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0. Introduction

These notes are for the course in Sobolev spaces which I am giving to the Department of
Mathematical Analysis during a visit to the University of La Laguna, Tenerife in May 2000.
They will likely be neither a subset nor a superset of what I will actually present, but their
Hausdorff distance from the presentation should be quite small!

Since this is a very short course, I have decided to slant the course somewhat towards one
particular subarea, namely imbeddings of Sobolev spaces in spaces of measurable or continuous
functions. Section 1 is motivational and not a core part of the course. Quite a few proofs are
given for the basic results in Sections 2–3 but, where a proof is omitted, a standard reference is
supplied. Sections 4 and 5 form a brief survey of two topics that particularly interest me. The
references to the course, although numerous, are not meant to be comprehensive. Rather, they
support the material presented in this course and give a flavour of some recent related research.
I apologise in advance to the many people whose papers and books I have found enjoyable and
enlightening and yet have not included in the reference list.

As I prepared these notes rather quickly, I found it convenient to use the excellent University
of Jyväskylä course notes [H2] of Piotr Haj lasz as a basis for the development of the basic
material in Sections 1–3. Also in view of the quick preparation, there are surely many little bugs
throughout these notes for which I apologise in advance. If you have any comments or questions,
please contact me at the above address or e-mail.

Let us also mention here some standing assumptions and some notation that will be used
throughout the course. Ω is an open set in Rn, n > 1, which may be subject to further explicit
restrictions. If E ⊂ Rn and t > 0, |E| and Ht(E) denote the Lebesgue and t-dimensional
Hausdorff measure of E. Both

∫

E
u and uE denote the average value of a function on a set

E of positive measure (with respect to Lebesgue measure before Section 5, and with respect to
µ in Section 5). Di denotes the partial derivative in the ith direction and higher order partial
derivatives are denoted as Dα, where α is a multi-index, i.e., an element of Zn with non-negative
coordinates. Given a point x ∈ Rn, the symbols x1, . . . , xn are used to denote its Cartesian
coordinates without further comment. a ∨ b is the larger of the two numbers a, b, and a ∧ b the
smaller.
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1. Calculus of Variations and the Classical Dirichlet Problem

The classical Dirichlet problem for an open subset Ω of Rn is as follows: given u ∈ C(∂Ω),
find u ∈ C2(Ω) ∩ C0(Ω) such that

{

4u = 0 on Ω

u|∂Ω = g

By the Calculus of Variations, solutions to4u = 0 on Ω are essentially the same as minimizers
of the Dirichlet integral I(u) =

∫

Ω
|∇u|2 (for instance this is true if ∂Ω is C1, u ∈ C2(Ω), and we

minimize over C2(Ω) functions).

The Direct Method in the Calculus of Variations depends on the following functional analytic
result (and variations thereof); for more details, see for instance [E], [Gi], or [H2].

Theorem 1.1. Suppose I : X → R, where X is a reflexive Banach space and I is convex, lower
semicontinuous, and coercive. Then I(x) attains its minimum value at some u0 ∈ X. If I is
strictly convex, then the minimum is unique.

Definitions. In the above theorem, I is

• convex if I(tu + (1− t)v) ≤ tI(u) + (1− t)I(v), 0 < t < 1;
• lower semicontinuous if I(u) ≤ lim infn→∞ I(un), whenever (un) is norm-convergent to

u;
• coercive if I(un)→∞ whenever ‖un‖ → ∞.

To apply Theorem 1.1, we would like a reflexive Banach space that contains the smooth
functions and on which the Dirichlet integral is lower semicontinuous. Now limits of smooth
functions are not smooth, and it would be convenient to have I bounded on the space, so a first
guess might be to use ‖u‖ = ‖∇u‖L2(Ω) as a “norm”. However at least when |Ω| <∞, constant
functions indicate that this is not a norm. We therefore take as our Banach space essentially the
closure of C∞(Ω) with respect to the norm ‖ · ‖1,2 given by the equation

‖u‖21,2 = ‖u‖2L2(Ω) + ‖∇u‖2L2(Ω).

More precisely, we take the closure only of the set of C∞(Ω) functions whose ‖ · ‖1,2-norm is
finite. The resulting space W 1,2(Ω) is a reflexive Banach space.

As for the boundary values, we first define the functions in W 1,2(Ω) that have “zero boundary

values”, namely the subset W 1,2
0 (Ω) consisting of the closure of the functions C∞

0 (Ω). It is now
convenient to replace the boundary function g with a function w ∈W 1,2(Ω); note that w is now
defined on Ω rather than ∂Ω (but in some sense it has boundary values almost everywhere on Ω
if Ω has some minimal smoothness).

Our substitute Dirichlet problem is now as follows: given w ∈ W 1,2(Ω), minimize I(u) =
∫

Ω
|∇(u + w)|2, over all u ∈ W 1,2

0 (Ω). Now W 1,2
0 (Ω) is also a reflexive Banach space since it

is a closed subspace of a reflexive Banach space; see [R, Exercise 4.1]. It is clear that I is

strictly convex (so any minimizer must be unique) and continuous on W 1,2
0 (Ω), so once we prove

coercivity, the existence of a (unique) minimizer follows. Coercivity follows immediately from

the following inequality (sometimes called a Poincaré inequality); the space W 1,q
0 (Ω) is defined

in an analogous fashion to W 1,2
0 (Ω).
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Theorem 1.2. Suppose |Ω| <∞ and 1 ≤ q <∞. Then for all u ∈W 1,q
0 (Ω),

∫

Ω

|u|q dx ≤ C|Ω|q/n

∫

Ω

|∇u|q dx, (1.3)

where C depends only on n and q.

The Direct Method is well-known to PDE experts and can be found in many books and

papers. There is much more to this story than is presented here: regularity of weak solutions,

when are weak solutions classical solutions, other elliptic PDEs and PDE systems, etc. But this

is a course on Sobolev spaces, not PDEs, so we will stop here with the advice that the reader

should consult, for instance, [E] and [Gi] for more on this method. For more applications of

Sobolev spaces to a large class of elliptic partial differential equations, see [HKM].

2. Sobolev spaces: Definitions and fundamental results

Suppose u, v ∈ L1
loc(Ω). We say that Dαu = v weakly, where α is a multi-index, if for all

φ ∈ C∞
0 (Ω)

∫

Ω

vφ = (−1)|α|

∫

Ω

uDαφ.

Weak derivatives are uniquely determined up to sets of measure zero. If 1 ≤ p ≤ ∞, k ∈ Z, k ≥ 0,

then the Sobolev space W k,p(Ω) is the set of all u ∈ Lp(Ω) all of whose weak partial derivatives

of order at most k exist and are in Lp(Ω). We also define

‖u‖k,p ≡ ‖u‖W k,p(Ω) =
∑

|α|≤k

‖Dαu‖Lp(Ω).

If we are to be more honest, making W k,p(Ω) a normed space requires the same trick as Lp(Ω),

namely its elements must actually be taken to be equivalence classes of functions which agree

almost everywhere. However we can usually gloss over this point.

If u ∈ C∞(Ω), then u has weak derivatives of all orders on Ω, namely its corresponding

classical derivatives. It follows that u ∈ C∞(Ω) lies in W k,p(Ω) if and only if all its classical

derivatives of order at most k lie in Lp(Ω); in particular, this is the case if u is in addition

compactly supported, i.e., it lies in C∞
0 (Ω).

We define W k,p
loc (Ω) to be the class of functions in W k,p(Ω) whose restrictions to compact

subdomains Ω′ of Ω lie in W k,p(Ω′). We also define Hk,p(Ω) to be the ‖ · ‖k,p-closure of C∞(Ω)∩

W k,p(Ω) and W k,p
0 (Ω) to be the ‖ · ‖k,p-closure of C∞

0 (Ω). Our notation seems inconsistent with
the last section since what we called W 1,2(Ω) there is called H1,2(Ω) here. However we shall see

that W k,p(Ω) = Hk,p(Ω) in general so this is not a problem.

Lemma 2.1. W k,p(Ω) is a Banach space (for all k, p, Ω).
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Proof. If (ui) is a Cauchy sequence in W k,p(Ω), then (Dαui) is also a Cauchy sequence in Lp

whenever |α| ≤ k. By completeness of Lp, there are functions uα such that Dαui
Lp

−→uα for each
|α| ≤ m. Now

∫

Ω

u Dαφ←−

∫

Ω

ui Dαφ = (−1)|α|

∫

Ω

Dαui φ −→ (−1)|α|

∫

Ω

uαφ.

Consequently uα = Dαu and ui
W k,p

−→ u. �

It follows that W k,p
0 (Ω) ⊆ Hk,p(Ω) ⊆W k,p(Ω), and that these are all Banach spaces.

Theorem 2.2. W k,p
0 (Rn) = W k,p(Rn) for all k ∈ N, 1 ≤ p <∞.

The case p =∞ is very different: W 1,∞(Rn) actually equals Lip(Rn), and x 7→ |x| is a simple
example of a function in W 1,∞(R) \H1,∞(R).

Before proving Theorem 2.2, it is worthwhile recalling some facts about regularization; see [Z;
Section 1.6] for proofs. Let φ ∈ C∞

0 (Rn) be non-negative, supported in the unit ball, and satisfy
∫

Rn φ = 1; for instance φ(x) = C exp[−1/(1 − |x|)2] for |x| ≤ 1 gives one such function if C is

appropriately chosen. Next we define φε(x) = ε−nφ(ε−1x) and, given a function u ∈ L1
loc(R

n), we
write uε = u ∗φε, where ∗ denotes convolution, and ε > 0. This collection of functions uε is often
called a regularization of u; in particular we have uε ∈ C∞(Rn). Notice that uε(x) is a weighted
average of u over a ball of radius ε. In view of the Lebesgue differentiation theorem, it is thus not

surprising that, as ε → 0+, uε(x) → u(x) almost everywhere and that, if in addition u ∈ Lp(Ω)

and 1 ≤ p < ∞, then uε
Lp

−→u. Obviously, essentially the same results follow on a general open

set Ω, the only twist being that uε is only defined on the set of points whose distance from ∂Ω
is at least ε. Lastly, regularization interacts well with weak differentiation: (Dαu)ε = Dα uε, as
can be seen readily from the definition.

Another useful idea we need is the existence of a non-negative bump function b ∈ C∞
0 (Rn)

such that b|B(0,1) ≡ 1 and b|Rn\B(0,2) ≡ 0. Obviously it suffices to define such a function b1 for
n = 1, as we can then define b in higher dimensions by the equation b(x) = b1(|x|). To define b1(t)
for t > 0, it suffices to integrate a one-dimensional regularization function φ as above between
−∞ and 3−2t. Actually, it is not b itself that interests us, but rather the rescaled bump functions

bR(x) = b(x/R). Note that bR equals 1 on B(0, R), zero outside B(0, 2R), and any kth order
partial derivative of bR has size no larger than C/Rk, where C = Ck,n is independent of R.

Proof of Theorem 2.2. Suppose u ∈ W k,p(Ω), and let (uε) be its regularization. Defining the
scaled bump function bR as above, we have that bRuε ∈ C∞

0 (Rn) for all ε, R > 0. By the properties

of regularizations, it follows readily that we can pick a sequence (εn) such that ‖u−uεn
‖W k,p(Ω) <

1/n. By the Dominated Convergence Theorem and the properties of bump functions, we can
also pick a sequence (Rn) such that ‖uεn

− bRn
uεn
‖W k,p(Ω) < 1/n. By the triangle inequality, it

follows that bRn
uεn

W k,p

−→ u, as required. �
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Theorem 2.3 (Meyers-Serrin). If u ∈W k,p
loc (Ω), 1 ≤ p <∞, then for every ε > 0 there exists

v ∈ C∞(Ω) such that u− v ∈W k,p
0 (Ω) and ‖u− v‖k,p < ε.

Using Theorem 2.2, the proof is a routine partition of unity argument; see [H2; Theorem 11].
Note that this result implies that Hk,p(Ω) = W k,p(Ω).

It is not obvious from the definition when a function in W k,p(Ω) lies in W k,p
0 (Ω). One useful

criterion for bounded Ω is that if u ∈ W 1,p(Ω) is the restriction of a function v ∈ C(Ω), where

v|∂Ω = 0, then u ∈ W k,p
0 (Ω). The proof is not hard (as a hint, note that vε = (v − ε) ∨ 0 is a

compactly supported function for all ε > 0, and has limit v as ε→ 0+).

Theorem 2.4. If 1 < p <∞, W k,p(Ω) and W k,p
0 (Ω) are reflexive.

Proof. Since a closed subspace of a reflexive space is reflexive, it suffices to note that W 1,p(Ω) (and

hence W 1,p
0 (Ω)) is isomorphic as a Banach space with a closed subspace of Lp(Ω)× · · · × Lp(Ω)

via the obvious map u 7→ (u, (Dαu)|a|≤k), and that this product space is reflexive when 1 < p <
∞. �

2.5. ACL characterization of Sobolev spaces.

Recall that a continuous function f : [a, b]→ R is said to be absolutely continuous if for every
ε > 0 there exists δ > 0 such that whenever I1, . . . Ik are pairwise disjoint intervals in [a, b] with
∑k

i=1 |Ik| < δ, we have
∑k

i=1 |f(Ik)| < ε. If G ⊂ R is open, we say that u is absolutely continuous
on G if it is absolutely continuous on all closed intervals in G. Absolutely continuous functions
are differentiable almost everywhere.

The set of lines in a particular direction can be identified with the set of points in a hyperplane
whose normal is in the same direction. Hence it makes sense to talk about properties that hold
for almost every line parallel to a particular coordinate direction. We define ACL(Ω) to be the
space of real-valued functions defined on Ω which are absolutely continuous on L∩Ω, for almost
every line L parallel to any of the coordinate axes. Functions in this class were studied as far back
as 1906 by Beppo Levi, and later by Tonelli. The interesting thing is that if we define ACLp(Ω)
to be the class of ACL(Ω) ∩ Lp(Ω) functions whose (classical) first order partial derivatives all
lie in Lp(Ω) then:

Theorem 2.6 [Z; Theorem 2.1.4]. ACLp(Ω) = W 1,p(Ω) (for all p, Ω).

This statement is not quite honest since ACLp(Ω) is a space of functions and W 1,p(Ω) a space
of equivalence classes of functions which differ on sets of measure zero. More correctly, we mean
that any function in ACLp(Ω) lies in (an equivalence class in) W 1,p(Ω), while every element of
W 1,p(Ω) has a representative in ACLp(Ω). We shall ignore such pedantry in the rest of these
notes.

Theorem 2.6 is quite useful. Let us consider a couple of applications, the first of which follows
immediately from Theorem 2.6 together with the observation that x 7→ x ∨ 0 and x 7→ x ∧ 0 are
contraction mappings on R.
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Corollary 2.7. If u ∈W 1,p(Ω), 1 ≤ p ≤ ∞, then u+ ≡ u ∨ 0 ∈W 1,p(Ω). Furthermore

∇u+ =

{

∇u, u > 0,

0, u ≤ 0,

almost everywhere. A similar result applies to u− ≡ u ∧ 0.

Before the second result, we first define a relatively closed set E ⊂ Ω to be removable for
W 1,p(Ω) if |E| = 0 and W 1,p(Ω \E) = W 1,p(Ω) in the sense that every function in W 1,p(Ω \E)
can be approximated by the restrictions of functions in C∞(Ω). Theorem 2.6 now readily implies
the following removability theorem for W 1,p(Ω) since if Hn−1(E) = 0, then E is contained in a
measure zero set of lines in a fixed direction (equivalently the projection of E onto a hyperplane
also has Hn−1-measure zero).

Theorem 2.8. If E ⊂ Ω is relatively closed and Hn−1(E) = 0 then E is removable for W 1,p(Ω).

Theorem 2.8 is quite sharp. For instance if Ω is the unit ball B(0, 1) and E is the set
{x ∈ B : x1 = 0} then Hn−1(E) is finite (and nonzero!) but E is clearly not removable since,
using Theorem 2.6 yet again, it is easy to see that the function which is 1 on the upper half-plane
and 0 on the lower half-plane is not in W 1,p(Ω). The fact that B \ E is disconnected makes life
easier, but is not crucial here: with only a little more effort we can show that E ′ = E ∩B(0, 1/2)
is also not removable for W 1,p(B(0, 1)).

3. The Representation Formula and the Sobolev Imbedding Theorem for W 1,p
0 (Ω)

The formula in the following basic lemma is usually called a Representation Formula. Gen-
eralizations of this type of inequality are used to help prove Sobolev-type imbeddings for much
more general settings than the Euclidean-Lebesgue one we are examining e.g. the Heisenberg
group and other Carnot groups, and more generally Carnot-Carathéodory spaces and other dou-
bling metric measure spaces; see [BO; Section 6], [HaK; Sections 4,8], and [FLW]. In doubling
metric measure spaces (metric d and measure µ) on which such an inequality holds, the inte-
grand denominator |x − z|n−1 below is replaced by something like µ(B(x, d(x, z)))/d(x, z), and
the integration might be over a larger set than B.

Lemma 3.1. If B ⊂ Rn is a ball and u ∈ W 1,1(B), then for almost all x ∈ B we have

|u(x)− uB | ≤ Cn

∫

B

|∇u(y)|

|x− y|n−1
dy, (3.2)

Proof. Since W 1,1(B) = H1,1(B), it suffices by a limiting argument to prove (3.2) for u ∈ C∞(B).
Fix x ∈ B and let y ∈ B, y 6= x, z = (y − x)/|y − x|, and δ(z) = max{t > 0 : x + tz ∈ B}.
Clearly

|u(x)− u(y)| ≤

∫ δ(z)

0

|∇u(x + sz)| ds.
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Writing dz for surface measure on Sn−1, we now have

|u(x)− uB| ≤ |B|
−1

∫

B

|u(x)− u(y)| dy

= |B|−1

∫

Sn−1

∫ δ(z)

0

tn−1|u(x)− u(x + tz)| dt dz

≤ |B|−1

∫

Sn−1

∫ δ(z)

0

tn−1

∫ δ(z)

0

|∇u(x + sz)| ds dt dz

≤ |B|−1

∫

Sn−1

∫ δ(z)

0

(
∫ 2r

0

tn−1 dt

)

|∇u(x + sz)| ds dz

= Cn

∫

Sn−1

∫ δ(z)

0

|∇u(x + sz)|s1−n · sn−1 ds dz

= Cn

∫

B

|∇u(y)|

|x− y|n−1
dy.

Note that the first and last equalities are changes to and from polar coordinates. �

The Sobolev Imbedding Theorem is a name which is used to cover a variety of related imbed-
dings of Sobolev spaces into spaces of measurable or Hölder continuous functions. In this section,
we use it to refer to the following theorem together with (3.9) and Theorem 3.10 which together
cover the case p ≥ n/k. When p < n/k, the number p∗ = np/(n − kp) which occurs in the
next theorem is often called the critical Sobolev exponent, or simply the Sobolev exponent. The
following theorem is essentially due to Sobolev [So1], [So2] in the case p > 1, and to Nirenberg
[N] and Gagliardo [Ga] in the case p = 1; the proof given below is that of Nirenberg.

Theorem 3.3. If k ∈ N, 1 ≤ p < n/k, and p∗ = np/(n − kp), then there exists a constant C,

dependent only on k, n, and p, such that for all u ∈ W k,p
0 (Ω),

(
∫

Ω

|u(x)|p
∗

dx

)1/p∗

≤ C

(
∫

Ω

|∇ku(x)|p dx

)1/p

(3.4)

Note 3.5. |∇ku|2 is the sum of squares of all kth order partial derivatives of u.

Note 3.6. By taking limits, it suffices to prove (3.4) for functions in C∞
0 (Ω). Since such functions

can be extended with zero values to be defined on all of Rn, it suffices to prove this theorem
in the case Ω = Rn in which case W 1,p

0 (Ω) = W 1,p(Ω).1 It is nevertheless convenient to state
Theorem 3.3 for general Ω.

Proof of Theorem 3.3. In view of Note 3.6, it suffices to prove (3.4) for u ∈ C∞
0 (Rn). We prove

this first for k = p = 1; the general result will then follow without much additional effort.

1By contrast, note that if |Ω| < ∞, non-zero constant functions show that we do not get (3.4) for u ∈ W 1,p(Ω).
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By the Fundamental Theorem of Calculus, we see that for each i we have |u(x)| ≤
∫ ∞

−∞
|Diu| dti, where the integrand is meant to be evaluated at the point whose ith coordi-

nate is ti, and whose jth coordinate, j 6= i, is xj . Thus

|u(x)|n/(n−1) ≤
n

∏

i=1

(
∫ ∞

−∞

|Diu| dti

)1/(n−1)

.

We now integrate from −∞ to ∞ with respect to each of the variables xi in turn, each time
applying Hölder’s inequality to the n − 1 factors on the right-hand side that do not depend on
xi. For instance after the first such step we get

∫ ∞

−∞

|u(x)|
n

n−1 dx1 ≤

(
∫ ∞

−∞

|D1u| dt1

)
1

n−1
n

∏

i=2

(
∫ ∞

−∞

∫ ∞

−∞

|Diu| dti dx1

)
1

n−1

.

After all n steps, we obtain

∫

Rn

|u(x)|n/(n−1) dx ≤
n

∏

i=1

(
∫

Rn

|Diu| dx

)1/(n−1)

.

Using the simple estimate |Diu| ≤ |∇u|, we immediately deduce the case p = 1 of (3.4).

Suppose now that 1 < p < n. Given u ∈ C∞
0 (Rn), we define a non-negative function

v ∈ C1
0 (Rn) ⊂ W 1,p

0 (Ω) by the equation v1∗

= |u|p
∗

, i.e. v = |u|p(n−1)/(n−p). The case p = 1 of
(3.4) now implies that

∫

Rn

|u|p
∗

=

∫

Rn

v1∗

≤ C

(
∫

Rn

|∇v|

)n/(n−1)

.

But |∇v| = p(n− 1)(n− p)−1|∇u| · |u|n(p−1)/(n−p), so using Holder’s inequality we see that

∫

Rn

|u|np/(n−p) ≤ C ′

(
∫

Rn

|∇u|p
)n/p(n−1) (

∫

Rn

|u|np/(n−p)

)n(p−1)/p(n−1)

.

Bringing the second factor over to the left-hand side, we deduce (3.4) for k = 1, p > 1.

Finally, we wish to prove the result for k > 1, p < n/k. A little calculation shows that if we
write r = np/(n − (k − 1)p), then np/(n − kp) = nr/(n− r). Consequently, the case k = m of
(3.4) follows from a combination of the case k = 1 for the function u and the case k = m − 1
applied to the functions Diu, 1 ≤ i ≤ n; we leave the details to the reader. �

Note also that if k = 1 and p = nq/(n + q), then p∗ = q. With this choice of parameters,
(1.3) follows from Hölder’s inequality applied to (3.4). More generally, assuming |Ω| < ∞, if we
rewrite (3.4) using averages, and then use Holder’s inequality (possibly on both sides), we deduce
the imbedding inequalities

(
∫

Ω

|u|q
)1/q

≤ Ck,n,p|Ω|
k/n

(
∫

Ω

|∇ku|p
)1/p

, u ∈W k,p
0 (Ω), (3.7)
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whenever 1 ≤ p, q < ∞ and (n − kp)q ≤ np. This last inequality in turn can be restated

in the form: W k,p
0 (Ω) continuously imbeds in Lq(Ω) whenever |Ω| < ∞, 1 ≤ p, q < ∞, and

(n− kp)q ≤ np.

The point of the last paragraph was to show that (3.7) is true for (n− kp)q < np, and that
it is a weaker imbedding than for the sharp exponent q = np/(n − kp), p < n/k. However
the Rellich-Kondrachov Theorem, which we now state, says that we get something in return for
working with such non-sharp imbeddings.

Theorem 3.8 [Z; Theorem 2.5.1]. If Ω is a bounded domain, k ∈ N, 1 ≤ p < n/k, and 0 < q <

np/(n− kp), then W k,p
0 (Ω) is compactly imbedded in Lq(Ω).

So far we have looked at Sobolev imbeddings of the form W k,p
0 (Ω) ↪→ Lq(Ω) for p < n/k. For

kp = n, it is not true that W k,p
0 (Ω) ↪→ L∞(Ω) but, if |Ω| <∞, we at least get the weaker result

W k,p
0 (Ω) ↪→ φ(L)(Ω), where φ(x) = exp(xp/(p−1))− 1. The space φ(L)(Ω), an Orlicz space which

contains Lp(Ω) for every p <∞, is defined as the space of functions for which the norm in (4.1)
is finite. If you don’t like Orlicz spaces, you can rewrite this imbedding as the following set of
inequalities:

(
∫

Ω

|u(x)|q dx

)1/q

≤ Cq(p−1)/p

(
∫

Ω

|∇ku(x)|p dx

)1/p

,

u ∈W k,p
0 (Ω), kp = n, 0 < q <∞, (3.9)

where C depends on k, p, Ω, but crucially is independent of q. This limiting case of the Sobolev
Imbedding Theorem was first proved by Trudinger [T] when k = 1. The more general result here
follows from [Z; Theorem 2.9.1].

Finally in the case kp > n, functions in W k,p(Ω) are continuous or, more precisely they have
continuous representatives. For simplicity, we consider only the case k = 1, which dates back to
Morrey [Mo]. The reader can deduce the behaviour in all except certain borderline cases when
k > 1 by iterating this result (together with Theorem 3.3 if p < n); see also [Z; Chapter 2].

Theorem 3.10. If p > n, and u ∈ W 1,p
0 (Ω), then u = u almost everywhere for some Hölder

continuous function u that satisfies

|u(x)− u(y)| ≤ Cp,n|x− y|1−n/p‖u‖1,p, x, y ∈ Ω. (3.11)

Proof. As usual, it suffices to assume that Ω = Rn and, by a limiting argument, it suffices to
assume that u ∈ C∞

0 (Ω), in which case u = u and (3.2) holds for all x in every ball. Let B be a
ball containing x and y of radius |x− y|. Applying Hölder’s inequality to (3.2), we see that

|u(x)− uB | ≤

(
∫

B

|∇u|p
)1/p (

∫

B

|x− z|(1−n)p/(p−1)

)(p−1)/p

The second factor is easy to evaluate; after some algebra, it equals Cp,nr1−n/p/2 for some constant
Cp,n. Since we get a similar estimate for |u(y)− uB |, the result follows. �
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We next consider traces and extensions. Here we aim for simplicity rather than sharpness.
First if u ∈W 1,p(Ω), we define (for this paragraph) u : Ω→ R by the equation

u(x) = lim sup
r→0

∫

B(x,r)

u(z) dz

By the Lebesgue differentiation theorem, u is a representative of u in W 1,p(Ω). In fact it is a
very nice representative, since as discussed in [H2, Theorem 44], there is a sequence of Hölder
continuous functions uk on Ω, and an increasing sequence of compact subsets Xk of Ω such that
uk and u agree on Xk, and the Hausdorff dimension of Ω \

⋃

k Xk is at most n− p. In that sense,
we can talk about values of W 1,p(Ω) functions off an exceptional set of dimension n − p. More
sharply, the exceptional set is of W 1,p(Ω)-capacity zero; see [HKM, Chapter 4] for much more on
this topic.

Since ∂Ω has dimension at least n− 1 when Ω is bounded, it is thus reasonable to ask about
the existence of a meaningful trace operator Tr for W 1,p(Ω), i.e. a linear operator from W 1,p(Ω)
to some function space on ∂Ω containing C∞(Ω) with the property that Tr u = u|∂Ω for all
u ∈ C∞(Ω). In the opposite direction to trace operators are extension operators. We say that a
linear operator E : W 1,p(Ω) → W 1,p(Rn) is an extension operator for W 1,p(Ω) if Ef |Ω = f for
all f ∈ W 1,p(Ω).

We now state a pair of simple trace and extension results which are essentially Theorems 4.3.1
and 4.4.1 of [EG], respectively.

Theorem 3.12. Suppose Ω is a bounded Lipschitz domain and 1 ≤ p <∞. Let ν = ν(z) denote
the outward unit normal vector at any z ∈ ∂Ω, and let us write 〈·, ·〉 for the usual inner product
on Rn. Then there is a bounded trace operator Tr : W 1,p(Ω) → Lp(∂Ω,Hn−1) which gives the
following version of the Divergence Theorem:

∫

Ω

f div Φ dx = −

∫

Ω

〈∇f, Φ〉 dx +

∫

∂Ω

〈Φ, ν〉Tr f dHn−1,

for all C1 functions Φ : Rn → Rn, and all f ∈W 1,p(Ω).

Theorem 3.13. Suppose Ω is a bounded Lipschitz domain and Ω ⊂⊂ V for some open V ⊂ Rn.
Then for each 1 ≤ p < ∞ there is a bounded extension operator E : W 1,p(Ω) → W 1,p(Rn) such
that E f is supported on V for all f ∈W 1,p(Ω).

There are many excellent books that cover the basics of Sobolev spaces; see for example [A],
[EG], [GT], [Ma], and [Z].

4. The Sobolev Imbedding Theorem for W 1,p(Ω)

Inequalities (3.4) and (3.9) cannot hold for all functions in W k,p(Ω), at least when |Ω| < ∞,
since non-zero constant functions provide easy counterexamples. Chapter 4 of Ziemer’s book [Z]
discusses in detail what are adequate substitutes for the zero boundary-value hypothesis. We
shall examine only the case k = 1 in which case an adequate substitute is the assumption that
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uE = 0 for some fixed E ⊂ Ω satisfying 0 < |E| < ∞. In fact, we shall concentrate on the case
of a bounded domain Ω, and functions satisfying uΩ = 0.

Just because we used the phrase “adequate substitute,” it would be wrong to infer that
given a bounded domain Ω there is some constant C such that (3.4) holds whenever k = 1,
1 ≤ p < n, u ∈ W 1,p(Ω), uΩ = 0. Far from it!! We simply mean that with this assumption,
there are no trivial counterexamples, so that if the inequality breaks down, it is instead because
of the geometry of Ω. This makes Sobolev imbeddings for non-compactly supported functions
much more fun, since unlike imbeddings for compactly supported functions, the validity of the
imbedding is highly dependent on the geometry of the domain. An early and in-depth exploration
of this complex analytic-geometric connection is to be found in [Ma]. We concentrate on more
recent results that clarify the geometric nature of the answers.

As with W 1,p
0 (Ω), the W 1,p(Ω) Sobolev imbeddings for a “nice” bounded domain Ω ⊂ Rn

depend on whether the exponent p is less than, equal to, or greater than n. In the case 1 ≤ p < n,
we say that Ω supports a p-Sobolev-Poincaré inequality if there is a constant C such that

(
∫

Ω

|u− uΩ|
np/(n−p) dx

)(n−p)/np

≤ C

(
∫

Ω

|∇u|p dx

)1/p

, u ∈W 1,p(Ω).

Sobolev [So1], [So2] proved that bounded domains Ω ⊂ Rn satisfying a uniform interior cone
condition support a p-Sobolev-Poincaré inequality whenever 1 < p < n, while Gagliardo [Ga] and
Nirenberg [N] independently proved the corresponding result for p = 1.

When p = n, we say that a bounded domain Ω supports a Trudinger inequality if the following
Orlicz norm inequality holds for some C:

‖u− uΩ‖φ(L)(Ω) ≤ C

(
∫

Ω

|∇u|n dx

)1/n

, u ∈W 1,n(Ω).

Here φ(x) = exp(xn/(n−1))− 1, and ‖ · ‖φ(L)(Ω) is the corresponding Orlicz norm on Ω defined by

‖f‖φ(L)(Ω) = inf

{

s > 0

∣

∣

∣

∣

∫

Ω

φ

(

|f(x)|

s

)

dx ≤ 1

}

. (4.1)

Trudinger [T] proved that bounded domains Ω ⊂ Rn satisfying a uniform interior cone condition
support a Trudinger inequality (although he did not use that term!).

Finally, suppose that p > n. Applying Theorem 3.10 and using bump functions to localize
the support, it is easy to see that functions in W 1,p(Ω) have representatives that are continuous
everywhere. Obviously the continuous representative is unique, so under the identification of
elements of W 1,p(Ω) with their continuous representatives, we have W 1,p(Ω)∩C(Ω) = W 1,p(Ω).
We say that a bounded domain Ω supports a p-Morrey inequality if the following inequality holds
for some C:

|u(x)− u(y)| ≤ C|x− y|1−n/p

(
∫

Ω

|∇u|p dx

)1/p

, u ∈W 1,p(Ω) ∩ C(Ω).
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Given that Ω is bounded, this inequality is equivalent to the imbedding W 1,p(Ω) ↪→ C0,1−n/p(Ω)
(see [KR, Theorem 3.1]), where

||u||C0,α(Ω) = sup
x∈Ω
|u(x)|+ sup

x,y∈Ω,x6=y

|u(x)− u(y)|

|x− y|α
.

This latter imbedding is more natural for unbounded domains (which we do not consider here).
Morrey [Mo] showed that balls support a p-Morrey inequality for all n < p <∞.

So much for the classical results. More recently, rather sharp geometric-analytic results have
been found which first require us to define some geometric conditions.

We say that a domain Ω ( Rn is a uniform domain if there exists C > 0 such that for every
pair x, y ∈ Ω, there is a path γ : [0, L]→ Ω parametrized by arclength with γ(0) = x, γ(L) = x0

for which L ≤ C|x− y|, and t ∧ (L− t) ≤ CδΩ(γ(t)). Here and later, dΩ denotes distance to ∂Ω.

We say that a bounded domain Ω is a John domain (with respect to x0 ∈ Ω) if there exists
C > 0 such that for every x ∈ Ω, there is a path γ : [0, L] → Ω parametrized by arclength such
that γ(0) = x, γ(L) = x0, and dΩ(γ(t)) ≥ t/C, for all t ∈ [0, L].

We say that a bounded domain is a QHBC domain with respect to x0 ∈ Ω if there exists C > 0
such that for every x ∈ Ω, there exists a path γ = γx : [0, 1]→ Ω such that γ(0) = x, γ(1) = x0,
and

∫

γ

δ(z)−1|dz| < C (1 + log(1/δ(x)))

Neither John nor QHBC depends strongly on x0 in the sense that if they are true for one
particular choice of x0, they are true for all x0 ∈ Ω; however C will depend on x0. It is not hard to
show that all uniform domains are John domains and all John domains are QHBC domains, but
that these implications cannot be reversed; a non-John QHBC domain is constructed in [GM].
For more on uniform and John domains, we refer the reader to [V2], [V3], and [NV]. The reader
is referred to [SS1] and [K] for more on QHBC domains (also known in the literature as Hölder
domains).

Suppose 0 < α < 1. A domain Ω is a mean α-cigar domain if there exists a constant C such
that for every pair of points x, y ∈ Ω, there exists a path γ : [0, 1] → Ω such that γ(0) = x,
γ(1) = y, and

∫

γ

δ(z)α−1|dz| ≤ C|x− y|α.

This condition says that there is a path between x and y which satisfies the uniform (cigar)
condition in some weak averaged sense. We refer the reader to [BK2], [GM], and [L] for more
information about mean α-cigar domains; these domains are called “weak cigar domains” in
[BK2] and “Lipα extension domains” in [GM] and [L]. The last name derives from the fact that
Ω is mean α-cigar if and only if all functions defined on Ω which are locally Lipschitz of order α
are globally Lipschitz of order α; see [GM].

Our main Sobolev Imbedding result below also uses the notion of quasiconformal equivalence.
We refer the reader to [BK2] for some basic facts about quasiconformal mappings, and to [V1]
for a much more comprehensive introduction to their theory.
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We now state our main result, which is a special case of Theorem 4.1 in [BK2].

Theorem 4.2. Let Ω ⊂ Rn be a bounded domain that is quasiconformally equivalent to a uniform
domain (for instance any planar simply-connected domain).

(i) If 1 ≤ p < n, then Ω supports a p-Sobolev-Poincaré inequality if and only if Ω is a John
domain.

(ii) Ω supports the Trudinger inequality if and only if Ω is a QHBC domain.
(iii) If p > n, Ω supports a p-Morrey inequality if and only if Ω is a mean α-cigar domain for

α = (p− n)/(p− 1).

The “if” part of (i) is due to Bojarski [B], while the “only if” part is due to Buckley and
Koskela [BK1]. The “if” part of (ii) is due to Smith and Stegenga [SS2] while the “only if” part,
together with all of (iii) are due to Buckley and Koskela [BK2].

The proofs of (ii), (iii) depend on one of a family of so-called slice conditions that are in-
vestigated further in [BO] and [BS1], where many other related imbeddings are proved. Slice
conditions have also been used [BS2] to investigate what the quasiconformal image of a nice
domain can look like. They are closely related to the concept of Gromov hyperbolicity, as ex-
plained in [BB]. Using a different approach (based on an inequality involving conformal capacity
and quasihyperbolic distance), the case p = n of Theorem 4.2 was improved in [Bu], where it is
proved that statement (ii) above holds for all quasiconformal images of QHBC domains.

5. Sobolev spaces on metric measure spaces

A metric measure space (X, d, µ) is a triple such that (X, d) is a metric space and µ is a Borel
measure on X; to avoid trivialities, we assume that balls have positive but finite measure. Of
particular interest is the special case where µ is a doubling measure, i.e., a measure which satisfies
the condition µ(B(x, 2r)) ≤ Cµ(B(x, r)) for all metric balls B(x, r), x ∈ X, r > 0; we then say
that X is a doubling space.

There has been much investigation in recent years on Sobolev spaces W 1,p(X). This is true
in spite of the fact that until a few months ago, there was nothing in the literature about defining
derivatives on any reasonable subclass of doubling spaces! This deficiency was rectified by Cheeger
[C] but that is not our main concern here.

How do you define Sobolev spaces without using derivatives? There have been many defi-
nitions which are equivalent to each other in very many situations, but most of them have one
central idea behind them: we do not need to define some version of ∇u but only a function
g whose Lp(X)-norm in classical situations is comparable with that |∇u|. Below the notation
W 1,p(X) does not carry any specific meaning, but rather is a collective notation for all defini-
tions of (first order) Sobolev spaces on a doubling space X. We use alternative notations such
as M1,p(X) when referring to a specific Sobolev space definition.

The Banach space M1,p(X) is one of the early versions of W 1,p(X). Due to Haj lasz [H1],
M1,p(X) is the set of all functions u ∈ Lp(X) such that

|u(x)− u(y)| ≤ d(x, y)(g(x) + g(y)), a.e. x, y ∈ X, (5.1)
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equipped with the norm
‖u‖M1,p(X) = ‖u‖Lp(X) + inf

g
‖g‖Lp(X),

where the infimum is taken over all g satisfying (5.1). It is quite useful in the study of extension
operators. For instance, if 1 < p ≤ ∞, there is a bounded extension operator

E : W 1,p(Ω) −→W 1,p(Rn)

if and only if M1,p(Ω) = W 1,p(Ω) [HM]. In particular by Theorem 3.13, M 1,p(Ω) = W 1,p(Ω)
whenever Ω is a bounded Lipschitz domain with Lebesgue measure attached, and p > 1.

The Banach space N1,p(X), another version of W 1,p(X) defined by Shanmugalingam who
termed it a Newtonian space, uses the concept of upper gradients in its definition. A Borel
function g : X → [0,∞] is an upper gradient of a measurable function u : X → R if

|u(γ(a))− u(γ(b))| ≤

∫

γ

g ds (5.2)

for every rectifiable path γ : [a, b] → X. Obviously we can take g = |∇u| if X = Rn and u is
smooth. Upper gradients were introduced by Heinonen and Koskela [HeK] and studied further
in [KM].

It is tempting to define N1,p(X) as the collection of functions f ∈ Lp(X) that have upper
gradients g ∈ Lp(X), equipped with the norm

‖u‖N1,p(X) = ‖u‖Lp(X) + inf
g
‖g‖Lp(X),

where the infimum is taken over all upper gradients g of u. Unfortunately this definition is not
conducive to good limiting processes, so instead we merely require u ∈ N 1,p(X) to have a p-
weak upper gradient in Lp(X), and similarly take an infimum over Lp(X) norms of p-weak upper
gradients when defining N1,p(X). For the precise definition of a p-weak upper gradient, we refer
the reader to [Sh2], but the idea is that we relax the upper gradient assumption, assuming that
(5.2) is true only for p-almost every rectifiable path, which in turn involves the concept of the
p-modulus of a path family (investigated in [V1] for example).

We say that X supports a weak (1, p)-Poincaré inequality if there exist constants C > 0 and
τ ≥ 1 such that whenever B = B(x, r) is a ball in X, and ρ is an upper gradient of a function u
on τB ≡ B(x, τ, r), we have

∫

B

|u− uB| dµ ≤ C diam(B)

(
∫

τB

ρp

)1/p

.

Notice that, by Hölder’s inequality, if X supports a weak (1, q)-Poincaré inequality, it certainly
supports a weak (1, p)-Poincaré inequality for all p > q.

Shanmugalingam [Sh1, Section 3.2] shows that M 1,p(X) ↪→ N1,p(X), that N1,p(Ω) = W 1,p(Ω)
when X = Ω is any Euclidean domain with Lebesgue measure attached, and that we essentially
have M1,p(X) = N1,p(X) if X is a doubling space that supports a weak (1, q)-Poincaré inequality
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for some q < p. Shanmugalingam also defines a space N 1,p
0 (E) for E ⊂ X which is roughly the

space of functions in N1,p(X) which vanish outside E and uses this to explore the concept
of p-harmonic functions, defined as minimizers of certain energy integral. This investigation
is continued in [KS], where for instance it is established that p-harmonic functions are Hölder
continuous if the space is doubling and supports a weak (1, q)-Poincaré inequality for some q < p.

Using yet another definition of Sobolev spaces, H1,p(X), Cheeger’s important new paper [C]
shows that if X is a doubling space and supports a weak (1, p)-Poincaré inequality for some
p > 1, then H1,p(X) is reflexive. Also under these assumptions, we can decompose X into a
countable union of measurable sets Uα of positive measure, together with an exceptional null
set N , such that each of the sets Uα can be “coordinatized” via a finite number of Lipschitz
functions and such that, when restricted to any one set Uα, a Lipschitz function has “partial
derivatives” almost everywhere in these coordinate directions, thus generalizing the well-known
theorem of Rademacher on the differentiability almost everywhere of Lipschitz functions in a
Euclidean context. Shanmugalingam [Sh1; Section 2.3] shows that in a general metric measure
space, H1,p(X) = N1,p(X) as long as p > 1.

There is far more to the theory of Sobolev spaces on a metric measure space, and the area
is still developing quite fast. [HaK] is a good starting point for getting an overall picture of this
field, as things stood in the middle of 1998. [KM] and [FHK] discuss the equivalence of different
definitions of Sobolev spaces.
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