1rk+φτ−2uk−τ+1+. . .+φuk−2+uk−1)

results in (10) being satisfied with equality asymptotically:

limk→∞ E{Y 2
k } = (φ2 − 1)φ2(τ−1)σ2

n.

Proof: Follows from [2, Theorem III.2] or [16, Theo-

rem 2].

It was shown in [8], [9] that if the plant is minimum

phase and has relative degree one, then nonlinear time-

varying communication and control strategies do not allow

stabilization with a smaller channel SNR than that achievable

with LTI strategies. For plants that have relative degree

greater than one, it turns out that nonlinear, time-varying

strategies may have advantages.

Example 1: Consider the plant (9). Suppose that the chan-

nel input is given by

sk =

{

yk, k = ℓτ, ℓ = 0, 1, . . .
0, otherwise.
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Suppose also that the control input is given by

uk =

{

−(φτ − φ−τ )rk, k = ℓτ, ℓ = 0, 1, . . .
0, otherwise.

Then it may be shown that y(ℓ+1)τ = φτyℓτ + uℓτ , and

limℓ→∞ E{Y 2
ℓτ} = (φ2τ −1)σ2

n. The peak SNR is thus φ2τ −
1, which is greater than value (10) achieved with the LTI

strategy in Lemma 1. However, the average SNR is (φ2τ −
1)/τ , which is smaller than (10).

The problem of determining the minimal value of SNR for

which a plant with relative degree greater than one may be

stabilized remains to be solved. Unlike the relative degree

one case, the optimal communication and control strategies

may be nonlinear and time varying.

IV. STABILIZATION AND PERFORMANCE OVER AN

INFINITE HORIZON

The authors of [8], [9] derived a lower bound on the mean

square value of the state vector, showing that the response

to a disturbance would become unbounded if the channel

capacity is allowed to approach the minimum required for

stabilization. However, this bound does not depend on the

relative degree, or time delay, of the plant. Motivated by

analogous results on data rate limited channels [15], we now

extend the results of [8], [9] to include the effect of delay.

It follows from the decomposition (4)-(5) that the state

equations of the plant may be written as

ξk+1 = A0ξk + B0uk+1−τ + B0dk+1−τ (11)

yk = C0ξk.

We shall assume, with no loss of generality, that all eigen-

values of A0 are unstable, and thus that m = Nφ. (If this

assumption is not satisfied, then the state equations may be

further decomposed into stable and unstable subsystems, as

described in [8], [9].) Iterating (11) yields

ξk+τ = Aτ
0ξk + νk + δk,

where

νk ,

τ−1
∑

j=0

Aj
0B0uk−j , δk ,

τ−1
∑

j=0

Aj
0B0dk−j .

Note that νk is a function of the channel output sequence

rk, and is thus known at the decoder at time k. Furthermore,

δk is an m dimensional zero mean Gaussian random vector

with constant covariance

E{∆k∆T
k } = σ2

d

τ−1
∑

j=0

Aτ−1−j
0 B0B

T
0 A

(τ−1−j)T
0 .

Since ∆k is Gaussian, the entropy power [4] of ∆k satisfies

N(∆) = σ2
ddet1/m





τ−1
∑

j=0

Aτ−1−j
0 B0B

T
0 A

(τ−1−j)T
0



 .

(12)

Under the assumptions that (A0, B0) is reachable, and that

τ ≥ m, it follows that N(∆) > 0.

Define the average conditional entropy power [9] of the

state ξk given the channel output sequence rℓ, ℓ ≤ k, by

nk|ℓ = E{NRℓ(Ξk)}, where Nrℓ(Ξk) is the conditional

entropy power of the random variable Ξk given that Rℓ = rℓ.

Lemmas III.2 and III.3 of [9] may be modified to show that

nk|k ≥

(

σ2
n

P + σ2
n

)τ/m

nk|k−τ , (13)

nk+τ |k ≥

(

m
∏

i=1

|φi|
2

)τ/m

nk|k + N(∆). (14)

The bound (13) provides a lower bound on the possible

reduction in entropy power due to τ measurements from a

channel with capacity C = (1/2) log(1 +P/σ2
n). The bound

(14) provides a lower bound on the increase in entropy power

over τ time steps due to the unstable state dynamics and the

disturbances arriving in this time interval. Combining (13)-

(14) yields the recursion

nk+τ |k ≥ γτnk|k−τ + N(∆), (15)

where

γ ,

m
∏

i=1

|φi|
2/me−2C/m.

It follows from (15) that nk|k−τ ≥ N(∆)(1 − γτk)/(1 −
γτ ). Using the fact that conditional entropy power is a lower

bound on conditional variance [4, p. 255], and thus on the

mean square value of the state vector [8], [9], we have

E{‖Ξk‖
2} ≥ mN(∆)(1 − γτk)/(1 − γτ ). (16)

Assume that the channel capacity satisfies the lower bound

(8) required for stabilization. Then γ < 1 and the mean

square value of the state is bounded below by

sup
k

E{‖Ξk‖
2} ≥ mN(∆)/(1 − γτ )

=
mN(∆)

1 − γ

1

1 + γ + . . . + γτ−1
. (17)

Example 2: Consider again the system (9). Assume that

C > log |φ|. Then N(∆) given by (12) simplifies to N(∆) =
∑τ−1

j=0 φ2j , and (17) reduces to

sup
k

E{‖Ξk‖
2} ≥

σ2
d

1 − (φ/eC)2

(

∑τ−1
j=0 φ2j

∑τ−1
j=0 (φ/eC)2j

)

. (18)

For τ = 1, the fact that the system is first order implies

that the bound is achievable using LTI communication and

control strategies [9].

It is clear that the lower bound on disturbance response (18)

is an increasing function of the relative degree τ . In fact,

for τ > 1, this lower bound may be conservative, and the

problem of finding the optimal disturbance response remains

to be resolved.
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V. PERFORMANCE AT A TERMINAL TIME

We now extend the results of [7], and present communi-

cation and control strategies sk = fk(xk) and uk = gk(rk)
that minimize the mean square value of the system output at

the terminal time k = N + τ . The τ -step delay in the plant

implies that yN+τ can depend only on the channel output

sequence rN , and thus that we need to choose sk and uk

only for times k = 0, . . . , N . The optimal value of this cost

function is thus

J∗
N+τ = inf

fk,gk
k=0,...,N

E{Y 2
N+τ}. (19)

The fact that the conditional expectation minimizes the

mean square estimation error implies that

E{Y 2
k+τ} ≥ E{Ỹ 2

k+τ |k}. (20)

By choosing the control at time N appropriately, the lower

bound (20) may be achieved with equality at time N + τ .

Lemma 2: Assume that the system (1)-(2) has relative

degree τ . Then the control input

uN = −(CAτ−1B)−1CAτ x̂N |N (21)

yields

ŷN+τ |N = 0, yN+τ = ỹN+τ |N . (22)

Hence

E{y2
N+τ} = E{(CAτ x̃N |N )2} + (CAτ−1B)2σ2

d. (23)

Proof: Iterating (1) yields

xk+τ = Aτxk +
τ−1
∑

j=0

Aτ−1−jB(uk+j + dk+j).

Left multiplying by C and invoking the assumption of

relative degree τ implies that

yk+τ = CAτxk + CAτ−1B(uk + dk), (24)

ŷk+τ |k = CAτ x̂k|k + CAτ−1Buk.

Setting k = N and applying the control (21) yields (22).

Hence yN+τ = CAτ x̃N |N +CAτ−1BdN , and independence

of x̃N |N and dN implies (23).

The result of Lemma 2 shows how to choose the control

signal at time N . It remains to choose the channel input at

times k = 0, . . . , N and the control signal at times k =
0, . . . , N − 1. By Lemma 2, this problem reduces to one of

minimizing the variance of the estimation error ỹN+τ |N .

We must estimate yN+τ which, under the assumption on

relative degree, is given by

yN+τ = CAN+τx0 +
N
∑

j=0

CAN+τ−1−jB(dj + uj).

Since the control signal is known at the decoder, and the

disturbance at time N will not affect the plant output until

time N + τ , the task of the encoder is to use the channel

input sequence sN to communicate a “message” that is a

function of the primitive random variables x0 and dN−1:

m(x0, d
N−1) = CAN+τx0 +

N−1
∑

j=0

CAN+τ−1−jBdj . (25)

A. Encoder has access to additional information.

We suppose temporarily that the encoder has access to

additional information: the channel output and the control

input. Access to the state and the control input allows the

primitive random variables to be computed. In particular, the

disturbance dk may be computed at time k + 1:

dk = (CAτ−1B)−1
(

CAτ−1xk+1 − CAτxk

)

− uk.

The ability to compute the primitive random variables,

in turn, enables the encoder to obtain an estimate of (25)

at each time step as the state of a discrete integrator with

initial condition m0 = CAN+τx0 and input sequence vk =
CAN+τ−1−kBdk with variance σ2

k = (CAN+τ−1−kB)2σ2
d:

mk+1 = mk + vk. (26)

Note that the integrator state (26) at time k provides

an estimate of the message m(x0, d
N−1) given the prim-

itive random variables available at that time: mk =
Ex0,dk−1{m(X0, D

N−1)}.

The assumption that the encoder also has access to the

channel output allows a Kalman filter for the purpose of

estimating mk to be implemented using the feedback path

around the channel, as shown in Figure 1.

Σ

n
k

r
k

L
k

s
k

λ
kΣ Σ

z-1

-

^

m
k|k-1

^

~m
k m

k|k-1 m
k|k

v
k

Σ z-1
m

k+1

Fig. 1. Communicating the output of a discrete integrator over a channel
with feedback.

As described in [6], the state estimate evolves according

to

m̂k|k = m̂k|k−1 + Lkrk, m̂k+1|k = m̂k|k

where the estimator gain Lk and Mk|k−1 = E{M̃2
k|k−1}

satisfy

Lk =
1

λk

P

P + σ2
n

, Mk+1|k = Mk|k−1
σ2

n

P + σ2
n

+ σ2
k,

with initial condition M0|−1 , CAN+τΣ0|−1A
(N+τ)T CT ,

and λk is adjusted so that λ2
kMk|k−1 = P .

We have that ỹN+τ |N = m̃N |N + CAτ−1BdN . Hence,

E{Ỹ 2
N+τ |N} = E{M̃2

N |N} + (CAτ−1B)2σ2
d, and iterating

Mk+1|k yields

E{Ỹ 2
N+τ |N} = M0|−1

(

σ2
n

P + σ2
n

)N+1

+ σ2
d

N
∑

j=0

(C0A
j
0B0)

2

(

σ2
n

P + σ2
n

)j

, (27)
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where the identity (6) has been applied to the terms in the

summation. Note that the variance of the estimation error

depends on the relative degree τ only through the response

to the initial condition.

For the case τ = 1, it is shown in [6] that the use of

more general, potentially nonlinear, encoding and decoding

schemes cannot reduce the variance of the estimation error

beyond that achievable with the linear schemes depicted in

Figure 1. It is straightforward to show that the results of [6]

may be extended to yield the same conclusions for arbitrary

values of τ .

Example 3: Consider the system (1)-(2) factored as in (3)-

(5), with

A0 =

[

1.1 1
0 1.2

]

, B0 =

[

0
1.5

]

, C0 =
[

1 0
]

, (28)

σ2
d = 1, P = 10, and σ2

n = 5. Assume that the state ξ0 has

covariance Σξ
0|−1 =

[

1 0
0 1

]

, and that the remaining entries

of the covariance matrix Σ0|−1 are equal to zero. Plots of

the minimum achievable estimation error (27) vs. time N
for τ = 1, 3, 5 are given in Figure 2. Note that the only

difference for the three cases is the response to the initial

condition, which worsens as τ increases. As expected from

(27), once the response to the initial state decays to zero, the

estimation error variance is independent of τ .

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

40

45

50

N

 

 

τ =1
τ =3
τ =5

Fig. 2. Optimal estimation error (27) E{Ỹ 2
N+τ |N

} vs. N for τ = 1, 3, 5.

It is of interest to determine the asymptotic behavior of the

estimation error variance (27) for large values of N . As noted

in [7], if the channel SNR satisfies P/σ2
n > ρ2(A)−1, where

ρ(A) denotes the spectral radius of A, then

lim
N→∞

E{Ỹ 2
N+τ |N} = σ2

d

∞
∑

j=0

(C0A
j
0B0)

2

(

σ2
n

P + σ2
n

)j

.

(29)

The fact that the limit (29) is finite for SNRs that may be

incompatible with closed loop stability is not a contradiction,

since the optimal error variance (27) may only be achieved

at a given finite value of N .

Example 4: Consider again the system (9) discussed in

Lemma 1 and Examples 1-2, and assume that C > log |φ|.
Then (29) simplifies to

lim
N→∞

E{Ỹ 2
N+τ |N} =

σ2
d

1 − (φ/eC)2
. (30)

Note that this value is smaller than the lower bound (18),

but may only be achieved at a specified terminal time.

B. Encoder has access to the plant state only.

We now remove the assumption that the encoder is allowed

access to the channel output and the plant input. Specifically,

we suppose that the channel input is given by

sk = λkzk, zk = Hkxk, Hk = CAN+τ−k, (31)

k = 0, . . . , N . It follows from (24) that zN+1 = yN+τ .

Proposition 1: Assume that the channel input is given by

(31), where λk is adjusted so that λ2
kE{S

2
k} = P . Assume

also that we apply the feedback control

uk = −Fkx̂k|k, Fk = (Hk+1B)−1Hk+1A, (32)

k = 0, . . . , N . The estimate x̂k|k is given by

x̂k+1|k = Ax̂k|k−1 + Buk + ALk(rk − λkHkx̂k|k−1),

x̂k|k = x̂k|k−1 + Lk(rk − λkHkx̂k|k−1),

where

Lk = λkΣk|k−1H
T
k /(P + σ2

n), (33)

and Σk|k−1 is the solution to the Riccati difference equation

Σk+1|k = AΣk|k−1A
T

−
AΣk|k−1H

T
k HkΣk|k−1A

T

HkΣk|k−1H
T
k

P

P + σ2
n

+ σ2
dBBT . (34)

Then zk = z̃k|k−1 and, at time k = N + 1, E{Y 2
N+τ} =

E{Ỹ 2
N+τ |N}, where E{Ỹ 2

N+τ |N} is given by (27).

Proof: With the control (32) applied, it is straightfor-

ward to show that ẑk+1|k = 0, and thus zk = z̃k|k−1. In

particular, yN+τ = zN+1 = z̃N+1|N , and thus E{Y 2
N+τ} =

CAτ−1ΣN+1|NA(τ−1)T CT , where ΣN+τ |N is given by

(34) for k = N . Substituting (34) into the expression for

E{Y 2
N+τ} and simplifying yields

E{Y 2
N+τ} = CAτΣN |N−1A

τT CT σ2
n

P + σ2
n

+σ2
d(CAτ−1B)2.

Applying a similar decomposition to CAτΣN |N−1A
τT CT

and repeating shows that E{Y 2
N+1} is given by (27).

The control (32) only sets yk+τ = ỹk+τ |k for k = N . We

now state a general formula for the mean square value of the

output at earlier times.
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Corollary 3: Assume that the hypotheses of Proposition 1

are satisfied. Then

E{Y 2
k+τ} = CAτ−1Σk+1|k(CAτ−1)T

+ CAτ−1(A − BFk)Γk|k(A − BFk)T (CAτ−1)T , (35)

where Fk is defined by (32), and Γk|k , E{X̂k|kX̂T
k|k}

satisfies the recursion

Γk+1|k+1 = (A − BFk)Γk|k(A − BFk)T

+
λ2

kΣk|k−1H
T
k HkΣk|k−1

P + σ2
n

, (36)

with Γ0|0 = λ2
0Σ0|−1H

T
0 H0Σ0|−1/(P + σ2

n).

Example 5: Consider the system (28) studied in Exam-

ple 3. Suppose we apply the communication and control

sequences (31) and (32) that minimize the cost (19) for N =
20 and τ = 3 (hence the terminal time is equal to 23). The

transient value of the estimation error variance E{Ỹ 2
k+3|k}

and the mean square value of the output E{Y 2
k+3} are plotted

in Figure 3. Note that E{Y 2
k+3} ≥ E{Ỹ 2

k+3|k}, ∀k, as we

expect from (20), and that equality is achieved at the terminal

time N + 3 = 23. Also plotted in Figure 3 is the variance

of the optimal estimation error at time k + 3, as depicted

in Figure 2. As predicted, the value of E{Ỹ 2
k+3|k}, and thus

that of E{Y 2
k+1}, is equal to this lower bound at the terminal

time.
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k

 

 

E {Y 2
k+3}

E {Ỹ 2

k+3 |k}

lower bound

Fig. 3. Plots of E{Y 2
k+3

} and E{Ỹ 2
k+3|k

} vs. k for terminal time N+3 =

23. Also plotted is the lower bound on E{Ỹ 2
k+3|k

} from Figure 2.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper we have discussed the impact that time delay

due to the relative degree of the plant has upon the problems

of stabilization and performance. Under the assumption that

the encoder has access to the states of the plant, the optimal

value of the terminal cost function (19) is given by (27), and

is achieved using the linear time-varying communication and

control strategies of Proposition 1. It remains to determine

the optimal value of the cost (19) in the case that the encoder

has access only to the sequence of plant outputs. In fact, the

lower bound derived in Section V-B is optimistic, in that it

assumes each disturbance may be computed one time step

after it occurs. An approach that takes into account the fact

that disturbances do not reach the output for τ time steps

and that removes the assumption that the encoder has access

to the plant state will be reported elsewhere.
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