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Abstract 

Large-scale topographic databases model real world features as vector data objects. 

These can be point, line or area features. Each of these map objects is assigned to a 

descriptive class; for example, an area feature might be classed as a building, a garden 

or a road. Topographic data is subject to continual updates from cartographic surveys 

and ongoing quality improvement. One of the most important aspects of this is 

assignment and verification of class descriptions to each area feature. These attributes 

can be added manually, but, due to the vast volume of data involved, automated 

techniques are desirable to classify these polygons. 

Analogy is a key thought process that underpins learning and has been the 

subject of much research in the field of artificial intelligence (AI). An analogy identifies 

structural similarity between a well-known source domain and a less familiar target 

domain. In many cases, information present in the source can then be mapped to the 

target, yielding a better understanding of the latter. The solution of geometric analogy 

problems has been a fruitful area of AI research. We observe that there is a correlation 

between objects in geometric analogy problem domains and map features in 

topographic data. We describe two topographic area feature classification tools that use 

descriptions of neighbouring features to identify analogies between polygons: content 

vector matching (CVM) and context structure matching (CSM). CVM and CSM 

classify an area feature by matching its neighbourhood context against those of 

analogous polygons whose class is known. 

Both classifiers were implemented and then tested on high quality topographic 

polygon data supplied by Ordnance Survey (Great Britain). Area features were found to 

exhibit a high degree of variation in their neighbourhoods. CVM correctly classified 

85.38% of the 79.03% of features it attempted to classify. The accuracy for CSM was 

85.96% of the 62.96% of features it tried to identify. Thus, CVM can classify 25.53% 

more features than CSM, but is slightly less accurate. Both techniques excelled at 

identifying the feature classes that predominate in suburban data. Our structure-based 

classification approach may also benefit other types of spatial data, such as topographic 

line data, small-scale topographic data, raster data, architectural plans and circuit 

diagrams. 
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1: Introduction 

1.1 Large-Scale Topographic Databases 

Since ancient times, man has made 2-dimensional pictorial representations of the 

landscape around him. These maps were used to help navigate, manage, settle and 

conquer the land which has been among the most valued assets of countless 

civilizations and cultures. The earliest known map was found near Kirkuk in Iraq and 

dates from circa 2500-2300 B.C. (Harley & Woodward, 1987). As early cartographers 

did not have means to accurately measure latitude, longitude or elevation, scale and 

direction within individual early charts tended to be inconsistent. Copies of maps were 

made by hand, with each subsequent generation from the original being subject to 

increasing variation in the aforementioned values, along with errors of omission, 

addition and misspellings. In time, the invention of the printing press by Johann 

Gutenberg in 1452 would allow for the cheap reproduction of identical maps, solving 

the problem of replicative fading. 

These early maps, originating on paper, were all raster-based, meaning that they 

were images recorded at a fixed resolution or scale, analogous to a bitmap image in a 

computer. The most detailed raster maps are referred to as large-scale, denoting that a 

unit of distance on the map is equivalent to a relatively small number of units “on the 

ground”, allowing greater detail to be shown. A small-scale colour raster map is shown 

in Figure 1.1. 
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Figure 1.1: Section of the Ordnance Survey (Great Britain) 1:50,000 Scale Colour Raster map, 

showing Yarmouth on the Isle of Wight. 

 

An alternative to the raster-based data model is the vector-based data model, 

whereby the Cartesian co-ordinates of features in the landscape, and associated 

attributes are stored in a database. Normally only the x and y co-ordinates (easting and 

northing) are recorded. The notion of scale is meaningless in relation to vector-based 

data, as it may be displayed at any resolution. Nevertheless, the term Large-Scale 

Topographic Databases is used to denote vector-based maps which are surveyed with 

greater accuracy and which include features that are omitted at smaller scales. For 

instance, urban landscapes are generally surveyed in the greatest detail and may have a 

scale of 1:1,250. 
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A large-scale topographic database organizes features in several layers. A 

typical set of layers might include: 

 

points 

These represent small objects whose orientation is often unimportant e.g. post-box, 

electricity pole. A single Cartesian co-ordinate is recorded. 

 

addresses / text labels 

These are points with associated text values and may be the name of an area, a street, or 

a housing estate, a house number etc. The point is only used to anchor the text spatially. 

 

lines 

These represent boundaries between areas and the centre-line of linear features that are 

not wide enough to have their edges represented. Some examples are the outline of a 

building, the boundary wall between a pair of semi-detached houses, a fence, and the 

edge between a road and a foot-path. A line is a sequence of vertices which are assumed 

to be connected by straight edges. A vertex, like a point, is a Cartesian co-ordinate, but 

whereas a point has attributes associated with it, a vertex is only a constituent of a larger 

feature. 

 

administrative boundaries 

These lines represent divisions between political areas. Some may coincide with 

features in the line layer such as road and river edges and field boundaries; others do not 

follow any apparent divisions in the landscapes. Examples are the borders of counties, 

boroughs and parishes. 

 

areas 

These are polygons that enclose and cover distinct area features on the ground, such as 

buildings, gardens and roads. A polygon is a sequence of vertices assumed to be 

connected by straight edges, where the first and last vertices are also connected. 

 

 

Each feature is classified as being of a particular class. A line might be of the 

class road edge, or building outline. To reduce database size, each class may be 

uniquely assigned a natural number, known as a feature code. The feature code, rather 

than the class name is recorded in the database. 
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Figure 1.2: Section of line layer from a vector database. 

1.2 Creating & Classifying Area Features 

Figure 1.2 shows a sample of vector line data for a suburban area. Looking at this 

projection, we may discern the area features of a landscape, as defined by the line 

features that bound them. Features such as houses and roads may be readily identified 

based on their shape. Other areas may be recognized by their proximity to those 

features, such as the garden around a house. For many other areas, an investigation of 

the feature codes of the enclosing lines would be necessary for classification. 

Modeling the area features of a landscape has many advantages: 

• The areas can be feature-coded, have attributes associated with them and be 

symbolized based on their class when they are displayed. For instance, as seen in 

Figure 1.3, roads can be shaded in grey, gardens in green and buildings in orange. 

By referring to an accompanying legend such as Figure 1.4, a user can identify the 

classification of an area. 

• A vast number of additional spatial and demographic analyses may be performed on 

the resultant polygon theme, greatly adding to the database’s value. For instance one 

could identify houses that cover an area of >100m
2
 and are ≥ 200m from the path of 

high tension power lines, a retailer could determine the number of homes within the 

catchment area of a potential development site or all instances of roads dividing 

water polygons (bridges) could be identified. 
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Figure 1.3: Polygon layer from a vector database for area shown in Figure 1.2. 

 

 

Figure 1.4: Legend for features in Figure 1.3. 

 

The polygon layer may be derived from the line layer by identifying areas that 

are completely enclosed by line features. The vertices of the lines that form the 

perimeter become the vertices of the area feature. The topography of a polygon is thus 

defined as a sequence of vertices which are assumed to be connected by straight edges 

and where the same assumption is made about the first and last vertices. 

Building 

Bridge 

Garden 

Field 

Stream 

Foot-path 

Road 
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The feature-coding of area features necessitates the inferring of information that 

is not present in the existing database. The necessary classification can be achieved 

through a combination of techniques: 

• Inspection of the shape and size of the polygons. 

• Examination of context within the polygon layer. Areas may be identified by noting 

the feature codes of surrounding polygons that have already been classified. 

• Scrutinising the context of an area feature within other layers, by projecting several 

layers and their associated attributes together. 

• Overlaying corresponding high-resolution aerial photography with the polygon 

layer, allowing visual identification through colour and texture. 

• Surveying the features on the ground (obtaining ground truth data visually). 

Creating a large-scale topographic database is a huge and expensive task. In 

most countries, a single national mapping agency is tasked with creating and 

maintaining a vector database of the entire nation. In the Republic of Ireland, this role is 

filled by Ordnance Survey Ireland (OSi). A large-scale database shows every building, 

structure, garden, yard, footpath, road, roadside, traffic island, track, rail-line, field, 

pond, lake, stream, river and beach. The derivation of a polygon layer from the line 

layer, as already described, can be automated successfully. Considering the vast number 

of area features that would be generated nationally, the manual classification of 

polygons is not feasible. The number of man-hours that would be required makes the 

task prohibitively expensive. This necessitates the exploration of the automation of the 

aforementioned classification techniques. 

An initial attempt at classification should use information that is already present 

in the database. Area features may often be classified by reference to the feature codes 

of the line features from which their topography was constructed. For instance, if a 

polygon is completely bounded by a building outline, it is probably a building. A 

feature contained within building outlines, obstructing features (hedge, fence or wall) 

and path edges is most likely a garden. Paths are normally bounded by path edges and 

road edges, while roads are usually described solely by road edges. 

Once an initial classification has been made, other classification techniques may 

be applied to classify those features which have not yet been feature-coded, and to 

check for misclassifications, suggesting alternatives where necessary. We describe the 

classification of area features by analysis of the feature codes of the neighbouring 

polygons. 
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1.3 Context-Based Classification using Structure 

Template Matching 

The context of a feature is a description of the environment in which it is located. We 

consider the context of area features within the polygon layer, as described by those 

polygons which are adjacent to the feature in question and the feature codes of those 

polygons. Figure 1.5 shows a semi-detached house at the centre, with the adjacencies 

between it and its garden, the house next door and the garden of the house next door 

highlighted. A corpus of classification templates can be built by mining a high-quality 

training data set. Each template describes a particular context that was found in the data 

along with a record of the number of times a polygon of a particular feature code 

matched that context. In order to classify a feature, we compare its context to those of 

the templates. If a match is found, the feature code frequencies that are associated with 

the template can be used to estimate the probability that the feature is of any given 

class. This allows the feature to be classified or for the existing classification to be 

checked. 

 

 

Figure 1.5: Context of a polygon. The adjacencies between the centre area feature 

and its 3 immediate neighbours are highlighted. 
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1.4 Aims of Research 

The aims of our work were: 

1. Implement a tool that classifies polygons in large-scale topographic databases by 

examining their nearest neighbours. 

2. Derive a set of these classifiers from a large corpus of area features. 

3. Test them on a separate data set. 

4. Evaluate the results and decide if the classification scheme has a practical use. 

1.5 Structure of this Dissertation 

In chapter 2, we provide an overview of Geographic Information Systems, with an 

emphasis on large-scale topographic databases. The polygon vector data used for this 

project is described. The third chapter introduces analogies, metaphors and 

computational analogy models. Chapter 4 describes similarities between geometric 

analogy problems and topographic data. We detail two context-based classification 

tools that identify polygons by establishing analogies with templates that summarize 

previously encountered area features. The fifth chapter describes the pre-processing 

steps required to prepare data for testing. The implementation of our classifiers and the 

output of their results are also covered. In chapter 6, the testing of these polygon 

identification tools is described and the results are presented. Finally, in the seventh 

chapter, we analyze these results and evaluate our classification scheme. The limitations 

of our approach are discussed, along with ways of improving on it. We conclude by 

illustrating other spatial data types that may benefit from our work. 
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2: Large-Scale Topographic Databases 

2.1 Geographic Information Systems 

A Geographic Information System (GIS) is software that allows a user to collect, store, 

organise, update, display, query or analyze spatially-referenced information (Longley et 

al., 2005). Some people consider the hardware platform, the data and the operators to be 

part of the system. In addition to individual spatial data software applications and 

installations, the term GIS is frequently used to refer to Geographic Information 

Systems collectively. Central to many GIS is a representation of certain physical 

features that form the topography of a particular landscape. The location and extent of 

these features are recorded during ground surveying or extracted from images produced 

by remote sensing from aircraft or satellites. Topographic features are then modelled 

within a co-ordinate system that references discrete points on the Earth’s surface. A 

map projection is used to map points on the roughly-spherical surface of the Earth to 

the planar Cartesian co-ordinate systems that are commonly used in printed maps and 

GIS. 

2.1.1 The Geographical Co-ordinate System 

The shape of the Earth can be described as a sphere which is flattened at the poles and 

bulges at the equator, due to the centrifugal force of the planet’s rotation. This shape 

may be more accurately characterized as a spheroid. Positions on the earth’s surface are 

traditionally measured by a geographical co-ordinate system based on degrees of 

latitude and longitude. This is a form of polar co-ordinate system in which angles are 

measured relative to planes passing through the centre of the earth. Longitude is 

measured relative to a plane coincident with the axis of rotation of the planet (on which 

the North and South Poles lie) and a chosen point on the earth’s surface (normally 

Greenwich in Greater London) (Sobel, 1996). Latitude is determined with respect to the 

plane perpendicular to the axis of rotation; the Equator lies on this plane. Distance is 

calculated as the length of the curved line along the surface of the spheroid 

approximation between two points. The geographical co-ordinate system describes 

features in 3-dimensional space. A point is presumed to lie on the surface of the 

spheroid approximation, unless its height above sea level is given. 
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2.1.2 Map Projections and the Cartesian Co-ordinate System 

With the exception of the globes common in class-rooms, the earth’s surface, or part of 

it is seldom modelled in a spheroid form. In atlases and other small-scale maps, the 

geographical co-ordinate system is used, but features are distorted for display on a 

plane. The mathematical morphing that is used to convert 3-D geographical co-

ordinates to a 2-D plane is known as a map projection. Many types of map projections 

have been developed, each of which makes different compromises between distorting 

the scalar values of area, distance and direction across the map. The large-scale 

cartographic data described in this dissertation is projected to a plane. The geographical 

co-ordinates of all features have been converted to the Cartesian co-ordinate system 

(x,y). Any resulting distortions in the 3 aforementioned scalars are less extreme than 

they would be in small-scale data and do not impinge this work whatsoever. The use of 

a Cartesian co-ordinate system simplifies the calculation of the 3 values and many other 

spatial calculations within a map projection. (Jones 1997, p.61) There are two formats 

in which Cartesian spatial information is modelled, raster-based and vector-based data. 

2.1.3 Raster Data Model 

The raster data model represents spatial information as an array of greyscale or colour 

pixels (a contraction of picture element) of regular size. A pixel, also known as a cell, is 

rectangular in shape, normally being a square. Each pixel represents a single value 

which has been measured / calculated for a corresponding area on the ground. The area 

represented by a pixel may be defined by the co-ordinates of the bottom left vertex 

(xmin,ymin) and top right (xmax,ymax) vertex of its bounding box, as seen in Figure 2.1. 

These co-ordinates are not recorded for individual pixels, only the bounding box of the 

full raster is necessary. As the cells are of a fixed size within a particular raster image, 

the co-ordinates of a constituent pixel may be easily calculated. 

(xmax,ymax) 

(xmin,ymin)  

Figure 2.1: The outline of a 3×3 raster image; one pixel is magnified to show its bounding box. 
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As the raster model emphasises the contents of grid cells in space, it is regarded 

as location-based (Peuquet, 1984). Raster data is designed for use at a specific scale. 

Converting raster data for display at a smaller scale can be achieved through sampling 

the original image. Presenting raster data at a larger scale results in the edges between 

pixels becoming visible, causing the image to appear blocky or pixelated. Smoothing an 

enlarged image, by averaging adjacent pixel values, may make it more aesthetically 

pleasing. 

All printed maps are raster-based, as are digitised photographs. Many computer 

graphics formats are bitmaps and thus are also raster-based e.g. .bmp .jpg .png .gif. The 

Cathode Ray Tube (CRT) of traditional televisions and computer monitors are described 

as raster scan devices. These and the more modern LCD (Liquid Crystal Display) and 

TFT LCD (Thin Film Transistor) flat-panel display screens present images as a raster of 

pixels. 

In addition to aerial photographs, the raster format may be used to show 

classification over an area. For instance, raster maps are commonly used to show soil or 

rock types within a landscape. The primary application of raster maps is the 

representation of topographic surface detail and administrative boundaries. These range 

from very large-scale town plans to world maps. 
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2.1.4 Cartographic Symbolisation 

Topographic Raster maps represent the outline of features as changes or, in computer 

vision terms, edges in the greyscale or colour pixel values. Features are usually 

represented in one of three ways: 

1. The outlines of the features are shown in a prominent colour, usually black. 

All other pixels will have a contrasting shade such as white. 

2. The area of features is shown in different colours, depending on their class, 

i.e. they are symbolized with a fill colour based on their classification. 

3. Both techniques above are used together. 

2.1.5 Cartographic Generalisation 

Three geometrical primitives, points, lines and polygons are used to represent 

cartographic features. A feature modelled as a polygon on a large-scale map may be 

represented as a line or point feature at a smaller scale. For instance, the River Liffey 

might be shown as a polygon on a map of Dublin city centre, and as a line on a map of 

Ireland. The greater Dublin area may be shown as a polygon on a map of Ireland, but as 

a point on a world map. Cartographic Generalisation is the process of simplifying 

geometrical features for use at smaller scales. This is necessary to prevent maps from 

becoming overcrowded and unreadable as scale decreases. It can also be used to 

automatically generate smaller scale maps from large-scale ones. Techniques used in 

generalisation include: 

• Simplifying lines and polygons by smoothing their outlines 

• Merging nearby similar features, such as buildings together 

• Translation e.g. moving buildings back from roads to maintain legibility. 

• Omitting certain small features entirely 

• Replacing area features with line and point features, as already described. 

Raster images frequently have place names added as annotations (text labels). 

These are rendered in a particular font and are carefully positioned so as to minimise 

obscuring of the topographic features or other annotations. The type of annotations used 

frequently depends on the scale of the image. At a large scale, street names may be 

shown, while at a small-scale only major roads may be annotated. 
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2.2 Vector Data Model 

The vector data model represents graphics as a collection of Cartesian co-ordinate 

points, some of which are connected by edges that describe lines and areas. Vector data 

is the basis of all high-quality scalable graphics e.g. fonts in word processor and desktop 

publishing documents (PostScript, PDF, Word), Computer-Aided Design drawings, 

Macromedia’s Flash and Shockwave animation formats, W3C’s Scalable Vector 

Graphics format. 

Two-dimensional (x,y) vector models are commonly used to represent 

topographic data in GIS; three dimensions (x,y,z) can be represented by including the 

height above sea level of points. Metres are frequently used as the units of measure and 

positions are stored as real numbers of arbitrary precision. Linear features are recorded 

as sequences of vertices that are assumed to be connected by straight edges. The 

accuracy of the approximation of real world curved line segments is affected by the 

frequency with which points along the curve are surveyed and recorded as vertices. 

More frequent sampling increases accuracy at the expense of data set size. Some GIS 

can use mathematical functions, such as Bezier curves to more accurately and 

efficiently represent curves. The vector data we use does not contain curves. 
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2.2.1 Vector Data Layers 

Topographic vector databases organise cartographic features in a set of layers. Every 

feature is associated with a feature code which denotes the classification to which it 

belongs. A typical collection of layers would include the following. 

 

Points 

A point is a Cartesian co-ordinate with associated attributes. They represent small 

features whose orientation is not considered important, such as telephone poles and 

post-boxes. 

 

 Symbols 

A symbol is a special type of point feature which is associated with a graphic which is 

displayed at a specified angle at its position when the layer is shown on a display or 

printed. Typical symbols are heritage markers, railway switches and water flow 

direction indicators. 

 

Lines 

A line is an ordered set of 2 or more vertices which are assumed to be connected in 

sequence by straight edges. A vertex is a Cartesian co-ordinate, but unlike a point, it 

does not have attributes associated with it and exists only as a constituent of a linear 

feature. 

 

Administrative Boundaries 

An administrative boundary is a line feature that marks part of the bounds of region(s) 

defined by humans for administrative purposes. Such regions may include counties, 

boroughs, electoral wards, and parishes. Boundaries often coincide with the centre-line 

of a river, stream, road or the edge of a field. 

 

Areas/Polygons 

A polygon is a set of 1 or more rings. A ring is an ordered set of 3 or more vertices 

which are assumed to be connected in sequence by straight edges, including the first 

and last vertices. Each ring forms a perimeter of the polygon. By convention, the region 

to the right of the sequence of vertices that describe a ring denotes part of the inside of 

the polygon. This means that a ring defined in clockwise order represents a region of the 

polygon, while an anticlockwise ring defines a hole in a region. Polygons can be of 

arbitrary complexity, consisting of disconnected regions, nested islands within holes 

etc. A set of rules enforces the topological correctness of a polygon e.g. a ring may not 

intersect itself or cross another ring. The polygon layers within the topographic data 

described here consist of single continuous regions which may contain holes. A polygon 

with a hole is commonly known as a doughnut. The term area is used interchangeably 

with polygon. 
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2.3 Ordnance Survey Ireland 

The object of the research described in this dissertation was the classification of area 

features in large-scale topographic vector databases. Large-scale vector line data are 

commercially available from the Irish national mapping agency, Ordnance Survey 

Ireland (OSi) but are prohibitively expensive. Furthermore, the considerable task of 

deriving a polygon layer from the line layer would have to be undertaken.  As our 

classification scheme is based on the classes of adjacent area features, the classification 

of all polygons must be known in advance. As OSi has not developed a polygon layer 

model to date, we would have to create a list of feature codes to describe all area 

features that might be derived. The large volumes of training data required to develop 

accurate classifiers and testing data to evaluate their performance would need to be of 

consistently high quality. This necessitates that we have a high level of confidence in 

the existing classifications of the polygons i.e. that we have ground truth data. Ensuring 

the ground truth of cartographic databases is a multi-disciplinary task suited to large 

organisations and one which is well beyond the scope of developing our classification 

scheme. 

2.4 Ordnance Survey (Great Britain) 

Ordnance Survey (OS) is the national mapping organisation of Britain. Their large-scale 

vector line data has for many years been available under the Land-Line brand-name. In 

recent years OS developed The Digital National Framework (DNF), which they 

(Ordnance Survey, 2005) define as: 

A nationally consistent geographic referencing framework for Great Britain. 

Comprising the National Grid and the National Topographic Database that defines 

each geographical feature as it exists in the real world with a maintained unique 

reference allocated to each feature. The DNF is not a product; it is the framework on 

which our future products will be based. 

2.4.1 OS MasterMap 

Under the DNF, the Land-Line database has been built upon to develop OS MasterMap 

(OSM), which they dub the “Definitive digital map of Great Britain”.  MasterMap offers 

4 layers of coverage for the country: Topography, Address, Imagery and ITN (Roads). 

The fundamental topographic vector data layers of point, line, area etc. are part of the 

Topography Layer. Some of the key features of MasterMap are as follows (Ordnance 

Survey, 2005): 
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2.4.1.1 TOIDS 

Each feature in every layer is assigned a Topographic Identifier (TOID). A TOID is a 

16-digit natural number which may be used to uniquely identify that object. A feature 

maintains its TOID throughout its lifetime, unless it is significantly altered, and TOIDS 

are never reused. TOIDS can be used to associate a user’s external data with 

MasterMap features. 

2.4.1.2 A Polygon Layer 

In addition to the point, line, boundary, symbology and annotation layers, an area 

feature layer is included. All polygons are classified according to a fixed list of feature 

codes and provide continuous non-overlapping coverage (i.e. there are no gaps between 

polygons and they only intersect along their perimeters) for England, Scotland and 

Wales. 

2.4.1.3 Topological Polygons 

MasterMap data is available in topological and non-topological formats. In the non-

topological format, polygons are explicitly defined as a sequence of vertices which form 

their boundary / boundaries. Topological polygons are implicitly defined by references 

to the features in the line layer that constitute their borders. Topological data, being 

more structured is more amenable to adjacency analysis and requires less storage space 

as they involve less data redundancy. Non-topological data can be displayed more 

quickly and other types of analyses can be performed more efficiently on them. 

2.4.1.4 Seamless Coverage 

Historically, vector data, including Land-Line had been provided in rectangular sections 

of fixed size known as tiles. Features which spanned multiple tiles were split along the 

edges of the tiles, causing loss of information to the user. A customer can order 

MasterMap by a pre-defined area or by an area they define themselves by drawing a 

selection polygon over a zoomable map of Britain that is presented as part of the online 

order process. Any feature that intersects the selection polygon is included in the 

supply. 

2.4.1.5 Change-Only Updates 

Erosion and human development constantly alter the topography of the landscape. OS 

continuously update their data holdings based on aerial photography, ground surveys 

and improvements to positional accuracy. Historically, the update of tile-based vector 

data required the customer to replace the affected layers of that tile. MasterMap allows 

for both an initial supply of specified layers and change-only updates for those layers. A 
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user who wishes to update their data can order change-only updates for the period after 

the date on which their holdings were last updated. As change-only updates contain far 

less data than the initial supply they are more likely to be amenable to download from 

the OS server, rather than delivery on optical media. 

2.4.1.6 GML-encoded 

There are many commercially available GIS suites, many of which use a proprietary 

format for managing topographical vector data. This necessitated that mapping agencies 

such as the OS supplied their data in a wide range of formats. The Geography Markup 

Language (GML) is an XML encoding for the modelling, transport and storage of 

geographic information, including both the geometry and properties of geographic 

features. It was developed by the Open Geospatial Consortium (OGC) in consultation 

with OS amongst others. MasterMap data is only supplied in a compressed GML 

format. The GIS software publishers provide tools to convert GML to the formats they 

support and manage change-only updates of data holdings in those formats. 

2.4.1.7 SVG Compatibility 

Scalable Vector Graphics (SVG) is an XML format for two-dimensional graphics 

defined by the World Wide Web Consortium (W3C). In addition to encoding vector 

data, images and text are also supported. As GML and SVG are both XML-based, 

Extensible Stylesheet Language Transformations (XSLT) may be used to convert 

MasterMap data to the SVG format. The Mozilla Foundation has built SVG support 

directly in to its Firefox web browser. Any browser with an SVG plug-in, such as the 

free Adobe SVG Viewer can download MasterMap data in a compressed SVG format 

and render it within a web page using a stylesheet to symbolise it. Individual layers and 

themes (such as buildings, land, water and roads) can be selected for display. Maps can 

be zoomed to arbitrary scales and features can be selected and have their attributes 

displayed. Graphics can be anti-aliased along their edges, producing very pleasing 

images on a display of any resolution at any scale, in contrast with the ubiquitous 

pixelated raster maps. GML and SVG together allow for basic GIS functionality within 

any web browser. 
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2.5 Choice of OS MasterMap as Test Case Data 

As previously described, the polygon data required for this project was not available 

from Ordnance Survey Ireland. The British Ordnance Survey’s OS MasterMap product 

includes a polygon layer with the necessary feature codes in place. It is believed that 

they are the first national mapping agency to develop such a product. The fact that the 

polygons provide continuous non-overlapping coverage is essential for the adjacency-

based classification tool developed. The high quality of the MasterMap polygon layer 

makes it amenable to a machine learning approach. Importantly, OSGB were prepared 

to licence the use of their data to Universities for research purposes without fee. There 

had been a history of collaboration between our research group and the mapping 

agency. The work described here was supported by OSGB as it constitutes an approach 

to topographic data quality improvement, the latter being a continuous drive for the 

agency. Lastly, Ordnance Survey’s headquarters and research centre at Southampton 

and their personnel are within relatively easy reach from Ireland, while a shared 

language facilitated use of their data and communication. 

In the next chapter, we describe the concept of a metaphor and introduce 

analogy as a key process in learning that uses metaphors to transfer knowledge between 

domains. Graph structure and isomorphism will be shown to be a key feature of 

analogies and are at the core of the analogy-inspired polygon classification tools we 

describe in subsequent chapters. 
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3: Analogy 

3.1 Definition of Analogy 

The Oxford English Dictionary (OED, 1989) definition of analogy is as follows: 

analogy 

1. Math. Proportion; agreement of ratios. 

2. Hence, Due proportion; correspondence or adaptation of one thing to another. Obs. 

3. Equivalency or likeness of relations; ‘resemblance of things with regard to some 

circumstances or effects’ (J.); ‘resemblance of relations’ (Whately); a name for the fact, 

that, the relation borne to any object by some attribute or circumstance, corresponds to 

the relation existing between another object and some attribute or circumstance 

pertaining to it. Const. to, with, between. 

4. more vaguely, Agreement between things, similarity. 

5. As a figure of speech: The statement of an analogy, a simile or similitude. Obs. 

6. = ANALOGUE. 

7. Logic.    a. Resemblance of relations or attributes forming a ground of reasoning.    b. 

The process of reasoning from parallel cases; presumptive reasoning based upon the 

assumption that if things have some similar attributes, their other attributes will be 

similar. 

8. Language. Similarity of formative or constructive processes; imitation of the 

inflexions, derivatives, or constructions of existing words, in forming inflexions, 

derivatives, or constructions of other words, without the intervention of the formative 

steps through which these at first arose. 

9. Nat. Hist. Resemblance of form or function between organs which are essentially 

different (in different species), as the analogy between the tail of a fish and that of the 

whale, the wing of a bat and that of a bird, the tendril of the pea and that of the vine. 

 

Dedre Gentner (1983) describes an analogy as a “deep” comparison between systems of 

objects. A comparison such as “a lion is like a tiger” might be considered superficial as 

the physical and predatory similarities between both species are well known. In 

contrast, “Winston Churchill was a British bull-dog” is an analogy. The lack of physical 

similarity between humans and canines informs the audience that the likeness may be 

occupational or temperamental. A person who knew nothing of the statesman but had 

some knowledge of dogs might infer that Churchill was a tenacious fighter. 

Alternatively, someone familiar with the man’s career, but with little knowledge of 

dogs, might form a similar opinion of the breed, especially given its name. The name 

bull-dog may itself be an analogy as the species might have gotten its name due a 

similarity between its appearance and temperament and that of a bovine bull. A person 

usually uses an analogy to explain or describe a concept they think may be alien to their 

audience in terms of one they consider to be more familiar. At times, an analogy may be 
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reciprocal, as is the case with the Churchill – bull-dog juxtaposition, if the person 

encountering it is more familiar with the politician than the breed, or somewhat au fait 

with both. 

3.2 Metaphor & Analogy 

The Oxford English Dictionary (OED, 2001) defines metaphor as follows: 

metaphor, n. 

1. A figure of speech in which a name or descriptive word or phrase is transferred to an 

object or action different from, but analogous to, that to which it is literally applicable; 

an instance of this, a metaphorical expression. Cf. METONYMY n., SIMILE n. 

2. Something regarded as representative or suggestive of something else, esp. as a 

material emblem of an abstract quality, condition, notion, etc.; a symbol, a token. Freq. 

with for, of. 

 

The term metaphor is often used interchangeably with analogy. Metaphors are 

extremely widespread in everyday speech. So familiar are we with their use, that we 

may have difficulty identifying them. 

• Time is like a line. 

o An event which occurred earlier is behind us. 

o An event which will occur later is in front of us. 

o Events occurring at the same time are happening in parallel or 

concurrently. 

This time-line metaphor visualizes time as straight lines in 2-D space. Often, the present 

is marked at a specific point on a horizontal line, the past extends along the line from 

the present to the left and the future extends from the present to the right. Events 

occurring simultaneously at a different location may be shown on a parallel line. People 

speak of past events as being behind them and future events being in front of them as, as 

if time was a line running through the body, which signifies the present. 
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Metaphors are frequently used to describe scientific principles in terms of more 

commonly understood behaviour. In 1913, the Danish physicist Niels Bohr introduced 

the Bohr Model to describe the arrangement of particles within an atom. The Rutherford 

analogy from Gentner (1983), “The atom is like the solar system”, uses this model. This 

metaphor may be described as follows: 

• The atom is like the solar system. 

o A nucleus is like the sun. 

o An electron is like a planet. 

o Electrons orbit a nucleus the way the planets orbit the sun. 

The planets of our solar system orbit the sun in elliptical paths on different planes. In 

diagrams this is often simplified as circular paths on a single plane. A first introduction 

to atomic structure at early secondary school level may describe electron orbits as 

concentric circular paths or shells in a 2-D plane around a nucleus. The aforementioned 

metaphor and simplified model of the solar system is used to describe the arrangement. 

Each shell is explained to hold one or more equally-spaced electrons moving in the 

same direction. The theory of shells being composed of sub-shells is introduced at a 

more advanced level. The shapes of certain sub-shells are described using the 

metaphors of a ball, and a figure-8 or a dumb-bell. At university level, the Schrödinger 

wave equation is introduced, from which the probable position of electrons within an 

atom can be derived. The solar system metaphor is used in secondary schools to teach a 

simplified version of atomic structure as a diagram of a star system is far easier to 

understand than a partial differential equation for a wave function. 

A young child can suffer a green-stick fracture of a bone. This compares the 

damage to that done to an immature tree branch when it is bent too far. A parliament 

may be dissolved, evoking the moving apart of the members and their re-integration into 

society! 

The historical practice of the rich to be seated at a higher level and to build 

loftier homes on higher ground than others has contributed to height being a common 

metaphor for wealth. Society is often viewed as a vertical scale, with wealth increasing 

towards the top. 
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Food has been the source of several metaphors that have been used to ascribe the 

perceived relative worth of a person. Prior to the 20
th
 century, when a wealthy 

individual entertained guests at home, loaves of bread were often divided among those 

present in a standard manner. The comfort of visitors was considered paramount, and 

they were offered the finest part of the loaf, the upper crust. The hosts would enjoy the 

centre of the bread, while the servants would have the bottom of the loaf, which might 

be overdone. The upper crust came to be a synonym for the aristocracy to denote that 

they were highly valued members of their society. Dregs are sediments within liquor 

that settle at the bottom of a vessel and are considered undesirable. The derogatory 

appellation the dregs of society refers to those considered the most worthless, base and 

corrupt. Cream has always being a highly prized portion of milk. Being less dense than 

the rest of the milk, it settles on the top, unless the milk has been homogenized. The 

expression the cream always rises to the top is frequently used to suggest that talent or 

quality comes to the fore over time. All of these metaphors allude to a vertical scale 

where height is considered desirable. Sometimes this concept is humourously inverted 

by an observation such as the scum rises to the top. 

Sporting metaphors are so commonly used that many of them may be considered 

clichés. They are especially popular with politicians who like to affect the image of an 

Everyman while couching concepts in terminology that they feel is more 

comprehensible to the electorate. 

• To score an own goal. 

• To move the goal-posts. 

• To have a good innings. 

• To clear a hurdle. 

• To be neck and neck. 

• First past the post. 

It has been argued (O’Donoghue, 2004) that a metaphor highlights existing 

similar relationships within two distinct domains, while analogy is the process of 

identifying similarities between a source domain and target domain and then 

transferring new information from the source to the target. This view highlights the 

centrality of learning to the analogy process. 
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3.3 Analogy in Learning 

Analogy underlies many thought processes: learning, language acquisition, 

classification, induction and creativity. It uses similarity between a new domain and a 

well-known domain to make the strange seem familiar. Analogy structures our thoughts 

as we learn or understand new concepts in terms of things we are already familiar with. 

3.4 Letter String Analogies 

To explain the mechanisms involved in analogies, we begin by looking at letter string 

analogies. These are sequences of alphabetic characters in four groupings, frequently 

labeled with letters and written in the form: 

A : B :: C : D 

This is read as “A is to B as C is to D” meaning that when a set of transformations that 

convert A to B is applied to C, D is generated. A and B represent the source domain of 

the analogy, while C and D are the target domain. The strings are composed of letters of 

lower or upper case or a mixture of both. The transformations that the letters may 

undergo include shifts of a specific number of positions within the alphabet, 

substitutions, deletions and additions. Shifts are normally limited to one place to the 

left, or one place to the right, known, respectively, as the predecessor or successor 

functions. An example of a letter string analogy where the second letter is replaced by 

its successor is: 

ab : ac :: ef : eg 

A letter string analogy problem is presented when the final stage D must be determined 

by the reader. This is represented as: 

A : B :: C : ? 

These analogy problems are used in intelligence tests, where a number of possible 

answers may be presented to choose between. If there are three options, this may be 

shown as: 

A : B :: C : 1 ? 2 ? 3 

A problem may be considered ambiguous if there is more than one answer generated by 

transformations using the minimum number of steps e.g. 

ac : abc :: dg : deg ? dfg ? defg 

The CopyCat algorithm (Hofstadter 1995) solves letter string analogy problems. 
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3.5 Geometric Analogies 

Geometric analogies are arrangements of geometric primitives (circles, squares, 

triangles etc.) in four groupings. They may be labeled with letters and are written in the 

same form as letter string analogies: 

A : B :: C : D 

A geometric analogy problem is likewise presented when the final stage D must be 

determined by the reader. Geometric analogy problems are also used in intelligence 

quotient (IQ) tests as it is believed that a high degree of intelligence is needed to solve 

them. A typical geometric analogy problem is shown in Figure 3.1. The outer square 

boxes demarcate the boundaries of each set of objects and have no other significance. 

To facilitate easier grading in IQ tests, several possible answers (stage D) may be 

presented to choose between. 

 

 

Figure 3.1 A geometric analogy problem without attributes. 

 

Typically, the shapes of the objects, object attributes (colour, size etc.) and the inter-

object relations (circle contains square, triangle to right of circle etc.) are significant. 

These problems may be solved as follows: 

1. Identify the attributes and relations of the objects in A and B. 

2. Identify the transformations these values undergo from A to B. 

3. Identify the attributes and relations of the objects in C. 

4. Apply the transformations to the objects in C to generate the solution, D. 

? 

A B C D 

: :: : 

target domain source domain 
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The Analogy program (Evans, 1968) takes as input a geometric analogy problem with 

several possible answers, recognizes the shapes and their physical location with respect 

to one another and selects the correct answer. It does not handle object attributes 

(colour, pattern etc.), unlike the Ludi model (Bohan and O’Donoghue, 2000). Ludi takes 

as input a predicate representation of the four stages and can generate the required 

output without being presented with possible answers. An example of a geometric 

analogy problem with attribute information, which might be solved by Ludi, is shown in 

Figure 3.2. 

 

 

Figure 3.2 A geometric analogy problem with attributes. 

 

The Ludi model aims to avoid generating the following trivial solutions: 

• D is always identical to B, regardless of A and C. 

• There is no solution, because A and C aren’t identical and can’t be transformed 

the same way. 

• D is identical to C, because only A is transformed. 

These answers are considered “simplistic interpretations” of geometric analogies, and 

they wouldn’t be considered satisfactory in an IQ test. Whilst Gentner (1983) dismissed 

the importance of object attributes (striped, shaded etc.) in favour of emphasizing the 

structure of the relations between objects, Ludi considers both. 

 Tomai et al. (Tomai et al., 2005) have extended Evans’ Analogy algorithm to 

solve geometric analogies that are presented as sketched inputs. The reasoning is 

provided by the Structure-Mapping Engine (SME) (Falkenhainer et al., 1989), which 

implements Gentner’s (1983) structure mapping theory. 

? 

A B C D 

: :: : 

target domain source domain 
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3.6 Predicate Representation of Analogical Domains 

Analogical domains are frequently represented in predicate calculus (Waner & 

Costenoble, 2001). Predicates are statements that are known to be true. They are written 

as atomic sentences which are of the form P(t1,…,tn), where P is the predicate name and 

t1,…,tn are one or more subjects or arguments. Arguments are usually ordered or non-

commutative i.e. in general P(t1,t2) ≠ P(t2,t1). Analogical information is structured in 

predicate logic as follows: 

 

• Objects are the basic entities of analogy and might be tangible items in the real 

world, actions, events, or concepts. They are usually nouns, but we place no 

limits on what constitutes an object. 

e.g. egg, floor 

• Attributes are 1-place predicates that describe qualities or properties of objects 

and are often adjectives. 

e.g. fragile(egg) 

• First-order predicates describe relations between objects. Frequently, they 

represent actions and are verbs. 

e.g. hit(egg, floor), break(floor,egg) 

These examples might be one-way relations, i.e. we are specifying that the egg 

hits the floor and not vice-versa. 

• High-order predicates describe causal relations between first-order or other 

high-order predicates. 

e.g. cause(hit, break) 

 

Predicate form can be more legible than a sentential presentation of the same 

information. It structures information in syntax similar to that used by the Prolog 

programming language. Prolog is commonly used in Artificial Intelligence research, and 

is the basis for several computational analogy implementations. 
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3.7 Analogical Domain Structure & Graph 

Representation 

Some more complex analogies may involve an object in many relations. This structure 

may be considered as a graph, where the objects are the nodes and relations are edges. 

“JFK’s White House is like King Arthur’s Camelot” is a well known analogy. It 

originated in an interview given by the recently widowed Jacqueline Kennedy to 

Theodore White (1963). A graphic representation of this analogy is shown in Figure 

3.3. This is a directed graph, as all the edges are ordered (i.e. relations are non-

commutative), as denoted by arrow-heads. The objects in both the White House and 

Camelot domain are arranged so that the relations have the same spatial arrangement in 

both domains. This makes it easy to see that there is an isomorphism between the 

domains. We can see which objects are analogous to each other: JFK & King Arthur, 

Oval office & Round Table etc. 

 

 

Figure 3.3: Isomorphism of the JFK-King Arthur Analogy. 

(diagram courtesy of Diarmuid O’Donoghue) 

“JFK’s White House is like Camelot” 

White House 

King Arthur 
John F.Kennedy 

Jackie Kennedy 

Oval Office 
Joe Kennedy Snr. 

Politics 

Camelot Guinevere 

Round Table 

lived-in 

lived-in 

loved 

governed 
-from 

located 
-in 

Merlin 

advised 
-by 

Magic 

interested-in 

involved 
-in 

U.S.A. England leader-of 

1960s 
medieval 

lived-during 
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The analogy was developed by White (Sidney, 1994; Wikipedia, 2007c), who 

drew comparisons between the people, places and events in the lives of U.S. President 

John F. Kennedy and the legendary King Arthur. It compares his short term in office 

with the rule of the legendary King Arthur. Both “reigns” are remembered as short-lived 

golden eras which ended with the tragic death of the central figure. Over the years, this 

metaphor has been expanded upon by identifying correspondences between both 

administrations. One of the best known sources of the Arthurian legend today 

(Wikipedia, 2007a, 2007b) is Sir Thomas Malory’s (2000) Le Morte D’Arthur, which 

was first published in 1485 by William Caxton (who introduced the printing press to 

England). In Malory’s account, the wizard Merlin advises King Uther Pendragon, who, 

prior to his death in battle, drives his sword, known as Excalibur, into a boulder. Arthur, 

unaware that he is a son of Uther, becomes King, when, as foretold by Merlin, he draws 

the sword from the stone. Excalibur can be viewed as corresponding with the popular 

vote that mandated JFK’s presidency. King Arthur’s struggles against the expansion of 

the Roman Empire in Britain (in other texts, he is a British Roman fighting the Saxon 

invasion) may be seen to mirror the Kennedy presidency’s efforts to arrest the spread of 

Communism across the Globe. Arthur sends his knights on many quests, the greatest of 

which is that for the Holy Grail. He believes that drinking from the chalice used by 

Jesus at the Last Supper will restore his health and the ills that have befallen his 

kingdom. This echoes JFK’s great desire for his nation to be first to set foot on the 

moon, an act which would boost national morale and pride, which had been wounded 

by early Russian victories in the Space Race when they were first to put a satellite in 

orbit and to put a man in space. Arthur is deceived by his half-sister, Morgause, by 

whom he produces an heir, Mordred, who Morgause raises to one day usurp his father’s 

power. Arthur learns of Guinevere’s indiscretions with Lancelot, the greatest knight of 

the Round Table. This leads to the mortal wounding of the king by Mordred at the 

Battle of Camlann. What light this may shine on Vice President Johnson, Kennedy 

family affairs, Lee Harvey Oswald and events surrounding the Texas School Book 

Depository and the Grassy Knoll is a matter that we leave to the tender ministrations of 

the conspiracy theorists. 
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3.8 Structure Mapping 

Dedre Gentner (1983) identified structure as being the key to unraveling metaphors and 

analogies. Relations between objects are more important than the objects themselves 

and their attributes. This allows the identification of novel metaphors between 

apparently unrelated domains. In the “a marathon is like an examination” analogy 

(O’Donoghue, 2004) seen in Figure 3.4, we can see that the relations within both 

domains align with each other. It is this isomorphism between domains that underlies 

the analogy. When the largest common subgraph between two domains is identified, 

this yields a set of source:target pairs of information that is known as a mapping. If we 

compare the mapped relations, we can see that “preparing for” a marathon corresponds 

to “studying for” an examination. While these relations are not identical, we realize that 

there is a similarity between both actions. Different constraints can be specified to 

control the types of information that is mapped between domains. In the marathon-

examination example the mapped objects are not identical and only some of the 

relations are the same. In The JFK-King Arthur example of Figure 3.3, none of the 

objects mapped are identical, but all of the paired relations are equal. 

 

 

Figure 3.4: The metaphor “A marathon is like an examination”. 

(diagram from O’Donoghue (2004, p.5)) 

 

An important property of analogical comparisons is systematicity (Gentner 

1983), meaning that both domains of an analogy must use similar systems of relations in 

similar ways. The systematicity principle has been the foundation of much research on 

metaphors and analogy and allows the verification and comparison of different theories. 

Varying phases in the analogy process have been identified, which emphasize different 

aspects of the process. 

athlete 

before 

prepares-for runs-in 

marathon race-day 

student 

before 

studies-for sits 

examination exam-day 

held-on occurs-on 
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3.9 Phases of Analogy 

Keane et al. (1994) identify a five stage model of computational analogy: 

Representation, Retrieval, (Structure) Mapping, Validation & Induction. 

Using the aforementioned solar system - atom analogy as an example, we describe these 

5 phases of analogy. 

3.9.1 Representation 

The problem domains are described in a uniform way. One might use the predicate 

calculus description seen in Table 3.1. The solar system domain seen here contains 

three relations, while the atom domain has two. We will consider the solar system to be 

the source domain and the atom to be the target domain and try to establish a mapping 

between both. If successful, we will then attempt to transfer information to the latter. 

3.9.2 Retrieval 

A knowledge base is searched for possible source domains that might match a selected 

target. For this example, there is only one possible source domain and all the 

information in both domains is shown in Table 3.1. 

 

 Source Domain: Solar System Target Domain: Atom 

O
b
je
ct
s sun 

planet 

electron 

nucleus 

R
el
a
ti
o
n
s 

greater-mass(sun, planet) 

orbit(planet, sun) 

cause(greater-mass(sun, planet), 

          orbit(planet, sun)) 

greater-mass(nucleus, electron) 

orbit(electron, nucleus) 

Table 3.1 Predicate representation for solar system - atom domains. 
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3.9.3 Mapping 

A 1-to-1 mapping is generated between the objects of both domains. Initially, the 

following mapping might be arbitrarily generated: 

sun → electron planet → nucleus 

This object mapping is represented Figure 3.5.1, where the solar system domain is on 

the left and the atom domain is on the right. The relative position of the objects between 

domains denotes the mapping generated. 

 

 

Figure 3.5.1 First mapping between solar system and atom objects. 

3.9.4 Validation 

The generated mapping is checked to ensure that it meets specified constraints. In this 

example, we wish the relations to match. In Figure 3.5.2, relations are represented by 

pentagons whose direction denotes the order of the arguments e.g. in the target domain, 

greater-mass has nucleus as the first argument and electron as the second argument, 

representing the greater_mass(nucleus, electron) relation. We find that the 

greater_mass relation does not follow the same direction: the first generated mapping 

hasn’t validated. 

 

 

Figure 3.5.2 First mapping fails because relation direction doesn’t match. 

 

We return to the previous stage, mapping and generate a second mapping: 

sun → nucleus planet → electron 

This mapping is shown in Figure 3.5.3 

 

 

Figure 3.5.3 Second mapping generated. 

sun planet nucleus electron 

sun planet 

greater 
-mass 

electron nucleus 

greater 
-mass 

sun planet electron nucleus 
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We now find that both the greater_mass and the orbit relations match, as seen in Figure 

3.5.4. The cause relation of the source domain cannot be mapped as it is absent from the 

target domain. The second generated mapping has validated, so we know it is correct. 

 

 

Figure 3.5.4 Both pairs of relations match. 

3.9.5 Induction 

We transfer information from the source domain to the target domain. The cause 

relation is copied from the solar system domain to the equivalent position in the atom 

domain, as shown in Figure 3.5.5. 

 

 

Figure 3.5.5 Additional relation is transferred between domains. 

 

By identifying the largest common subgraph between the solar system and atom 

domains, we have been able to identify the element that is present in the former and 

map it to the latter. While there are unmentioned factors that contribute to planetary and 

atomic orbits, this example shows how analogy can transfer knowledge from one 

domain to another. If we wished, we could verify the correctness of the new assertion 

by checking against ground truth. 
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3.10 Summary 

In this chapter we have described the concept of metaphor and introduced analogy as a 

key process in learning that uses a metaphor to transfer knowledge between two 

domains. By identifying the largest common subgraph between a source domain and a 

target domain, we can identify information that is present in the former and map it to the 

latter. The use of predicate calculus to represent the objects and relations that comprise 

the domains used in computational analogy was described. Graphs were shown to 

provide a good visualization of the same information, and make the identification of 

isomorphism easier. Mapping is described as the central stage in the process of analogy. 

We used Keane’s phases of analogy model to describe the stages in the learning process 

that are central to our analogy algorithm. 

In the next chapter, we return to the large-scale topographic data described in 

the previous chapter. We describe the similarities between that problem domain and 

others that have already proven amenable to an analogical approach. We demonstrate 

that there is structural regularity to much of this data and argue that this structure makes 

the domain closely analogous to that of geometric analogies. The use of structural 

isomorphism in topographic data is shown to support a probabilistic approach to 

classifying map features. 
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4: Topographical Analogies 

4.1 Introduction 

We begin this chapter by examining the topological relations that exist between the 

objects that comprise the domains of geometric analogies. These are compared to the 

relations occurring between map features in the large-scale topographic databases 

described in Chapter 2. We show that there are semantic similarities between both sets 

of relations. Geometric analogies have proven amenable to solution by analogical 

computation. We argue that the correspondence between the relations seen in both 

domains, coupled with high degree of structural uniformity exhibited by map data, 

justifies an analogical approach to the automated classification of features in 

topographic data. Two important types of adjacency relations found in map data are 

given special attention. These relations form the basis of two models that describe the 

neighbourhoods of map features. The identification of isomorphism between these 

neighbourhood descriptions underpins the identification of analogous features in map 

data. From this identifier, a probabilistic approach to classifying topographic data by 

using high quality training data as a source for classification templates is derived. 
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4.2 Comparison of Geometric Analogies and 

Topographic Data 

We compare the objects, attributes and relations that comprise geometric analogy 

domains with those found in large-scale topographic vector databases. For brevity, we 

will refer to the latter as topographic data in this section. 

4.2.1 Objects 

In geometric analogies, the objects are geometric primitives. These may include dots, 

line features and area features. Topographic data is composed of vector-defined shapes 

and includes points, lines and polygons. 

 

Object Type Geometric Analogy Topographic Data 

point feature 

  

line feature 

  

area feature 

  

Table 4.1: Comparison of object types present in geometric analogies and topographic data. 

telephone pole 

building 

boundary 

river 

edge 

river house 
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4.2.2 Attributes 

The objects in geometric analogies share several attributes with topographic data 

features, as shown in Table 4.2. There can be ambiguity in how a visual representation 

of a geometric analogy is interpreted. The same shape with a different orientation could 

be considered as a different shape e.g. we could consider an object as having either 

shape triangle and orientation inverted or as simply shape inverted-triangle. Likewise, a 

square with a fill colour the same as the background could be considered as an area 

feature with colour white or as a line feature, which would not have a fill. 

 

Object Attribute Geometric Analogy Topographic Data 

Shape 

  

absolute position 

  

Orientation 

  

size/area 

  

fill pattern 

  

fill colour 

  

Table 4.2: Comparison of object attributes present in geometric analogies and topographic data. 

5°12′49″N × 

170°8′3″W 
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4.2.3 Relations 

The relations between geometric analogy objects are compared with those occurring 

between features in topographic data in Table 4.3. 

 

Object Relation Type Geometric Analogy Topographic Data 

Containment 

  

relative position 

  

topology/connectedness 

  

Table 4.3: Comparison of object relation types present 

in geometric analogies and topographic data. 

 

The number of possible shapes, attribute values and relations tend to be more limited 

for geometric analogies because of the requirement that a human user needs to identify 

these precisely from a graphical representation in order to solve these problems. The 

spatial precision afforded by the large number of significant digits used in the Cartesian 

co-ordinate systems that underlie topographic data allows for greater variety in many of 

these values. 

15 metres to west 

8.1 metres 



38 

4.3 Applying Geometric Analogy Problems to 

Topographic Data 

In order to solve a geometric analogy problem, one must recognize the objects, object 

attributes and inter-object relations that comprise these visually-presented tests. For 

instance, if presented with the problem shown in Figure 4.1, one might describe stage A 

in predicate logic as being composed of object1, object2 and object3, with attributes 

circle(object1), pattern(object1,hatched), square(object2), and triangle(object3) and 

relations contains(object1,object2) and to-right-of(object3,object1). The relations 

describe the physical structure of the shapes within each stage. 

 

 

Figure 4.1: A geometric analogy problem using attribute information. 

 

In the first chapter we defined the goal of this thesis as being the automated 

classification of area features in large-scale topographic vector databases. This requires 

the inference of the feature code of a polygon from the available feature topography and 

attributes as described by the various database layers. Classification tools have been 

developed that use machine vision techniques to identify polygons in a topographic 

database based on shape, along with scalar measures such as area, perimeter and 

elongation (Keyes and Winstanley, 2001). Aerial photography, geo-referenced to match 

vector data is also being used to classify area features by inspecting the texture of the 

features (Winstanley and Corcoran, 2005). 

? 

A B C D 

: :: : 

target domain source domain 
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As we have seen, there are strong similarities between the geometric analogy 

domain and topographic data. Geometric analogies are founded on the discrete nature of 

the attributes of their constituent objects and of the relations between them. We are 

concerned with classifying area features in topographic vector data. The feature code 

classes used in such data belongs to a small pre-defined set of descriptions (e.g. 

building, garden, road etc.) and so may be said to be discrete attributes. We consider 

again the three types of inter-object relations demonstrated for topographic data in table 

4.3. Relative position is a continuous value as the separation between features is 

measured as a real number of units of distance. Containment is a discrete relation type, 

but is of limited usefulness as many polygons do not contain other features. An area 

feature may appear to contain another polygon, when in fact it is a doughnut polygon 

and surrounds the feature which forms the “hole”. A common example of this is a house 

surrounded by a garden. This leaves topology as the remaining discrete relation type 

defined for topographic data. Topology may be described in terms of the connectedness 

or adjacency between features. Feature codes and adjacency are the discrete attributes 

and relations forming the basis of the topographic feature classification tool described. 

4.4 Contextual Analysis of Area Features 

It has been observed from the analysis of classified large-scale topographic vector area 

data that certain classes of polygons tend to neighbour / border on / be adjacent to each 

other with significant frequency. Salaik (04) analyzed the adjacencies found in the OS 

MasterMap “Port Talbot” polygon data set containing 5,164 features. Omitting the add-

one smoothing used by the author, table 4.4 shows some significant feature code 

adjacency rates from this data. For instance, of the 6,736 instances of adjacencies to 

features of the “building” class, 3,805 or ~56.5% of these are with polygons of the 

“garden” class. In other words, for this data set, 56.5% of the neighbours of buildings 

are gardens. 

Feature code 

A B 

Proportion of adjacencies to class 

A features by polygons of class B 

garden garden 41.07% 

garden building 40.04% 

building garden 56.5% 

road road 41.1% 

road roadside 36.6% 

Table 4.4: Selected feature code adjacncy rates calculated from Salaik (04). 
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In addition to considering pairs of adjacent polygons in isolation, one might 

observe the surrounding neighbourhood or context of particular area features. There are 

many definitions of context that one may apply to a polygon in topographic vector data. 

The topography and attributes of features of any topographic data layer (point, line or 

polygon) contained within, overlapping or within a specified distance from the 

boundary or centre of the area feature of interest could be used. One could also consider 

the relationships between these nearby features and the angles described by these 

features with respect to each other. We examine the topological structure of an area 

feature and the immediately neighboring polygons and define the context of a polygon 

as follows: 

 

(polygonal) context 

 The context of a particular polygon is a description of the classifications of the adjacent 

polygons and the topology between these polygons. 

 

An adjacency-based description of context is used for a number of reasons: 

1. The aforementioned observed regularity in what area features tend to be 

adjacent to each other 

2. The existence of adjacency between two vector-defined features may be readily 

determined in a GIS. Adjacency is a Boolean value in all cases: either two 

features are adjacent or they are not. This yields a model of context that is more 

general and quicker to calculate and compare than many other definitions that 

could be used. 

3. This discrete definition of context is congruous with the clearly defined 

relationships existing between objects in geometric analogies. As described in 

the previous chapter, analogy has been successful in solving geometric analogy 

problems. We examine whether an analogical approach may be applicable to 

classifying topographic data also. 
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4.4.1 Types of Adjacency 

When considering adjacency between polygons, we distinguish between and define two 

separate topological relationships: 

 

line-adjacency 

Two polygons are line-adjacent if they share a bordering line. 

point-adjacency 

Two polygons are point-adjacent if they are not line-adjacent but they meet at 1 or more 

points. 

 

Examples of the two types of adjacency are shown in figure 4.2. 

 

 

Figure 4.2: The pairs of polygons on the top are line-adjacent, 

while those on the bottom are point-adjacent. 

 

Point-adjacency is very common between land parcels and buildings. Its treatment as a 

special case of adjacency allows for a more fine grained description of the context of 

such polygons. In addition, to avoid the problem of having one unmanageable polygon 

representing the road network for the whole of Britain, the OS have added polygon 

closing links at road junctions. These create artificial point-adjacency topology at many 

junctions, making the road network amenable to context-based classification as well. 

The distinction between two types of adjacency makes adjacency a trinary value. Any 

two area features exhibit one of the following relationships: 

1. line-adjacency 

2. point-adjacency 

3. non-adjacency 
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4.4.2 Graph Representation of Context 

The context of a particular area feature may be represented as a graph, as demonstrated 

for the commonly occurring semi-detached house context in figure 4.3. Nodes denote 

polygons and are labeled with feature codes. Identifying numbers are included to aid 

comprehension. The existence of line-adjacency between two area features is recorded 

by a continuous line edge, while a dashed line edge represents a point-adjacency. As 

normal in graphs, nodes are positioned arbitrarily. The area feature, labeled 1, whose 

context is being considered is highlighted in both the topographic and graph 

representations. Its feature code is not recorded in the graph, as a polygon’s attributes 

are not considered a part of its context. 

 

 

Figure 4.3: The context of the highlighted polygon shown on the left 

is represented as a graph on the right. 

3: garden 

2: garden 1 

4: house 

2 

1 

3 
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4.5 An Analogical Classification Model for 

Topographic Data 

Having established similarities between the objects, attributes and relations of 

geometric analogies and topographic data, we describe how an analogical approach, 

founded on the identification of graph isomorphism between polygonal context 

descriptions may be used to classify area features in large scale topographic vector data. 

Figure 4.4 shows the immediate neighbourhoods / contexts of two highlighted semi-

detached houses. Both houses are adjacent to one other house and 2 gardens, but the 

neighbourhoods have differing topographies as corresponding houses and gardens are of 

varying shape and size. If we examine the contexts of both houses, we find that they 

share the same topology, as demonstrated by the fact that they generate identical context 

graphs. On the basis of their isomorphic contexts, we can say that the two highlighted 

features are analogous to each other. 

 

 

Figure 4.4: Two polygons neighbourhoods of differing topography, may share the same topology, 

and thus have isomorphic context graphs. 

4.5.1 Context Isomorphism 

In the previous chapter, we described how analogy is predicated on finding the largest 

common subgraph between some source domain and a target domain. This facilitates 

the mapping of corresponding objects and relations from the source to the target. The 

largest common subgraph between two isomorphic graphs is the entire graph. Thus, 

identifying isomorphism between two graphs is a subset of the problem of identifying 

the largest common subgraph. Matching structure between two domains generates a 1-

to-1 mapping of objects and relations from the source to the target. Once this is 

achieved, unmatched objects or relations in the source domain can be mapped to the 

target domain. 

Two graphs must share the same number of nodes, in order to support a 1-to-1 

mapping between them and possibly be found to be isomorphic. Given two graphs, A 

and B, both of n nodes, there are n possible nodes in B  that the first node in A can map 

2 

1 

3 

4 

3,8: garden 

2,5: garden 1,6 

4,7: house 
8 

5 
6 

7 
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to, n-1 nodes that the second node in A can map to, n-2 possibilities for mapping the 

third node in A etc. If we map from each node in a fixed ordering of A to a node in the 

corresponding position of a permutation (i.e. an ordering) of B, we generate a set of 

mapping between A and B. By generating a set of mappings from A to each of the 

permutations of B, we can generate all possible mappings between both graphs. Overall, 

the number of permutations of B, and hence mappings between A and B is: 

(n)(n-1)(n-2)…(1) = n! 

Thus, the computational complexity of determining graph isomorphism is of the order 

O(n!) 

As context descriptions have no more than one edge between each pair of nodes, a 

mapping from the nodes of A to those of B allows the unique mapping of each edge 

between both graphs also. 

There are 2 pre-conditions that must be met in order for there to be a possibility of 

an isomorphism existing between A and B: 

1. Graphs must have the same number of nodes. 

2. Graphs must have the same number of edges. 

To check whether a given mapping between A and B represents an isomorphism 

between both graphs, there are two constraints that must be satisfied: 

1. Each node in A must map to a node of the same feature code in B. 

2. Each pair of nodes in A with an edge between them must map to a pair of nodes 

in B that share the same edge type. 

There is no theoretical upper limit on the number of immediate neighbours that an area 

feature may have. One particular polygon in OS MasterMap data, representing a 

footpath surrounding a block of homes in a housing estate, has been observed to be 

adjacent to over 70 other area features. Given the O(n!) complexity of the operation, 

checking for isomorphism between two such features could require the generation of up 

to 70! ≈ 1.2 × 10
100
 trial sets of inter-graph mappings, making the problem intractable at 

present. A method of reducing the search space size, applicable in many cases, will be 

described in the next chapter. 

4.5.2 Context-Based Classification 

Presented with the context of a polygon, B, which is either unclassified or whose feature 

code we wish to verify, we could search a corpus of data for a polygon, A, whose class 

is known, and whose context is isomorphic with that of B. If a match is found, the 

context of A could be treated as the source of an analogy and that of B as the target. If 
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we mapped the feature code of A to B, we would be transferring knowledge between 

domains. We would be applying the class of A to B on the basis that their contexts are 

analogous. There may be more than one isomorphism between two contexts. These 

would differ in what neighbours of A mapped to what neighbours of B. As it is an 

attribute of A that we seek to transfer to B and both polygons may only map to each 

other, it is irrelevant which permutation of nodes generates an isomorphism. Once a 

match is established, we do not need to continue searching for other isomorphisms or 

even to know if there are any. In the case of two area features whose contexts do match 

this has the effect of reducing the size of the average search space that is traversed 

before an isomorphism is established.  

4.5.3 Comparison of Geometric and Topographic Analogies 

If the classification of some target polygon by a source area feature whose context is 

isomorphic was depicted as a geometric analogy problem, it might look like figure 4.5. 

Here, stage A represents the context of the source area feature, stage B shows that 

polygon’s feature code in that context, stage C represents the context of the target area 

feature and options 1, 2 and 3  are the possible classifications for that polygon within 

that context that we can chose between. The problem could be read as: 

Neighbourhood A implies a house as neighbourhood C implies which of the following? 

1. a garden 2. a house 3. a pond 

As the context of the source implies a missing house at its centre, and the context of the 

target is identical, we might reason that the correct answer is option 2, also a house. 

 

 

Figure 4.5: The polygon classification process characterised as a geometric analogy problem 

using object attributes and contextual information. 

 

A geometric analogy problem is predicated on identifying transformations that 

object attributes and relations undergo within a source domain and applying them to an 

arrangement of objects in a target domain to generate a solution. Context-based 

topographical analogies are founded on identifying neighbourhoods of objects, each 

: :: : ? ? 

A B C 1 

target domain source domain 

2 3 
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having feature code attributes and sharing adjacency relations. Given a target object of 

unknown class, we identify its context and search a corpus of data for an object with an 

isomorphic neighbourhood. If a matching source context is found, the feature code of 

the source is used to classify the target. In geometric analogies, transformations may be 

applied to many objects and relations in the target, altering it fundamentally. In 

topographic analogies only the feature code attribute of the target polygon is changed. 

4.5.4 Templates and Ambiguity 

When a source context is retrieved from a corpus of data and used to classify a given 

target area feature, we may say that the source context is acting as a template. For our 

purposes, we define this as: 

template 

An exemplar, an archetype, a typical instance, a guide, a mold, a pattern used in 

recognition, a context associated with a feature code that suggests a polygon with the 

same context might share that feature code. 

 

When a corpus of data is searched for a template with which to classify a given area 

feature, there are four possible outcomes: 

1. There is no matching template, in which case our model has no basis for 

classifying the target. 

2. There is a single matching template. We could assume, based on this limited 

knowledge, that the template is a suitable classifier to use. 

3. There are two or more matching templates, all of which indicate the same 

classification feature code. In this event, the greater the number of matches, the 

more confident we can be about assigning that class to the target. 

4. There are two or more matching templates, but they do not agree on a single 

feature code. In this instance, our classification scheme may be said to be 

ambiguous. The feature code applied to the target could vary depending on 

which template was used. 

The randomness introduced by the final possibility clearly would not make for a 

desirable classification paradigm. Selecting the feature code indicated by a single 

template and ignoring those suggested by any other templates would be a naïve 

approach. We describe a more robust scheme which considers all matching templates. 
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4.5.5 Frequency Templates 

As certain contexts, such as those that occur around the highly structured road 

networks, houses and gardens are very common, we would expect to find many 

matching neighbourhoods within both a corpus of templates and a sample of polygons 

requiring classification. It would be very inefficient to repeatedly check for 

isomorphism between a relatively small number of identical contexts and the entire 

corpus of candidate sources. Instead, we pre-process the corpus of candidate sources 

and combine each set of matching templates into one frequency template. 

frequency template 

A frequency template records a context identified in some training set and logs the 

frequency with which polygons of particular feature codes exhibited that context. 

 

While a template suggests a single class, a frequency template reports frequency counts 

for each feature code. The creation of frequency templates has the advantages of: 

1. Avoiding the inefficiency of repeatedly matching a feature in a testing set 

against isomorphic templates. 

2. Less data redundancy. Rather than keeping a large set of templates in memory 

when classifying a feature, a smaller set of frequency templates can be used. 

3. Addressing the ambiguity inherent when templates do not agree and only one is 

used. 

For instance, a particular frequency template might record a frequency of 5 for 

“building” and zero for all other feature codes. If this frequency template was retrieved 

as a match for an unclassified polygon at a later date, we could calculate that a 

proportion of 5/5 of the features matching that template in the source were of class 

building. Alternatively, we could say that the probability that a feature matching that 

template in the training set is of feature code “building” is 1.0. If we are confident that 

the topography and feature codes of the training set are representative of those of some 

testing set, we can say that the estimated probability that any feature in the testing set 

matching that template is likewise “building” is also 1.0. One instance of a situation 

where we can be almost certain of the structural similarity of two sets of data is if cross-

validation is used i.e. different sets of features are randomly assigned from a single data 

set to form training and testing sets. By comparing cross-validation testing results with 

results obtained from sourcing a testing set from a different data set, we can estimate 

retrospectively how similar two data sets are. 



48 

If a frequency template was to report a frequency of 3 for “garden” and 1 for 

“building”, the sum of frequencies for that template would be 3+1=4. The estimated 

feature code probabilities for features matching that template in a testing set would be 

3/4 or 0.75 for “garden”, 1/4 or 0.25 for “building” and 0/4 or 0.0 for all other classes. 

Based on the sum of frequencies and individual feature code frequencies, a decision can 

be made on whether to accept the class with the maximum frequency in each case. For 

instance, a relative frequency of 9/10 might be considered less reliable than one of 

90/100, despite both representing an estimated probability of 0.9. By generating raw 

feature code frequencies from our classifier, we give an end user or supervising 

classification process full statistical information and freedom to decide how to use it. It 

might be considered desirable, for instance to smooth the feature code frequencies to 

avoid probabilities of 0.0 for any feature code. 

We have established that the computational complexity of Context Structure 

Matching is O(n!). This makes CSM infeasible for certain features with a large number 

of neighbours. A model of polygonal context which is less fine-grained than context 

structures might allow context matching between area features with arbitrarily complex 

neighbourhoods. Such a model may be based on the notion of content vectors. 

4.6 Content Vector-Based Classification 

A content vector is an array of values that represent information about an object 

(Marinilli et al., 1999). Each position in a content vector contains a value which 

describes a specific attribute of the object. To describe the neighbourhood of a polygon, 

we could use two content vectors, one to record line-adjacencies and one for point-

adjacencies. As feature codes comprise a small, finite set, each position in such a 

content vector could correspond to the number of neighbouring area features of a 

particular feature code exhibiting that adjacency type. In Figure 4.6, the neighbourhood 

of a highlighted polygon (labeled 1) is shown on the left as a graph describing its 

context structure, on the right as a pair of content vectors recording the frequency of 

occurrence of adjacencies between the area feature under consideration and its 

neighbours. For simplicity, only four feature codes are used. It can be seen from the 

line-adjacent content vector, labeled lnAdj, that there is one house, one garden and no 

paths, roads or fields sharing line-adjacency with polygon 1. Similarly, one garden, but 

no other feature is point-adjacent to the polygon according to the point-adjacent content 

vector, labeled ptAdj. A context structure graph records adjacencies between an area 
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feature and its neighbours and between those neighbours. The content vectors described 

only list those between the described polygon and its neighbours. 

 

 

Figure 4.6: A polygon neighbourhood represented as a context structure graph on the left 

and as a pair of content vectors on the right. 

 

Figure 4.7 shows two similar polygon neighbourhoods, along with their 

corresponding context structure graphs on the left. As highlighted, the graphs do not 

match as there is point-adjacency between “our” garden and the neighbour’s house on 

the left while there is line-adjacency between the corresponding features on the right. 

However, examining the content vectors for both, seen to the right, we see that these are 

identical. By disregarding the topological connections between neighbouring features, 

content vectors provide a more generalized, more coarse-grained model of context than 

context structures. Checking for matches between two content vectors involves 

comparing two arrays of numbers each the size of the cardinality of the feature codes 

used in the source data. As the number of feature codes is finite, the computational 

complexity of comparing two content vector is constant, O(1), with respect to the 

number of immediate neighbours of the features. As already described, the complexity 

of checking for isomorphism between two context structures is O(n!) with respect to the 

number of immediate neighbours. Thus content vector matching may be attempted in 

any instance, while context structure matching is intractable in certain cases. As a 

content vector match is a pre-requisite for a context structure match, the former can be 

used as a precondition test for the latter, reducing the time to identify non-isomorphic 

context structures, whilst having negligible impact on the time to determine identical 

structures. 
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Figure 4.7: Two polygons neighbourhoods with distinct context structure graphs 

and identical content vectors. 

 

Just as context structure frequency templates may be used as a basis for a 

probabilistic classification scheme, a separate set of content vector frequency templates 

can also be used for classification. As context structures are a more fine-grained model 

of context than content vectors, most content vectors will correspond to contexts that 

would be represented by many different context structures. A single frequency template 

of either type records feature code frequencies for all matching neighbourhoods in some 

source data set. Thus, for the same source data, the set of content vector frequency 

templates generated can be expected to be significantly less than the number of context 

structure frequency templates derived. Furthermore, the data structure used to store a 

content vector contains less information than that used by a context structure, omitting, 

as they do descriptions of the adjacencies between neighbours. This means that in 

addition to the computational complexity advantage of content vector matching, the 

memory size of the frequency templates and the time taken to search and compare them 

to some target polygon will be significantly less for content vector classification than 

context structure classification. 

4.7 Combining Content Vector and Context Structure 

Classification 

The ability of context structures to represent the adjacencies between neighbouring 

features makes them a more fine-grained classification tool than content vectors. As 

several context structures frequency templates will correspond to a single content vector 

frequency template, we can expect many context structure frequency templates to 
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record maximum classification probabilities that are greater than that of the content 

vector frequency templates that encompass them. 

The important characteristics of both classification schemes with respect to each other 

are as follows: 

1. Context structures are expected to be a more precise classification tool than 

content vectors. 

2. The graph isomorphism that underlies context structure matching is intractable 

for large number of neighbours. Content vector matching has constant 

computational complexity. 

3. A content vector frequency template encompasses many context structure 

frequency templates. If a content vector match is not found, a context structure 

match cannot be found. 

Considering these factors we combine both classifiers as follows: 

1. Given a source data set of high quality area features, build a set of content vector 

frequency templates and a set of context structure frequency templates. Each 

time a new content vector frequency template is required, a new context 

structure frequency template must also be created. 

2. Given an area feature (in a target data set) which is to be classified, identify its 

content vector and search for a matching content vector frequency template. 

3. If unsuccessful, there is no basis for suggesting a classification. 

4. If successful, identify the context structure of the feature. Check if the worst-

case computational complexity of establishing isomorphism between two such 

structures exceeds a predefined limit. 

5. If the limit is exceeded, the content vector classification is used. 

6. If the complexity is below the limit, search for a corresponding context structure 

frequency template. If a match is not found, the content vector classification is 

used. 

7. If an isomorphic context structure frequency template is found, use the 

classification it suggests. 

8. Return to stage 2 until classification of all features in the target data set has been 

attempted. 



52 

4.8 Conclusion 

In this chapter, we have described an analogical probability-based classification scheme 

for topographic vector data. In the next chapter, we describe the implementation of the 

system, looking at the tools used, the pre-processing of the topographic data, the 

identification of content vectors and context structures, the creation of the frequency 

templates and their application as a classifier of area features. A number of techniques 

that allow for the calculation of an upper bound on the computational complexity of 

context structure matching are described. These allow the use of this more powerful 

classifier in many cases where we would not attempt its use based on the worst-case 

scenario of identifying graph isomorphism. 
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5: Implementation 

5.1 Introduction 

Thus far, we have introduced large scale topographic vector data and a context-based 

probabilistic classification scheme to improve the quality of this data. We start this 

chapter by explaining the GIS and vector data format that we use. The pre-processing 

steps necessary to prepare the previously described OS MasterMap polygon data for 

testing purposes is then described. After the extraction of context information from this 

data is detailed, we explain how we chose our data representation format and 

implementation platform. Finally, the operation of our template classifiers is described. 

5.2 GIS Employed 

The choice of Geographic Information System used to process topographic data is 

restricted by the format of the source data available. Topographic vector data is 

structured in one of two formats; these are differentiated by the connectedness of 

features that are composed of more than one vertex, e.g. lines and polygons. Each data 

type has its advantages and disadvantages for a particular purpose. 

5.2.1 Topological Connectedness 

Vector data can be categorized as being either topological or non-topological in nature. 

In non-topological data, lines and polygons are independent of each other. Each of these 

features is stored as a data structure that holds the entire ordered sequence of vertices 

that describe their topography. When two or more lines share an end-point, the common 

vertex is stored as part of all those lines. When two polygons share a line boundary, the 

vertices that describe that line are recorded by both area features. By contrast, in 

topological data, a line starts and ends with a reference to a special type of non-

cartographic feature called a node. A node is a point feature that maintains a set of 

references to all the line features that it is an end-point of. As a line is composed of an 

ordered sequence of vertices, one can imagine standing at the start-point, looking down 

the line and seeing that the line separates a region to the left from a region to the right. 

A topological polygon is composed of an ordered sequence of reference to line features. 

Each topological line maintains a reference to an area feature on its left and a reference 

to an area feature on its right. If a line forms the boundary between 2 polygons, both are 
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referenced appropriately. If a line bounds an area feature on only one side or not at all, 

then one or both references are set to null. 

5.2.2 Topological Data 

The topological data format has the advantage of less data redundancy because it does 

not store identical line topography multiple times. It is better suited to the analysis of 

topology or connectedness between features. To find if other lines connect to a line 

feature, we can query its nodes for references to other lines. By checking the left and 

right polygon references of a line, we can identify the area features which it bounds, if 

any. To identify the polygons that are adjacent to an area feature, each of the feature’s 

constituent referenced lines are queried for a reference to the polygon on the line’s other 

side. In non-topological data, finding what features are connected to a given feature 

requires the comparison of the feature’s topography/geometry with that of every 

candidate feature in the data set. Whilst this is acceptable for small databases, 

performance degrades quickly as data size grows. Topological data is also more suited 

to maintaining the topographic data holdings of mapping agencies such as the Ordnance 

Survey. In addition to smaller data size, it makes the continual updating and editing of 

the data easier and less error-prone. For instance, a line forming the boundary of a 

house might be part of the boundary of the polygon representing that house and of the 

garden surrounding it. If a survey found that the house had been extended, the required 

change to the boundary line would be reflected in the geometry and attributes of the 

house and garden that referenced it. In a non-topological data holding, the area features 

bounded by the updated line would have to be identified and have their topography 

changed independently. 

5.2.3 Non-Topological Data 

The non-topological data format benefits from faster access to the topography of more 

complex features and hence quicker display. The topography of a particular feature is 

stored in a single record (or data structure), unlike topological lines and features, where 

multiple references to other records must be followed before the full geometry is 

known. Non-topological data allows faster analysis of features in isolation for this 

reason. 
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5.2.4 ESRI ArcView GIS and the Shapefile Format 

When this work commenced, there was established, ongoing research into developing 

classifiers for topographic data within our research group. The topographic data used in 

testing was large-scale vector data supplied by OSGB under the Digital National 

Framework. The popular desktop GIS application ArcView GIS, published by ESRI 

Software was available under a site license and was being used within the group for the 

visualization of topographic data. For this reason, OSGB had provided prototypical 

DNF data to the research group in the commonly-used ESRI shapefile format. 

Shapefiles are a non-topological vector data format for storing the geometric location 

and attribute information of geographic features. These were suited to the shape-based 

analysis of area features for which the data was initially supplied. This OSGB DNF data 

is believed to have been the only polygonal data available when our work began. The 

fact that it was provided in the shapefile format dictated the use of ArcView GIS for this 

project. Automation of the context analysis of shapefile area features is possible through 

the use of the ArcView’s built-in scripting language. Certain operations within ArcView 

GIS are seen to generate exceptions that reference errors in named files with the *.c 

extension. This file extension is usually associated with source code files written in the 

C programming language, leading us to suspect that ArcView GIS is written in some 

variant of C. No *.c files are included with the installed GIS, and direct access to the 

data structures that comprise its vector data model is not supported. Interface elements 

and the topographic feature objects within vector data may be manipulated through the 

built-in, proprietary scripting language, Avenue. Avenue is a verbose, case-insensitive, 

nominally object-oriented language. It may have been designed for the significant 

proportion of GIS users with limited programming experience, many of whom have a 

background in geography. The language (and, arguably, the GIS) is adequate for minor 

tasks, but doesn’t scale well to large data sets. One particular operation, spatial 

indexing, merits special attention as it particularly affects our work. 
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5.2.5 Optimizing the Performance of Spatial Indexing in 

ArcView GIS 

As already described, a major advantage of topological data is the ease of identifying 

which features are connected to each other. Determining which features are adjacent to 

a given object in non-topological data requires the comparison of the geometry of the 

given object with those of all candidate features. For small data sets, this is not a 

problem, but the task becomes infeasible as the total number of vertices involves grows. 

The classic approach that is used to allow this and other spatial searches to scale up 

involves the minimum bounding rectangle. 

 

minimum bounding rectangle 

In 2-dimensional vector data, the minimum bounding rectangle of a feature is the 

smallest rectangle that encloses that feature. 

 

A minimum bounding rectangle (MBR) may be fully described by the vertices of 

two opposite corners, or by one vertex and the displacement to the opposite corner. To 

check if two features are adjacent to each other, we can calculate the MBR for each 

feature. If the rectangles are not adjacent, the features they contain cannot be. If they are 

adjacent, or they intersect, comparison of the vertices of the features can then proceed 

as normal to determine their relationship. If the MBRs for all features in a data set are 

calculated in advance, spatial search time may be significantly reduced. ArcView GIS 

uses a spatial index to speed up display and spatial operations (Stellhorn, 2000). Such a 

spatial index consists of an ordered set of MBRs. It is created and saved in the same 

directory as the source data the first time a method that utilizes it is called. After the 

initial overhead of creating the index, it may be used any number of times and will only 

require updating if the shapefile is edited. However, as the number of features in a layer 

(and correspondingly the number of MBRs) increases, the performance of ArcView 

GIS’s spatial indexing degrades quickly. This makes processing the largest OS 

MasterMap data sets available to us infeasible. We overcome this problem by dividing a 

shapefile into approximately rectangular regions, where each feature that intersects a 

defined rectangle and is not already included in an adjacent new shapefile, becomes part 

of a new shapefile associated with that rectangle. 
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5.3 Preprocessing 

Before extracting contextual information from the polygon theme of the OS MasterMap 

Topography Layer, there are a number of preprocessing steps to be undertaken. 

5.3.1 GML to Shapefile Conversion 

With the exception of early testing data, all OS MasterMap data is provided in the GML 

format. We use ESRI’s ARC/GIS Desktop GIS suite and the separately available add-on 

data conversion tool MapManager (an “extension” also published by ESRI) to convert 

this to the shapefile format. MapManager can convert GML to ESRI’s personal 

geodatabase format, which can then be filtered to generate shapefiles. The process 

requires the selection of many options within a wizard interface for each stage, but is 

otherwise automated. 

5.3.2 Cartographic Polygon Removal 

The vast majority of polygons in OS MasterMap provide continuous non-overlapping 

coverage of the entire land mass of Britain. These area features are referred to as 

topographic polygons. The OS has also added a series of polygons, which they consider 

as cartographic constructions to the polygon theme. These cartographic polygons 

belong to one of at least three features classes: slopes, cliffs and pylons. The latter 

might represent the footprint of an electricity pylon on the ground. OS MasterMap is 

currently 2-dimensional in nature, with the exception of point features for which height 

is recorded, e.g. bench marks and spot heights. Cartographic polygons are added-value 

features that sit on top of a continuous landscape that is represented by topographic 

polygons. As such they are considered as being above topographic polygons and are 

normally displayed as such, often using partially-transparent hatched symbology so that 

the underlying topographic features may be seen. A cartographic polygon covers a 

region that is already part of one or more of the topographic polygons that provide 

continuous non-overlapping coverage of Britain. As our classification scheme is based 

on topographic area features, the relatively small number of cartographic area features 

is separated prior to adjacency analysis. 
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5.3.3 Duplicate Feature Removal 

The quality of the OS MasterMap polygon layer has improved greatly in the period 

between its initial development and its launch as a commercial product. Some of the 

earliest OS MasterMap data, which was made available for testing purposes, is still in 

use by us as it covers regions for which we do not possess more current data. Whilst the 

use of better quality data is preferable for testing purposes, the analysis of older data 

facilitates the evaluation of the dependency of our technique on information quality, and 

hence its usefulness as a tool to improve such data sets. 

Typically, the higher the population density of a region is, the greater the 

demand is for corresponding cartographic products. As a result, urban areas tend to be 

surveyed at a larger scale (i.e. at a higher resolution or more accurately) than rural 

areas. In the UK, large-scale topographic data has traditionally been published at scales 

of 1:1,250 for urban areas, 1:2,500 for rural areas and 1:10,000 for mountain and 

moorland areas (Ordnance Survey, 2005). In general, the accuracy of co-ordinates 

recorded in rural area tends to be lower and fewer vertices are sampled along curving 

features. In early OS MasterMap polygon coverage, the quality of urban data is 

noticeably better than that of rural data. This difference might be partly due to the 

greater degree of quality control the more valuable data is subjected to. In addition, 

urban data is more frequently updated due to a higher degree of ongoing building, 

infrastructural and landscape development. 

Certain large mainly rural OS MasterMap data sets have been found to contain 

duplicated topographic area features i.e. features with identical topography. As each 

region should be contained in only one topographic polygon, all but one of each set of 

identical features with identical topology must be removed. This is achieved by 

inspecting the version number and update date information recorded for each feature. 

Whilst this simplistic approach would be unsatisfactory for updating the master 

database of a mapping agency, it facilitates the accommodation of otherwise unusable 

features in our classification scheme. As our technique involves the analysis of the 

immediate neighbours of each polygon, invalid context information would otherwise be 

derived for both a feature which has been duplicated, and its neighbours. 
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5.3.4 Perimeter Polygon Removal 

Our classification scheme is predicated on the identification of all the immediate 

neighbouring area features of individual polygons. The OS MasterMap topographic 

polygon theme provides continuous non-overlapping coverage for the whole of Britain, 

out to its foreshores i.e. the shore area between the high- and low-water marks. With the 

exception of the foreshore areas, it should be possible to determine the context of all 

polygons within the national OS MasterMap database. If required, the presumption 

could be made that the foreshore features border on a notional “sea” area feature. Only a 

fraction of the national database is available to us. The mostly disjoint data sets we do 

have the use of are composed of all the features from the OS MasterMap topographic 

layer that are either wholly or partially contained within individual rectangular regions. 

Without reference to external information, the context of area features on the edge of a 

shapefile cannot be known. All the polygons on the perimeter of such a region are 

adjacent to one or more area features that are not included in the data set. We need to 

identify these as their complete context cannot be determined from just the containing 

data set. 

Our solution to this problem, involves the use of a topographic vector feature, 

known in ArcView GIS as a polyline. Like a polygon, a polyline is composed of one or 

more enclosed rings, each of which is comprised of a sequence of vertices. Unlike a 

polygon, a polyline does not have an area, and so it can represent the outline of a 

polygon. The identification of area features on the perimeter of a small data set is 

demonstrated in Figure 5.1. The stages numbered in the diagram are as follows: 

1. All topographic area features are merged into a single new polygon that covers 

the entire region. 

2. The merged polygon is converted into a polyline object, yielding the 

outline/perimeter of the data set. 

3. The features and the polyline are projected together/overlaid to allow spatial 

comparison. 

4. Each polygon is checked for intersection with the polyline. If there is an 

intersection, then that feature is either line- or point-adjacent to the perimeter of 

the data set and is marked/highlighted 

5. The polygons on the perimeter of the data set can then be separated from the 

internal features. 
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Figure 5.1: Stages in separation of polygons on perimeter of a data set. 

1. Merge 

2. Convert to polyline 

3. Overlay 

4. Intersect 

5. Separate 
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5.4 Context Extraction 

Having completed the preprocessing steps to identify features that are unsuitable for 

context analysis, the context analysis of the remaining topographic area features may 

proceed. We first consider the data structure used to store this context information. 

5.4.1 Data Structure Representation of Polygonal Context 

As already described, in non-topographic data, the identification of which features are 

adjacent to a particular object requires the checking of whether each other feature in the 

data set intersects that object. Even with our optimizations to spatial indexing within 

ArcView GIS, the identification of adjacency, like all other spatial operations in non-

topographic data, is computationally expensive. The model of context of an area feature 

that we have chosen involves the identification of the adjacent area features of each 

polygon and the determination of whether adjacency exists between each pair of these 

neighbours. When analyzing the context of all features in a theme, this results in the 

checking of adjacency between each pair of features at least twice, and usually far more 

frequently. This is highly inefficient if polygon intersection is checked each of these 

times, especially as data set sizes grow. An alternative is to check for adjacency 

between each pair of features once and store the result for future reference in a look-up 

table. 

5.4.1.1 The Adjacency Matrix 

Our adjacency matrix is a two-dimensional look-up table, where the axes correspond to 

an ordered sequence of feature identifiers. Each cell in the table records whether the 

features referenced on the axes are mutually line-adjacent, point-adjacent or disjoint 

(i.e. non-adjacent). OS MasterMap has a single set of identifiers, sixteen-digit natural 

numbers known as TOIDs, each of which may represent a topographic feature of any 

class. Only a small fraction of these 10
16
 numbers represent features of the polygon 

class, and these are not restricted to a specific range. It would be infeasible to use 

TOIDs directly as column and row references as the resulting table could potentially be 

of dimensions 10
16
 × 10

16
. Even if it was possible to store the resulting ~10

32
 elements, 

only a fraction of them would be used. It is highly unlikely that all the features in a 

particular data set layer would possess a continuous sequence of TOIDs, making the use 

of an offset of these identifiers (e.g. subtracting the lowest TOID in a data set from all 

identifier values) impracticable as the potential upper limit of the required table size 

would still be ~10
32
. To eliminate redundant rows or columns, identifiers may be sorted 
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and mapped in sequence to the column and row numbers. A simple example featuring a 

data set comprised of five features with single-digit identifiers and a corresponding 

adjacency matrix is shown in Figure 5.2. 

 

Figure 5.2: A 5-feature data set and the corresponding adjacency matrix. 

 

Here, the rows and columns are labeled with the identifiers of the features they 

correspond to. It can be seen that there is no row or column for a feature with identifier 

4 because such an object is not part of the data set. Because adjacency is a commutative 

relation, many cells need not be used because they would hold redundant information 

e.g. if 2 and 3 are line-adjacent, 3 and 2 must be line adjacent. Approximately half of 

the table is unneeded if each pair of identifiers is always accessed in the same order. For 

the matrix shown, the smaller of each pair of identifiers accesses the rows, leaving the 

larger number to reference the columns. In addition to the cells that are unneeded due of 

commutativity, there is a superfluous series of cells running diagonally down and to the 

right of the table because adjacency between any object and itself is meaningless and 

should never be queried. In the same diagram, feature 1 has been excluded from the 

columns because all its adjacencies are recorded along a row. Inversely, feature 6 is 

excluded from the rows as all its neighbours are recorded down a column. For these 

reasons, when a look-up table cross-references a set of n objects, the required table size 

is as shown in Equation 5.1. 
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The cells in a look-up table may be rearranged to minimize the number of redundant 

elements. This can be achieved by remapping references in certain instances, but it is 

questionable whether the computational overhead is worth the saving in space, which 

rises to nearly half as n grows. Figure 5.3 shows the same 4×4 adjacency matrix seen in 

Figure 5.2, then that table rearranged as a 2×5 compacted adjacency matrix, where the 

shaded column references and cells, along with part of the hatched row references, have 

been remapped. In the reduced table, the clear cells are accessed as normal by the clear 

row and column references, while the shaded ones have had their row and column 

references remapped. 

 

Figure 5.3: An adjacency matrix rearranged as a compacted adjacency matrix. 

 

For an adjacency matrix, a binary search algorithm may be used to identify the 

row or column corresponding to a particular TOID, so that the cost of look-up would be 

O(log2 N)
2
. The access time would be expected to increase slightly for a compacted 

adjacency matrix, due to the added mapping cost. One of the largest data sets available 

to us is composed of over 240,0000 cartographic polygons. By Equation 5.2, the 

corresponding compacted adjacency matrix would be of size 28,799,880,000. If two bits 

are used to store the three possible adjacency relations, the table would be ~6.7 GB in 

size. The exponential growth in look-up table size as the number of features in a dataset 

rises makes the adjacency matrix approach infeasible in general. This leads us to an 

alternative approach, which is based on recording where an adjacency exists, but not 

vast majority of cases of non-adjacency. 

5.4.1.2 Prolog Implementation 

Prolog is a well-known declarative programming language. It was originally an 

interpreted language, but some implementations allow for far more efficient compiled 

modes. The essential structure of a Prolog program is that of a set of known facts, 

represented as predicates, along with a set of rules which are often highly recursive in 

nature, and a single top level query. All of these comprise the database of knowledge 
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possessed by the system during execution. Using a built-in backtracking search 

mechanism, the interpreter or compiler attempts to answer the query by reference to the 

presented facts and rules. It will search exhaustively until all possibilities are explored 

without success, or if a solution is found, give the option for the search to continue for 

other solutions. Libraries of predicates allow for a range of data input and output 

formats. Prolog is popular in Artificial Intelligence (AI) research as it is suited to the 

representation of knowledge and deductive reasoning strategies that typify this area. It 

often allows for the implementation of algorithms as more concise programs than would 

be possible in the imperative or object-oriented programming paradigms. Within 

ArcView GIS, Avenue is a severely constrained imperative and quasi-object-oriented 

language with rudimentary data structure support. Analogy is one area of AI research 

where Prolog is commonly used. As this work arose from a desire to apply an 

analogical approach to topographic feature classification, it was decided to use Avenue 

to extract the required context information and export it to a text file which is used as 

input to a classification program implemented in Prolog. This leads us to seek a 

predicate logic representation of topographical feature context. 

5.4.1.3 Atomic Predicate Representation of Context 

The geometric analogy algorithm LUDI (Bohan & O’Donoghue 2000), describes each 

object attribute and inter-object relation as a predicate assertion. An example of a 

geometrical analogy domain and the corresponding predicate logic description is given 

in Figure 5.4. 

 

 

Figure 5.4: A geometric analogy domain and its atomic predicate logic representation. 

circle(obj1)  contains(obj1,obj2) 

square(obj2)  below(obj3,obj1) 

triangle(obj3) 

pattern(obj1,hatched) 
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In the predicate description shown, the geometric objects are arbitrarily referenced as 

obj1 etc. and four attributes are listed, followed by two relations. This predicate 

representation may be considered to be atomic as each predicate records a single piece 

of information, whereas a complex or nested predicate could describe an entire domain. 

An atomic predicate representation of context in topographic data was initially 

considered. A sample topographic data-set, along with its feature codes and topology 

represented as a graph and then in predicate logic is shown in Figure 5.5. 

 

 

Figure 5.5: A 5-feature data set, its topological graph representation 

and its atomic predicate logic representation. 

 

In this example, it can be seen that the commutative nature of adjacency has again been 

used to avoid duplicating information e.g. the line-adjacency between 1 and 2 is 

recorded as a predicate, but that between 2 and 1 is not explicitly stated. This predicate 

approach allows for a far more concise description of adjacency than a compacted 

adjacency matrix, because it does not record the non-adjacencies between disjoint 

features. To determine the context of a feature from an atomic predicate representation, 

we would 

1. Check all adjacency predicates to identify the neighbours of the feature. 

2. Check the feature code predicates until the class of each neighbour is known. 

3. Check all adjacency predicates to determine the relation between each pair of 

neighbours. 

In a Prolog implementation, this would require searching the entire database many 

times. As data set size grows, this would become infeasible.  
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5.4.1.4 Complex Predicate Representation of Context 

The compacted adjacency matrix becomes impractical due to data size, while atomic 

predicates become unwieldy due to retrieval times. We take a complex predicate 

approach, which involves an element of data redundancy which avoids excessive 

retrieval times, while keeping data size proportional to the number of features. A single 

predicate records the full context of a feature. Figure 5.6 shows the neighbourhood of a 

highlighted area feature, the context graph of that polygon and a sample Prolog 

predicate that also describes the full context of the feature. In our implementation, 

actual sixteen-digit TOIDs identify each feature and the five-digit feature codes are used 

rather than the verbal approximations (house, garden etc.) that we utilize here for 

clarity. 

 

 

Figure 5.6: A polygon neighbourhood, its context graph and its context predicate. 

 

Any valid Prolog identifier that was not already in use could have been used in 

place of context as the predicate name. The predicate is comprised of 6 arguments, 

which in sequence are: 

1. TOID of the feature whose context is described. 

2. Feature code of that polygon. This is not part of that feature’s context, but it is 

required in order to develop our statistical classification templates from training 

data and to evaluate these by reference to ground truth in testing data. 

3. Line-adjacent neighbours list. A list of lists detailing the line-adjacent 

neighbours of the feature. The first element of each sub-list is a feature code and 

is followed by the TOIDs of all corresponding polygons that are line-adjacent to 

the feature. Sub-lists are ordered by ascending TOID. 

4. Point-adjacent neighbours list which is structured in the same way. 

5. Line-adjacencies between neighbours described as a flat list of TOIDs of the 

features concerned. Each pair of TOIDs in sequence denotes the existence of 

line-adjacency between those features. 

6. Point-adjacencies between neighbours structured the same way. 

3: garden 

2: garden 1 

4: house 

context(1,garden, 

  [[garden,2],[house,4]], 

  [[garden,3]], 

  [2,3,3,4], 

  [2,4]). 

2 3 

4 1 
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As a content vector is identical to a context structure, but without inter-neighbour 

adjacencies described, the corresponding arguments 5 and 6 of the context predicate are 

disregarded during content vector matching. This avoids the need to create, store and 

retrieve a separate set of predicates as training data or testing data for the content vector 

classification process. 

5.5 Classification Template Construction 

A context structure matching template (csmTemplate predicate) is very similar to a 

context predicate, but instead of recording the feature code of a single corresponding 

area feature, it records the number of polygons of each feature code that match its 

structure in some training data set. An association list is a SICStus Prolog data structure 

that implements a finite mapping as an AVL tree i.e. a binary tree that is subject to the 

Adelson-Velskii-Landis balance criterion: 

A tree is balanced iff for every node the heights of its two subtrees differ by at most 1. 

 

For an AVL tree, look-up, insertion and deletion are all O(log n) operations in the worst 

case (Wirth 1976 cited Intelligent Systems Laboratory 2001). Within each template, we 

use an association list to map from each feature code encountered to an incremental 

count of the occurrence of correspondingly classified polygons exhibiting that context. 

Only the feature codes of features found to match a template are included in the 

association list. This has the advantages of reducing storage space while allowing the 

code to be used with any set of feature codes. As it is not possible to change a data 

structure / declared predicate in Prolog, templates are declared as dynamic predicates. 

This allows us to use the assert predicate to add a template to the database, and utilize 

the retract predicate to erase a template so that it may be reasserted with an updated 

association list. A content vector matching template (cvmTemplate predicate) also uses 

an association list to record feature code frequencies in the same manner, but omits the 

lists that describe adjacencies between neighbours. Context structure templates and 

content vector templates are derived from a training data set of contexts as follows: 
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For each context structure 

  Search cvmTemplates for a match 

  If unsuccessful 

    Assert new cvmTemplate 

    Assert new csmTemplate      // 1 

  Else 

    Update matched cvmTemplate FC frequencies 

    If CSM complexity < limit   // 2 

      Search csmTemplates for a match 

      If unsuccessful 

        Assert new csmTemplate  // 3 

      Else 

        Update matched csmTemplate FC frequencies 

 

A number of lines in the preceding pseudo-code are labeled for clarification as follows: 

1. As a context structure is a more fine-grained form of a content vector, we know 

that if we don’t find a matching cvmTemplate, there cannot be a matching 

csmTemplate. 

2. The user can specify the maximum theoretical search space that is to be 

traversed. Above this limit, CSM is not attempted. 

3. If there is a matching cvmTemplate, there may be one or more corresponding 

csmTemplates, one of which might be isomorphic to the context structure we are 

trying to match. Failing that, a new csmTemplate must be asserted. 

Having derived a set of classification templates from some training data set, we can then 

proceed to classify features within a testing data set. This is accomplished by 

determining the most frequently occurring class for a particular template. In the next 

chapter, we describe the training and testing of our classifiers, and present the results. 
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6: Results 

6.1 Introduction 

Having described our context-based polygon classification scheme in earlier chapters, 

we now present the results of testing the classifiers. The first stage of this is the 

derivation of statistical template classifiers from a large corpus of high quality polygon 

data. These templates are then utilized to classify as many area features as possible in a 

separate high quality testing data set. Classification is performed separately by both 

content vector and context structure templates and the results are combined to improve 

the classification rate. By checking the classifications suggested by these techniques 

against the ground truth of the classes recorded for each feature in the testing data set, 

we evaluate the accuracy of our classifiers. 

6.2 Training and Testing Data Sets Used 

As previously described, large-scale polygon vector line data from Ordnance Survey’s 

OS MasterMap Topographic Layer product was used for building classifiers and testing 

them for this project. The training data set used covers a section of the large town of 

Basingstoke in Hampshire, England and part of the surrounding countryside. The data 

set includes suburban, industrial, urban and rural areas. It was provided through the OS 

website as sample test data, split into four compressed GML files with names as 

follows: 

6745-SU5951-2c4.gz  6745-SU5953-2c2.gz 

6745-SU6151-2c1.gz  6745-SU6153-2c3.gz 

The data set comprises of 37,408 topographic area features. 36,847 of these are internal 

polygons, and, as such have identifiable contexts. As this data set covers approximately 

the northwestern quadrant of Basingstoke, we refer to it as basNW for brevity. 

The testing data set utilized covers the southern part of the town of Port Talbot 

in Glamorgan, Wales and includes suburban, industrial and rural areas. It was made 

available through the OS website as a single compressed GML file: 

10254-SS7886-5i1.gz 

The data set consists of 5,274 topographic polygons, 5,070 of which are internal, and 

we label it as port. 
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Table 6.1 shows the breakdown of both data set corpora by feature code and the 

corresponding class descriptions. Feature codes are listed in descending order of their 

frequency in the port data set. The class multiple surface land refers to the grounds 

surrounding homes, and may be combinations of planted and paved areas. General 

surface is applied to similar areas surrounding non-domestic buildings and to 

agricultural land. Roadside can be grass verges or foot-paths. Natural environment 

describes wilderness. General surface step describes areas of steps adjacent to general 

surface land parcels. Railway is the generally enclosed area of land beneath and 

surrounding train tracks. The class structure is applied to significant manmade objects 

that are not considered buildings. This includes footbridges, but road bridges are 

classified as areas of road or track and roadside. Upper level of communication is 

defined (Ordnance Survey, 2005) as 

Upper level of through public communication, for example, in multilevel shopping 

centres. 

The larger basNW is used for training as it can be expected to yield a wider 

range of classification templates. In addition, the higher frequencies of occurrence for 

the more common contexts results in templates with more accurate feature code 

probabilities. Figures 6.1 and 6.2 show a graphical representation of the class 

composition of the training and testing corpora. It can be seen that the proportion of 

buildings is quite similar across both, while port has less multiple surface land and more 

general surface, reflecting a lower concentration of suburban homes. Also of note, 

basNW has smaller proportions of road or track, natural environment and inland water, 

but a greater concentration of paths. The differences in the other classes are less 

significant because of their relatively small numbers. Overall, given the data sets 

available to us, the basNW and port corpora are good matches for the most common 

classes seen in OS MasterMap urban/suburban topographic polygon data, i.e. building, 

multiple surface land, general surface, road or track and roadside. 
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 feature code  
1002
1 

1005
3 

1005
6 

1017
2 

1018
3 

1011
1 

1008
9 

1005
4 

1016
7 

1018
5 

1012
3 

1006
2 

1018
7 

internal polygon count 
3684
7 

1524
9 

1361
4 

3630 1395 1835 225 16 297 8 26 525 18 9 

b
a
s
N
W
 % of data set 100 41.38 36.95 9.85 3.79 4.98 0.61 0.04 0.81 0.02 0.07 1.42 0.05 0.02 

                

internal polygon count 5070 2138 1284 713 317 296 130 85 39 25 23 17 3 0 p
o
rt 

% of data set 100 42.17 25.33 14.06 6.25 5.84 2.56 1.68 0.77 0.49 0.45 0.34 0.06 0 

 

Table 6.1: Composition of internal polygons in basNW & port data sets by class.
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Figure 6.1: Composition of internal polygons in basNW data set by class. 

 

 

Figure 6.2: Composition of internal polygons in port data set by class. 
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6.2 Probabilistic classification via CVM and CSM 

Each content vector template and context structure template records the frequencies 

with which it matched polygons of particular feature codes in the source training data 

set. When a particular template records a single feature code with the highest frequency, 

it is this class that we assign to a matching polygon that we wish to classify. If two or 

more feature codes share the greatest frequency of occurrence, we consider that 

template to be ambiguous as we cannot say which class it suggests with greatest 

probability. We make no feature code assignment in the case of an ambiguous template. 

Our content vectors record the number of features of each class neighbouring a 

polygon. A context structure also describes this, and, in addition, the relationships 

between those neighbours. This causes CSM to distinguish between different feature 

neighbourhoods that are identical to the more coarsely grained CVM. In general, we 

expect CSM templates to be more accurate classifiers, as they are more discerning about 

what they will match. At the same time, some features requiring classification may not 

match any CSM template, while a CVM template from the same source training data 

will match. Thus while CSM cannot match as many features as CVM, it should be a 

more accurate classifier overall. In order to maximize the number of attempted 

classifications, we combine the results of CVM and CSM in two ways. 
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6.3 Combining CVM and CSM Classification Results 

In many cases a content vector template will suggest a polygon feature code while CSM 

cannot because either a matching context structure template isn’t found or an 

ambiguous one is matched. Sometimes, CVM will yield an ambiguous template, while 

CSM does suggest a class. Other than in these two cases, both techniques will fail or 

both will suggest a feature code. If the two classifiers disagree, we can either disregard 

them both and not attempt classification or we can choose one. We amalgamate the 

feature codes suggested by both the content vector and the context structure classifiers 

by giving one technique precedence over the other. This yields two classification results 

in addition to plain CVM and CSM: 

 

CVM>CSM 

If the feature code suggested by CVM is chosen when it differs from that propounded 

by CSM, we say that CVM takes precedence over CSM. We denote this as CVM>CSM. 

 

CSM>CVM 

If the feature code suggested by CSM is chosen when it differs from that advocated by 

CVM, we say that CSM takes precedence over CVM. We denote this as CSM>CVM. 
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6.4 Template Quality (training results) 

We derived a set of CVM templates and CSM templates from the 36,847 internal 

topographic polygons in the basNW training data set. Because CSM has O(n!) 

complexity, in all stages of CSM where graph isomorphism is checked, i.e. identifying 

context structure templates (training) and matching the training data contexts against 

those templates (testing), we limited the maximum possible search space to 1 million. 

This is an arbitrary limit chosen as it was found by trial and error to yield acceptable 

CSM search times. Beyond this limit no attempt is made to establish a structure match 

and the corresponding feature is considered to be unmatched. Some statistics on the 

CVM templates and CSM templates built from the basNW training data are given in 

Table 6.2. 

CVM CSM  

36,847 36,847 # polygons in training data 

36,847 36,847 # polygons represented by templates 

5,892 10,518 # templates 

~6.25 ~3.5 ratio of polygons to templates 

4,173 8,438 # templates with sum of frequencies = 1 

70.82 80.22 % of templates with sum of frequencies = 1 

1,970 1,271 maximum sum of frequencies of any template 

1,970 1,271 maximum class frequency of same template 

Table 6.2: Template statistics for basNW training data set. 

 

The first row shows the number of features present in the basNW training data. Beneath 

this is recorded the count of these polygons that was incorporated in a template. CVM 

exhibits O(1) complexity and can represent any feature as a template. It can be seen 

that, in this case, the search space limit we set on CSM did not prevent any feature from 

being incorporated in a template, as all 36,847 polygons were recorded by CSM 

templates also. In the third row, the number of distinct templates required to cover the 

data set is shown. Beneath this, we see that there is a ratio of 6.25 features to one CVM 

template, and a ratio of 3.5 polygons to one CSM template. This is because context 

structures are a lot more detailed than content vectors and hence require a greater 

number of templates. In the fifth row, we show the number of templates with a sum of 
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frequencies of value one i.e. those that matched one feature uniquely. Proportionally, 

70.82% of content vectors are unique, while a greater proportion of context structures 

(80.22%) are once-offs. Again, the difference is explained by CSM going to greater 

effort to distinguish between neighbourhoods. In the seventh row, we show the 

maximum sum of frequencies (i.e. the total number of features of any class matched by 

a specific template) for all templates derived. The last row shows the greatest frequency 

of occurrence for a single class for those templates. The most frequently occurring 

content vector had a frequency of 1,970, and all 1,970 of these were multiple surface 

land. The most frequent context structure, with a frequency of 1,271 matched a feature 

of that same class in every case. The corresponding templates can be considered 

“perfect” classifiers because they have estimated probabilities of 100%, based on vast 

sample sizes. At the other end of the spectrum, templates with a sum of frequencies of 

one also have an estimated probability of 100%, but we cannot know whether that 

figure is accurate. The larger the sum of frequencies is for a template, the more 

confident we can be about the accuracy of its probabilities. A good quality classification 

template has a high sum of frequencies and a maximum frequency count that is close to 

that figure. 

Figure 6.3 shows a plot of sum of class frequencies against maximum class 

frequency for the 5,892 content vector templates identified from the training data. These 

CVM templates have sums of frequencies that are exponentially distributed, 70.82% 

having a value of one. The straight line represents the ideal template with identical 

values on both axes, yielding an estimated probability of 100%. It can be seen that as 

the sum of frequencies increases, templates tend to get closer to this value. Several of 

the most frequent templates are, in fact, “perfect”. Figure 6.4 presents the same type of 

plot for the 10,518 context structure templates, and is very similar to the preceding 

CVM graph. Accordingly, CSM templates have an exponential distribution by sum of 

frequencies and they tend towards estimated probabilities of 100% as this value 

increases. A number of the most frequent context structure templates are also “perfect” 

classifiers. The two outliers near co-ordinates (400,200) correspond to CSM templates 

that represent almost the precise same set of polygons as those CVM templates that are 

also outliers near the same point in Figure 6.3. 
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Figure 6.3: Quality of CVM templates from basNW training data. 
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Figure 6.4: Quality of CSM templates from basNW training data. 
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6.5 Classification Results (testing results) 

Having built a set of classification templates from the basNW training data, we 

proceeded to the testing stage. The contexts of the 5,070 internal topographic polygons 

in the port testing data set were then identified. Next, we attempted to match each 

context against the set of templates and thus classify each area feature described using 

both CVM and CSM if possible. 

Table 6.3 presents the results of using the basNW to classify the port data set by 

using CVM, CSM, CVM>CSM and CSM<CVM. The topmost unshaded rows present 

the breakdown of the port data set by class, as already presented in Table 6.1. The class 

upper level of communication is excluded; this is the only feature class present in the 

training data, but not in the testing data. Beneath these rows the classification results are 

shown in separate bands for each of the four classification schemes, as labeled down the 

left. The same categories of figures are given for each scheme, with the overall value for 

features of all classes being given in bold before being decomposed into the twelve 

feature classes occurring in the port data set. The first row of figures for each scheme is 

the number of features unambiguously matched. This is the count of the polygons for 

which a corresponding template was identified, excluding features whose matching 

template is ambiguous. For the combined schemes (CVM>CSM, CSM>CVM), the 

classifier is only considered ambiguous if one of the constituent classifiers (CVM, 

CSM) is ambiguous while the other is either ambiguous or doesn’t match a template. 

The number of features unambiguously matched is identical for CVM>CSM and 

CSM>CVM as both require only a single constituent classifier to propose a feature 

class. The second row of figures for each scheme presents the number of features which 

were unambiguously matched by a corresponding classifier that propounded the same 

feature class as the ground truth classifications recorded for each feature in the original 

OS MasterMap data. This is the count of the features that were correctly classified by 

the scheme. In the third row of figures the percentage of the total number of features in 

the testing data that were unambiguously matched by the classifier is noted. In the 

fourth row of figures, the percentage of the total number of features in the testing data 

that were correctly classified is given. Lastly, in the fifth row, the percentage of the 

number of features unambiguously matched by the classifier that were correctly 

classified by that classifier is presented. This last row of numbers is the most important, 

because it describes the accuracy of the corresponding classification scheme. 
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6.5.1 Analysis of Classification Results 

Looking again at Table 6.3, the percentage of features unambiguously matched by a 

classifier is 79.03% overall for CVM and falls to 62.96% for CSM. This is expected 

because graph-based CSM is more discerning about what it will match than vector-

based CVM. The corresponding figures for CVM>CSM and CSM>CVM are identical 

because both require only one of CVM or CSM to match without ambiguity. The 

overall number for these combined schemes, 79.45%, is only marginally higher than 

that of CVM alone. This trend can be seen across all feature classes, and demonstrates 

that there is a relatively small count of content vector matches that are disambiguated by 

CSM. For CVM, the number is highest at 96.87% for buildings. This figure only falls to 

92.66% for CSM, indicating that the finer granularity of this classifier tends to 

differentiate between classes other than building. For multiple surface land the number 

drops from 87.38% for CVM to 43.69%, revealing a high degree of variation in 

neighbourhood topology for features of this class. The drop-off going from CVM to 

CSM is not as significant for any other feature class. 
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o
u
s
e
 

 feature code  10021 10053 10056 10172 10183 10111 10089 10054 10167 10185 10123 10062 

 total 5070 2138 1284 713 317 296 130 85 39 25 23 17 3 

 % of data set 100 42.17 25.33 14.06 6.25 5.84 2.56 1.68 0.77 0.49 0.45 0.34 0.06 

# unambiguously matched 4007 2071 1122 396 191 151 19 20 25 4 3 2 3 

# matched & correct 3421 1864 1089 187 178 98 1 2 2 0 0 0 0 

% unambiguously matched 79.03 96.87 87.38 55.54 60.25 51.01 14.62 23.53 64.10 16 13.04 11.76 100 

% total correct 67.48 87.18 84.81 26.23 56.15 33.11 0.77 2.35 5.13 0 0 0 0 

C
V
M
 

% matched & correct 85.38 90 97.06 47.22 93.19 64.90 5.26 10 8 0 0 0 0 

# unambiguously matched 3192 1981 561 301 163 123 15 16 21 4 3 1 3 

# matched & correct 2744 1786 534 173 157 90 0 2 2 0 0 0 0 

% unambiguously matched 62.96 92.66 43.69 42.22 51.42 41.55 11.54 18.82 53.85 16 13.04 5.88 100 

% total correct 54.12 83.54 41.59 24.26 49.53 30.41 0 2.35 5.13 0 0 0 0 

C
S
M
 

% matched & correct 85.96 90.16 95.19 57.48 96.32 73.17 0 12.5 9.52 0 0 0 0 

# unambiguously matched 4028 2081 1124 403 191 152 20 20 25 4 3 2 3 

# matched & correct 3428 1864 1091 191 178 99 1 2 2 0 0 0 0 

% unambiguously matched 79.45 97.33 87.54 56.52 60.25 51.35 15.38 23.53 64.10 16 13.04 11.77 100 

% total correct 67.61 87.18 84.97 26.79 56.15 33.45 0.77 2.35 5.13 0 0 0 0 

C
V
M
>
C
S
M
 

% matched & correct 85.1 89.57 97.06 47.39 93.19 65.13 5 10 8 0 0 0 0 

# unambiguously matched 4028 2081 1124 403 191 152 20 20 25 4 3 2 3 

# matched & correct 3437 1854 1087 210 178 103 1 2 2 0 0 0 0 

% unambiguously matched 79.45 97.33 87.54 56.52 60.25 51.35 15.38 23.53 64.1 16 13.04 11.76 100 

% total correct 67.79 86.72 84.66 29.45 56.15 34.8 0.77 2.35 5.13 0 0 0 0 

C
S
M
>
C
V
M
 

% matched & correct 85.33 89.09 96.71 52.11 93.19 67.76 5 10 8 0 0 0 0 

Table 6.3: Results achieved by applying classifiers derived from basNW data set to port data set.
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Figure 6.5 shows the number of polygons of each feature class correctly classified by 

each of the four classification schemes. It corresponds to the second row for each 

scheme in Table 6.3. The figures for CSM are lower than for CVM, in accordance with 

the number of features unambiguously matched. CSM correctly classifies about half  as 

many multiple surface land features as CVM, due to the latter unambiguously matching 

about twice as many such land parcels. The improvement of CVM>CSM and 

CSM>CVM over CVM is only slight, with the latter being ahead overall. 
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Figure 6.5: Number of polygons of each class correctly classified. 
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Figure 6.6 presents the percentage of the entire port data set that was correctly 

classified. It corresponds to row four for each classification scheme in Table 6.3. The 

features that were not classified correctly include polygons that were misclassified, 

those which couldn’t be classed due to ambiguity, and those for which a template match 

wasn’t established. CVM correctly classified 67.48% of features while CSM achieved 

54.12%. The combined classifiers achieved marginally better classification, with 

CSM>CVM being best overall at 67.79%. This is mostly due to its strong performance 

with general surface and roadside features. The number of accurate class assignments 

made by CSM is less than that made by CVM because of the smaller number of features 

the former matches. 
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Figure 6.6: Percentage of each class correctly classified. 
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Figure 6.7 displays the classification accuracy for all of the four schemes. It 

corresponds to the fifth row for each scheme in Table 6.3. Over all feature classes, 

CVM achieves an accuracy of 85.38%, while CSM does slightly better at 85.96%. The 

figure for CVM>CSM and CSM>CVM, at 85.1% and 85.33% respectively, are a slight 

disimprovement on the accuracy of content vectors alone. The slight improvement in 

the number of features properly classified by the combined scheme comes at the cost of 

this reduction in accuracy. CSM>CVM does do a good job of combining the classifiers 

in the case of general surface and roadside features. Looking at the breakdown by class, 

accuracy tends to decline from the most common feature types on the left to the rarest 

on the right. CSM achieves the best result for buildings at 90.16%, for general surface at 

57.48%, for road or track at 96.32%, for roadside at 73.17%, for inland water at 12.5% 

and for general surface step at 9.52%. CVM is most accurate for multiple surface land at 

97.06% and natural environment at 5.26%. 
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Figure 6.7: Classification Accuracy by class. 
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6.6 Visualizations of Classifications 

In order to give an impression of the feature coding abilities of our classifiers, we 

present a number of projections of an area of the port testing data set. Figure 6.9 shows 

this area with all polygons bearing the ground truth classes recorded for this data. Areas 

within the rectangular frame that are blank either contained features that were filtered 

out because they were on the perimeter of the data set, or were not included in the 

corpus to begin with. Figure 6.8 shows the fills used to symbolize the features in this 

and all subsequent figures. 

Figure 6.10 presents the same area symbolized using the classes assigned by the 

CVM templates generated from the basNW testing data set. Areas that could not be 

classified, either because a matching template was not identified or because the 

appropriate template was ambiguous, are not shown. Comparison between it and the 

preceding figure reveals what features were either not classified, were misclassified, or 

were correctly classified. Overall, nearly all semi-detached houses (belonging to 

building class), most multiple surface land and road or track sections were identified. 

Misclassified large features tend to be disproportionately obvious, such as several areas 

of general surface land classed as building. 

 Figure 6.11 shows the same area classified by the CSM templates generated 

from the basNW training data. As with the preceding CVM output, Semi-detached 

house classification is very good. Identification of multiple surface land is poorer than 

for CVM. The number of roads recognized is slightly lower, as is the proportion of 

misclassified features. Among features that CVM misclassified, but which CSM 

identified correctly are a number of larger buildings and general surface land.  

 

 

Figure 6.8: Legend for polygon symbolization.
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Figure 6.9: Part of port testing data set, showing ground truth classes. 
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Figure 6.10: Part of port testing data set, showing CVM-assigned classes. 
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Figure 6.11: Part of port testing data set, showing CSM-assigned classes. 
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6.6 Conclusion 

In this chapter, we described the training and testing of our content vector and context 

structure polygon classifiers. A large corpus of training data was used to derive a set of 

these probabilistic classification templates. It was found that 70.82% of CVM templates 

and 80.22% of CSM templates were unique and consequently unreliable. However, both 

sets of classifiers had an exponential distribution of sums of frequencies, with the most 

frequently occurring ones facilitating almost 100% accuracy.  The entire set of 

templates was used to classify a smaller testing data set. Two additional classification 

results were yielded by combining the output of CVM and CSM. The performance and 

accuracy of all four classifiers was evaluated by reference to the ground truth feature 

classes recorded in the testing data. CVM was found to achieve a greater number of 

accurate classifications than CSM. This is due to the finer granularity of the latter’s 

context matching model. CSM>CVM, which gives precedence to context structures 

over content vectors, slightly improves the total number of accurate classifications. Due 

to its greater precision, CSM achieves higher classification accuracy than CVM for the 

features that it does try to classify. A classification accuracy of 85.96% was achieved 

across all feature classes, with figures of 90.16% for buildings, 96.32% for road or track 

and 97.06% for multiple surface land. In the final chapter, we summarize the 

dissertation, draw conclusions about the significance of the work presented and suggest 

areas of future work. 
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7: Conclusion 

7.1 Introduction 

In this dissertation, we described the successful development and implementation of 

two context-based polygon classification tools for large-scale topographic vector 

databases. These were inspired by similarities between map data and geometric analogy 

problems. Our classifiers establish a match between the neighbourhood of an area 

feature and those of polygons previously encountered. This analogy facilitates the 

transfer of classification knowledge from the source domain to the target domain. 

In this final chapter, we evaluate the success of our approach, describe some of 

its limitations and make suggestions to improve on it. We conclude by proposing other 

areas of cartography and spatial data fields where our technique may also prove useful. 

7.2 Evaluation of Context-Based Classification 

We developed two tools to classify polygons in topographic data by matching a 

description of their neighbours against template descriptions of previously encountered 

area features. A content vector records the number of polygons of each class that bound 

on an area feature. A context structure records the number of polygons of each class that 

bound on an area feature, and the relations between those neighbours. To evaluate both 

techniques, we identified the template content vectors and the template context 

structures in a large training corpus of topographic polygons. These classification 

templates were used to assign suggested feature classes to polygons in a testing data set. 

The results for CVM and CSM were then combined as both CVM>CSM and 

CSM>CVM. By comparing the class suggestions against the ground truth feature 

classes recorded in the testing corpus, we were able to evaluate the effectiveness of the 

individual and the combined classifiers. 

7.2.1 Dependence on Pre-Classified Data 

Object-based polygon classification techniques such as shape (Keyes & Winstanley, 

2001) and texture analysis (Winstanley & Corcoran, 2005) examine individual features 

in isolation. Their ability to identify a feature’s class is independent of any other 

polygon. In contrast, our context-based techniques rely on the classes of the surrounding 

area features being known. This is the case for both the training and testing / application 
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stages. The old adage, “rubbish in, rubbish out” holds true. We cannot identify a feature 

by its context if we have not encountered features of the same class in identical contexts 

before. We have specified that high quality data should be used for training context-

based classifiers. Such a data set would have an accurate feature class assigned to 

almost every feature.  In addition, a testing corpus needs to be of good quality. This is 

because a misclassified neighbouring feature would cause us to attempt classification 

based on a wrong context. Nevertheless, our approach can be used to highlight likely 

problems, although it might flag the neighbour of a misclassified feature instead. The 

results of testing any classifier are adversely affected by errors in the ground truth. 

Errors in data sets are not an issue for our results as we used very high quality data. The 

dependence on correctly classified neighbours limits our approach to verifying the 

quality of reasonably well-structured data. 

7.2.2 Classification Template Quality 

Returning to Table 6.2 in section 6.4, we have shown that limiting the search space for 

checking graph isomorphism in CSM does not reduce the practical usefulness. In the 

testing data set of 36,847 polygons, our limit of 1,000,000 trial inter-graph mappings 

had no impact. The O(n!) complexity of CSM has not restricted its usefulness. Due to 

the fact that CSM distinguishes between polygon neighbourhoods that CVM considers 

to be identical, the ratio of polygons to templates in the training data was found to be 

6.25 for CVM and 3.5 for CSM. In addition to CSM templates outnumbering CVM 

templates by about two to one, the former require more space because they need to hold 

inter-neighbour adjacency information that the latter don’t. 70.82% of CVM templates 

were found to be unique, while the figure for CSM templates was 80.22%. This is 

another difference attributable to the finer granularity of the latter. 

 We showed Figures 6.3 and 6.4 that both types of templates exhibit exponential 

distribution in their total frequencies and that these templates tend towards maximum 

relative frequencies (i.e. estimated probabilities) of 100% as the total frequency of 

occurrence increases. This is an important result, as it means that a relatively small 

number of CVM and CSM templates are extremely accurate classifiers of polygons. In 

particular, the most frequent CVM template will identify corresponding features as 

multiple surface land with an estimated probability of 1970/1970=1. The most matched 

CSM template identifies the same class of polygons with an estimated probability of  

1271/1271=1. These and several others constitute “perfect” classifiers. 
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7.2.3 Unmatched Features 

The remainder of the figures we reference are taken from Table 6.3 in subsection 6.5.1. 

Due to the high degree of variation in feature neighbourhoods, many polygons in the 

testing data did not match against any CVM or CSM template identified during training. 

Unmatched features are a challenge created by data sparseness and can be addressed by 

increasing the size of the training data. Because there is no theoretical limit on the 

number of neighbours a feature may have, it is almost certain that there will be a small 

proportion of features that would be nationally, and even globally, unique. Other 

techniques would be required to classify such features. Excluding ambiguous templates, 

which do not allow classification, CVM matched 79.03% of features in testing, while 

CSM achieved 62.96%. The higher figure for CVM is due to CSM’s inclusion of inter-

neighbour adjacencies in its model. This allows CSM to distinguish between features 

that CVM considers to have identical contexts. CVM matched 96.87% of buildings, 

while the figure for CSM was 92.66%. These demonstrate that there is a high degree of 

regularity in the content vectors and the context structures of buildings. The match rates 

for multiple surface land were 87.38% and 43.69% respectively, revealing that there is 

far more similarity in the content vectors of these features than in the context structures. 

This is due to variations in the adjacencies between neighbours. 

7.2.4 Classification Accuracy 

Each feature that did match a template unambiguously was tentatively assigned the 

feature class with the greatest relative frequency for that template. By comparing these 

classes against the ground truth feature code for each polygon, we determined that 

CVM achieved an accuracy of 85.38%, while CSM scored slightly higher at 85.96%. 

Because CVM matches a greater number of features than CSM, the number of features 

correctly classified was 3,421 and 2,744 respectively. Bearing in mind that CVM is an 

O(1) operation and CSM is O(n!), we can see that the slight improvement in accuracy of 

CSM over CVM comes at high, but manageable, computational cost and a 20% 

reduction in output. 

The accuracy of CSM was higher across all classes, except natural environment 

and multiple surface land. This may have been due to inaccuracies in the corresponding 

CSM template estimated probabilities due to data sparseness. The classification 

accuracy for building was 90.16% and that for road or track was 96.32%. Where CVM 

did do better for multiple surface land, it achieved 97.06% accuracy. It is clear that 
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these three feature classes exhibit a high degree of structural regularity in their 

neighbourhoods. All three classes have high frequencies in urban areas. They 

collectively comprise 82.12% of the training and 73.75% of the testing corpora used. 

Thus, our context-based classifiers are well suited to the majority of urban data. 

7.2.5 Combined Classifier Performance 

We combined the output of our two classification schemes in two separate ways. 

CVM>CSM gives precedence to CVM when there is a disagreement. Reciprocally, 

CSM>CVM gives preference to CSM in a conflict. Both techniques achieved an 

unambiguous match rate of 79.45%, a slight improvement over CVM’s 79.03%. The 

overall accuracy across all feature classes was 85.38% for CVM, 85.96% for CSM, 

85.1% for CVM>CSM and 85.33% for CSM>CVM. It had been expected that the 

combined classifiers would benefit from the increased number of correct classifiers 

achieved by CVM and the greater accuracy of CSM, and that the accuracy figures 

would fall between both. Instead, the accuracy of CVM>CSM and CSM>CVM was 

lower than both CVM and CSM. This indicates that when one classifier was ambiguous 

the other tended to either suggest a classification based on a template with a low total 

feature code frequency (inaccurate due to data sparseness) or a feature class that was 

only marginally dominant. 

7.2.6 Summary & Recommendations 

Both CVM and CSM successfully classify the most common types of features found in 

urban data. Mapping of built-up areas is the most commonly used and valuable of 

topographic data. CSM does not classify as many features as CVM, but it is slightly 

more accurate for most feature classes. The templates used by both techniques require a 

large frequency of occurrence in order to yield accurate feature class probabilities. Both 

CVM and CSM templates exhibit logarithmic distribution in their total frequencies. The 

templates with the highest frequencies tend to suggest one of the more common feature 

classes with near or actual 100% estimated probability. That is, high frequency 

templates tend to be excellent classifiers. A limited set of these building, multiple 

surface land and road or track templates could be selected and used in isolation to 

achieve feature code assignment or verification of an extremely high quality. 

Alternatively, classification tools can be used to identify features that may have 

improper feature codes and flag these to a user, suggesting a new class assignment. The 



93 

user could either accept the suggestion, or take a different action. Any approach that 

seeks to combine the output of CVM & CSM needs to take into account the total 

frequency of the templates, and the highest class frequency. This is because 

proportional frequencies can be misleading for the less common templates. Increasing 

training data size should eliminate many cases of error resulting from data sparseness. 

7.3 Importance of Land Use 

Context-based classification has proven most accurate at identifying the building, 

multiple surface land and road or track features that predominate in urban data. 

Different built-up areas exhibit variations in polygon topology. For instance, town and 

city centres tend to have terraced housing and shops. There may be path or general 

surface routes between and behind some of the buildings. Certain terraced houses may 

face directly on to roadside, not having a front garden. Most of these buildings and their 

associated multiple surface land areas will have topologies and hence contexts that 

differ form those of suburbia, where gardens tend to enclose semi-detached or detached 

homes. Rural areas tend to be without path features, with a far lower density of houses, 

many of which are part of general surface farmyards. Fields vary enormously in their 

contexts, while many natural environment polygons are even more complex in their size 

and relationships to other features. Context-based classifiers trained on suburban data 

cannot be expected to perform well in other areas, especially in the countryside. 

A wide array of land types need to be used for training CVM and CSM 

templates to allow them to maximize their usefulness. While context-based 

classification was inspired by the topological regularity seen in suburban data, there 

seems to be far fewer structural patterns in rural data. We suspect that object-based 

techniques would be better suited to classifying such area features. It is possible to use 

feature density to classify broad regions as urban, suburban or rural. If separate sets of 

classifiers were generated from and applied to the different regions, improvements 

might be achieved in classification. 
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7.4 Future Work 

There are a number of ways that the work presented here could be extended to improve 

the quality of topographic polygon data. 

7.4.1 Combining Output with Other Classifiers 

Our context-based classifiers are one of several feature coding techniques implemented 

within our research group. Others include shape-based analysis, statistical language 

model classifiers and aerial photography texture-based classification. Different feature 

coding approaches will achieve higher accuracy for specific feature classes. By 

combining the classification results from the varying techniques, it is expected that an 

overall accuracy greater than any single approach alone can be achieved. The feature 

code probabilities generated by our classifiers approximate its confidence in each 

possible feature class assignment. This could temper the weight given to its input in a 

combined, multi-discipline classification approach. 

7.4.2 Improving Accuracy 

At present, we use the feature code frequencies recorded by our classification templates 

to estimate the probability that a feature matching that template is of a particular class. 

This approach is vulnerable to inaccuracy caused by data sparseness. For instance, if a 

particular template was found to have only a single match in a training corpus, the 

proportional frequency, and hence the estimated probability of the associated feature 

code is 1/1=1.0. If that template was matched a hundred times in a wider training data 

set, we might find that most instances do indeed match that same class, making the 

estimate appropriate. However, we might find that the original feature is the only one of 

its class to match and that all ninety-nine other analogues exhibit an identical, but 

differing class. If an estimated feature code probability of 100/100=1.0 was recorded 

from the smaller training corpus, it is far less likely that this value would decrease when 

we widen our training data. Accordingly, the higher template frequency counts are, the 

more confident we can be about our probability estimates. 

The inaccuracy resulting from data sparseness could be addressed by setting a 

minimum template total frequency, below which the template is not trusted. This raises 

the question of where we set cut-off point. Alternatively, we could attenuate all 

probability estimates based on the total frequency of each template. For instance, 
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100/100=1.0 might be rescaled to 0.99, and 1/1=1.0 might be lowered to 0.5. Finally, 

we could specify a minimum estimated probability required to allow classification. Any 

of these approaches, or a combination of them, would reduce the number of features 

correctly classified, whilst increasing accuracy. 

7.4.3 Searching For Known Classification Artifacts 

In addition to using our classifiers to verify the feature code accuracy of as many 

polygons as possible, they could be applied to identify known categories of 

misclassification in topographic data. For instance, a building completely surrounded by 

another building is a very unusual occurrence. Such a feature is likely to be a courtyard, 

which would be classed as general surface. Other usual occurrences would be a building 

adjacent to water, a building adjacent to a road, or a road unconnected to other roads. 

Such errors might arise from incorrect feature codes in line data or errors in the 

automated structuring process employed to build a polygon layer from that data. 

7.4.4 Extending Context Model beyond Immediate 

Neighbours 

Our model of a polygon’s context is restricted to those area features bordering on the 

feature described. This could be extended to incorporate the neighbours of these 

neighbours and so on. A content vector could have an additional pair of vectors added 

to record the feature classes of each subsequent ring of outlying polygons. Further graph 

isomorphism search complexity restrictions would need to be placed on CSM to allow it 

to extend. 



96 

7.4.5 Incorporation of Other Topographic Layers in Context 

Model 

Our context model is restricted to analyzing the topology of area features surrounding a 

particular polygon. We could include cartographic polygons, line and point features that 

intersect the topographic polygon being described. These can yield insight into the 

likely class of associated area features. For instance, slopes, cliffs and pylons (all 

cartographic features in OS MasterMap) are unlikely to occur outside of natural 

environment, general surface, roadside or railway areas. Individual trees are usually 

only recorded in areas of natural environment or general surface. It is unlikely that any 

topographic (real world) feature will intersect a surface water or tidal water area. Such 

rules could be useful in narrowing down classification possibilities and in identifying 

feature coding errors. The topographic line layer is the source from which the OS 

MasterMap polygon layer is derived. For instance, an area contained within a building 

outline is classified as a building, roads are bounded by road or track edges. 

Investigation of line features might identify classification errors introduced during the 

generation of the polygon layer. 
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7.5 Applications of Work 

In addition to improving the classification accuracy of area features in large-scale 

topographic vector data, our neighbourhood context approach could be applied to 

identifying features in other types of spatial data. 

7.5.1 Topographic Vector Line Data 

As with all feature layers in topographic vector data, line features are attributed their 

own feature codes. These line features intersect at the nodes where they meet and 

occasionally cross each other or coincide (e.g. an administrative boundary following a 

stream). These relationships are analogous to the adjacency relations between 

topographic polygons. Line features will also exhibit a degree of structure e.g. a 

building edge must join with other building edges or building boundaries unless it 

encloses a region by itself, a road edge must join with other road edges. Modeling the 

context of line features may allow the identification of misclassified lines. 

7.5.2 Small-Scale Topographic Data 

Our context-based classifiers have being applied to the most precise and detailed of all 

topographic data, large-scale vector data. Increasingly, smaller scale data sets are 

derived from such large-scale holdings through a variety of cartographic generalization 

algorithms. These operate iteratively to reduce the clutter that results when one zooms 

out from a map. Among the techniques used are the merging of nearby features of the 

same class together, the simplification of shapes and the removal of certain features 

when they become too small or have insufficient priority to be shown at a particular 

scale. The aim is a legible map covering large areas in a smaller scale which shows the 

most important features. Given a large-scale polygon layer, the feature codes of the 

areas can be used to classify regions in the resulting smaller-scale data. A context-based 

classification process could be applied to small-scale data to verify the accuracy of the 

generalization process. Small-scale vector data that is gathered via survey rather than 

derived from more detailed mapping may also be quality checked. 
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7.5.3 Raster Data Classification 

Raster data can also be considered to be composed of classified objects. Every pixel in a 

raster image has a colour value that corresponds to the class of features that location 

belongs to. A continuous area of pixels with the same colour may be considered to be an 

object. There are two types of adjacency between pixels in raster data: 4-adjacency and 

8-adjacency. Four-adjacency exists between a pixel and those cells bounding it above, 

below, and to either side. This is analogous to line-adjacency in polygon vector data. 

Eight-adjacency is exhibited by the aforementioned four bordering pixels and the four 

other cells that surround the central pixel, but only touch at the corners. This latter 

group of four pixels that are 8-adjacent to, but not 4-adjacent to the central pixel are the 

equivalent of point-adjacent neighbours in polygon vector data. Continuous areas of a 

single colour may thus be considered to be area features that either are or aren’t 

adjacent to other features. Context-based classification can be used to classify these 

areas, potentially improving the quality of a vast array of raster spatial data types. 

7.5.4 Classification of Features in Architectural Plans 

In addition to geographic data, spatially referenced vector data is used in computer-

aided design (CAD) programs to design buildings, aircraft, cars and consumer goods, 

amongst other things. Architectural drawings follow a logic: walls sit on foundations, 

windows sit on sills, panes lie in windows, doors sit in frames, and light fixtures 

connect to wiring, which in turn connects to switches and other wires. Each of these 

features is classified and symbolized in architectural plans. By observing the topology 

of these features, the rules that underpin a valid infrastructural plan (if not a structural 

plan!) can be modeled as feature contexts and these can be used to verify other plans, 

highlighting errors. This would become increasingly important for larger buildings, 

such as sky-scrapers, where a vast number of floor plans are required. 
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7.5.5 Verifying Circuit Diagrams 

Printed circuit boards (PCBs) are used in nearly all electronic goods. They usually 

resemble green wafers and are covered in copper electrical pathways that connect the 

electrical components that they support. They range from simple components in a torch, 

to intricately detailed multi-layered motherboards in a contemporary computer. The 

costs of designing, verifying and building the necessary masks to produce a new PCB 

can be huge. PCBs are designed in CAD software, from which the necessary masks are 

built. By modeling the topology of the circuits and the components they connect to, it 

might be possible to identify errors in vastly complex PCB designs, saving the time and 

cost of building unsuccessful prototypes. This would have a positive impact on time to 

market and the cost of many electrical and electronic goods. 

7.6 Conclusion 

Content vector matching and context structure matching have proven successful in 

verifying the feature classes of polygons in large-scale topographic databases. CVM can 

classify a greater variety of features, while CSM is capable of greater accuracy. Both 

are well suited to identifying the houses, gardens and roads common in suburban areas. 

These features possess a high degree of structural regularity and generate several high 

quality classification templates. Greater accuracy is possible by limiting the use of low 

frequency templates. Context-based classification’s focus on neighbouring features 

makes it well suited to verifying the integrity of high quality topographic data. Training 

across a large corpus of data will minimize data sparseness related misclassification, 

while training on a variety of urban and rural areas will allow a greater variety of 

features to be recognized. There are several avenues to improving classification 

accuracy that may be explored. Context-based classification has the potential to make 

valuable contributions to data quality in several other spatial data fields. 
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