
Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

EXPERIENCES IN THE CO-DESIGN OF SOFTWARE AND HARDWARE

ELEMENTS IN A SDR PLATFORM

Magdalena Sánchez Mora (Institute of Microelectronics and Wireless Systems (IMWS),
National University of Ireland Maynooth (NUIM), Ireland; msanchez@eeng.nuim.ie);

Jörg Lotze (Centre for Telecommunications Value-Chain Research (CTVR), Trinity Col-
lege Dublin, Ireland; jlotze@tcd.ie); Gerry Corley (IMWS, NUIM, Ireland;

gcorley@eeng.nuim.ie); Ronan Farrell (IMWS, NUIM, Ireland; rfarrell@eeng.nuim.ie)

ABSTRACT

The Center for Telecommunications Value-Chain Research
(CTVR) has developed an integrated software radio plat-
form that combines a reconfigurable hardware radio plat-
form, called NUIM SDR transceiver, and a modular soft-
ware radio framework, called Implementing Radio in Soft-
ware (IRIS). This paper outlines the design challenges in
achieving the integration between these two systems, and
also presents experimental results. The test consists of
transmitting an image file using DQPSK modulation with
IRIS and the Universal Software Radio Peripheral (USRP)
RF front-end at 2.41GHz, and receiving it with IRIS and the
NUIM SDR transceiver. The integrated software radio plat-
form presented in this paper enables new research opportu-
nities testing real-world environments and developing cog-
nitive radios for dynamic spectrum access techniques.

1. INTRODUCTION

With the proliferation of reconfigurable radio software, it
has become viable to develop low cost, high performance
software defined radio (SDR) systems. The improving ma-
turity of the technology has reduced the cost and increased
the reliability of these systems, to a level where they are no
longer concept demonstrators but can be considered for
mainstream applications. Though the technology is improv-
ing, construction of a complete SDR system requires the
integration of hardware, firmware and software components
with an overarching system perspective on partitioning re-
sources and tasks within the system. The level of complex-
ity and range of disciplines required presents severe chal-
lenges to most research or design teams.
 Some available frameworks for software defined radio
and cognitive radios research are IRIS, GNU Radio and
OSSIE. IRIS is a mature and modular software radio frame-
work that has been developed over the past number of years
by the CTVR [1] as part of their effort in cognitive radios.
IRIS allows the dynamic construction of waveforms using a

using a library of signal processing components. GNU Ra-
dio is a software application for building and deploying
software defined radio systems under a GNU General Public
License [2] originally developed by the Massachusetts Insti-
tute of Technology (MIT). The GNU Radio is a signal-
processing package specifically designed for the USRP RF
front-end [3], although it could be integrated with other
hardware platforms. The fact that it is open source, easy to
use and has efficiently implemented numerous signal proc-
essing modules has made it very popular amongst the SDR
research communities. The Open Source SCA Implementa-
tion-Embedded (OSSIE) is another open source software
defined radio developed by Virginia Tech [4]. As with IRIS
and GNU Radio, OSSIE is a tool for rapid development of
SDR components and waveforms applications but more
complex and limited regarding the amount of signal proc-
essing blocks available.

OSSIE is intended to use for educational and training
purposes, IRIS focuses more on cognitive radio and GNU
Radio’s main goal is to provide a free and quite complete
signal processing package that gives researchers the
opportunity to explore radio systems (see Table I). A
performance evaluation of OSSIE and GNU Radio is also
presented at this conference in [5]. Therefore, a wide range
of research possibilities arises from the integration of the

TABLE I

SOFTWARE RADIO PLATFORMS

 Promote Main Goal

GNU Radio Open-Source Soft-
ware & Easy to use

Efficient signal processing
modules

IRIS Rapid prototyping
capabilities

Cognitive Radio

OSSIE Great Flexibility &
High Complexity

Training & Education

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by MURAL - Maynooth University Research Archive Library

https://core.ac.uk/display/297010619?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

NUIM SDR transceiver with these three radio frameworks.
Elements of the reconfigurable radio platform were
presented at SDR’07 Technical Conference [6][7].
 This paper describes the experiences in achieving the
integration of the NUIM SDR transceiver with IRIS and
shows a demonstration of the two systems working together:
an image file transmission using DQPSK modulation. This
demonstration proves that the integration was successfully
achieved and allows more complex experiments to be car-
ried out in future, such as audio or video transmission. It
also allows developing complex cognitive radio systems,
using a cognitive engine to sense the environment, decide
which waveform to use, and reconfigure the running radio
to accommodate these decisions. One example of such a
system is the cyclostationary feature detector presented in
[8].
 The structure of this paper is as follows: Section 2 in-
cludes a detailed description of each of the components of
the integrated software radio platform, Section 3 describes
the radio configuration of the demonstrated case study, and
Section 4 shows some test results including the constellation
diagram and the recovered image. Section 5 presents the
conclusions and ends by outlining the future research lines
to be followed.

2. INTEGRATED SOFTWARE RADIO PLATFORM

Figure 1 shows the elements of the integrated software radio
platform: the NUIM SDR transceiver and a standard laptop
computer. In order to enable the communication between
IRIS and the NUIM SDR transceiver, several software
modules were developed such as a USB device driver, an
API library, the firmware running on the USB microcontrol-
ler and two additional IRIS DSP components.

Figure 1. Integrated Software Radio Platform

 The following subsections describe each of these com-
ponents and the challenges encountered in the integration of
the two systems focusing on the software aspects.

2.1. NUIM SDR Transceiver

The NUIM SDR transceiver was designed to be flexible,
easy to use and inexpensive. To meet these requirements it
was decided to use direct conversion receiver and
transmitter architectures as this approach allows large
baseband bandwidth, avoids the use of fixed IF filters and
has a lower component count than comparable
superheterodyne or low IF configurations. Data and control
communication is performed via a USB interface between
the transceiver and a laptop PC.

A block diagram of the NUIM SDR transceiver is shown
in Figure 2.The transceiver connects to a PC via a USB 2.0
interface that has a maximum data transfer rate of 480Mbps.
In the baseband section there are two 16 bit DAC's with a
sample frequency of 200Msps and two 16 bit ADC's with a
maximum sampling frequency of 100Msps. These provide
the I and Q signals to the RF transmitter and receiver
boards. Although the ADC's and DAC's are capable of very
high conversion rates, currently the maximum operating
speed of the system is limited by the USB interface and the
radio software running on the PC.

Figure 2. Block diagram of the NUIM SDR transceiver

The RF transmitter operates between 2.1 and 2.45GHz,
with a maximum output power of 24dBm and 256 levels of
power control all under full software control. The RF
receiver operates over the same frequency range, has a noise
figure of 5dB, bandwidth of 40MHz and 48dB of gain
control.

Figure 3 shows a picture of the NUIM SDR platform,
which consists of several hardware elements including a
radio transmitter, a radio receiver and a baseband interface.
Both the RF transmitter and receiver boards plug into the
baseband boards in ´piggyback´ fashion through a series of
SMB connectors, this makes for a low loss robust
connection.
 In our design, a key criterion was to explore the concept
of pushing the software engine as close to the antenna as

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

possible, therefore the responsibility for processing the raw
IQ data was defined to be a task for the software engine.

Figure 3. NUIM SDR Platform

2.2. Firmware, USB driver and API library

Since we are dealing with a new SDR hardware platform
that uses a USB microcontroller, a customized USB driver
and firmware were developed. Also an efficient API library
was implemented in order to provide an interface with third
party waveform applications. Figure 4 shows a high-level
vision of the interconnection between the elements of the
integrated radio platform.

Figure 4. IRIS to NUIM SDR transceiver interface

 As can be seen in Figure 4, the main requirements in
terms of software are embedded code running on the USB
microcontroller, an optimized USB driver and an API li-
brary providing an interface with third-party waveform de-
velopment tools, such as IRIS. The three modules were writ-
ten in the C language due to its low-level capabilities, speed
and portability between a wide variety of PCs and operating
systems.
 The principal challenges were first to provide high-
speed and continuous data transfer without data loss, and
second to enable the re-configurability of the hardware de-
vices. The debugging stage also required an additional effort
due to the different location of the software modules: firm-
ware at hardware space, device driver in kernel space, and
API library in user space.
 High-speed data transfer without data loss was achieved
by using optimized techniques in both USB driver and em-
bedded code. The USB driver utilizes USB request blocks

(URBs) [9][10] as the data structure for transmit-
ting/receiving information due to their ability to be queued.
This queue of URBs guarantees that there will be always
information waiting to be processed in the communication
channel, which causes maximum usage of bandwidth and a
continuous stream of information. Using bulk transfer type
guaranteed delivery of data [11], which solved the data loss
problem. Regarding the embedded code running on the USB
microcontroller, the General Programmable Interface
(GPIF) [12][13] was programmed instead of the 8051 CPU
since this programmable state machine provides the highest
bandwidth achievable over the physical layer. The GPIF is
powerful and versatile but added great complexity to our
firmware development stage.
 Regarding the hardware re-configuration capabilities,
the API library includes C functions for configuring the
sampling rate, the local oscillator frequency and the receive
chain gain control. Changing one of these parameters is as
easy as calling the appropriate function in software specify-
ing the new parameter.
 The API library, the USB driver and the embedded
code provide the required interface between IRIS and the
NUIM SDR transceiver. It has been proven to work effi-
ciently since the received image in the QPSK experiment
was perfectly recovered with no data loss or visible degrada-
tion. The experiment configuration and the obtained results
are presented in Sections 3 and 4.

2.3. Implementing Radio In Software (IRIS)

The software radio framework utilized in our system is the
IRIS software radio framework. IRIS has been under devel-
opment at Trinity College Dublin since 1999 [1]. It is a
highly flexible and highly reconfigurable software radio
platform for a GPP running either Windows or Linux.
 The IRIS architecture is illustrated in Figure 5. The
building blocks of an IRIS radio are DSP components, each
performing a distinct task. Examples for such components
are modulators, framers, or filters. Each of the components
has a set of parameters and an interface to the control logic,
which allow for re-use in different radio configurations. The
control logic is a software component designed for a spe-
cific radio configuration, i.e., it is aware of the full radio
chain while the processing components are not. This control
logic can subscribe to events triggered by radio components,
and change radio parameters or reconfigure the radio’s
structure. A cognitive engine would therefore use this
mechanism to control the radio.
 The typical flow used to design a radio with IRIS is as
follows. The radio designer writes an eXtensible Markup
Language (XML) radio configuration specifying the radio
components, their parameters and connections. Optionally
the radio designer can implement a control logic for radio
reconfiguration. On IRIS start up the XML file is parsed and

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

the IRIS run-time engine creates the radio by instantiating
and connecting the specified components. The run-time en-
gine then loads the control logic and attaches it to the com-
ponents. Finally the radio is started and blocks of data gen-
erated by the source component will be processed by each
of the components in the radio chain. The control logic can
react to events triggered by components, with anything from
diagnostic output to a full reconfiguration of the radio.

Figure 5. IRIS architecture

 In order to integrate our RF transceiver with IRIS, two
new IRIS DSP components needed to be developed to pro-
vide an interface through an optimized low-level API to
interact with the NUIM SDR transceiver.
 These new components (one for transmit operation and
one for receive operation) interact with the API library to set
up the RF transceiver hardware. During radio operation, the
IRIS components transmit or receive data to or from the
hardware.
 To avoid data loss in the receiver IRIS component, it
was required to read continuously from the RF transceiver.
We accomplished this by implementing the data fetch in a
thread running independently of the DSP component. This
thread continuously reads data from the hardware and in-
serts it into a buffer shared with the IRIS component. When
this component is executed, it reads the data from this buffer
and outputs it to the next component in the radio chain. Care
had to be taken to avoid performance problems due to un-
necessary movements of data in memory. No data can get
lost in the transmitter component, thus its implementation
proved to be simpler.
 These new components enable the transmission and
reception of complex waveforms utilizing other DSP com-
ponents available in IRIS.

3. INITIAL CASE STUDY

To test the proposed SDR platform together with IRIS we
successfully transmitted an image. To isolate transmitter
from receiver problems we decided to use the USRP front-

end as transmitter, which is known to work, and focus on
the receiver, which is more challenging to implement. The
high level experimental setup is depicted in Figure 6.

Figure 6. Experiment Setup

 The transmitter radio components are depicted in
Figure 7(a). The first component in the chain is the Image
Reader, which reads a bitmap image and provides the data
to the Framer component. The simple frame structure used
for the initial case study starts with a frame check sequence,
so that receiver can synchronize with each frame, followed
by the payload length, the whitened payload and a check-
sum field. The payload is whitened with a pseudo random
sequence known at the receiver, so that the data sent over
the air appears random. This simplifies synchronization at
the receiver. The DQPSK Modulator modulates every pair
of bits to one of four phase shifts in the I-Q-space using
differential encoding. To limit the spectral footprint of the
signal, it is upsampled and filtered with a root raised cosine
pulse shaper in the Upsampler and Pulse Shaper compo-
nents, respectively. This I and Q data is then transferred to
the USRP by the USRP Transmitter software component,
upconverted, and transmitted.

Figure 7. IRIS transmitter and receiver chains

 The first IRIS component in the receiver chain, shown
in Figure 7(b), is the NUIM RF Receiver software compo-
nent as explained in Section 2.3. It receives I and Q data
from the RF hardware and makes it available to IRIS. The
Matched Filter is another root raised cosine filter matched
to the one used at the transmitter. It increases the SNR of the
signal and removes inter-symbol interference introduced by
the pulse shaper at the transmitter. It is likely that the local

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

oscillator of the transmitter and receiver are not coherent.
The Carrier Recovery corrects the frequency and phase off-
sets using a Costas loop [14]. After that the Clock Recovery
component interpolates the data to the optimum sampling
points for each symbol using a modified Mueller and Muel-
ler algorithm [15]. The DQPSK Demodulator converts these
symbols back to bits by assessing the phase shifts between
samples. In the Deframer that data is correlated with the
known frame check sequence to find the beginning of a
frame, the payload is extracted, converted to bytes, and de-
whitened. The Image Receiver component can then display
this information in an image.
 In the experiment we used a 1Msps transfer rate, with
one symbol represented by four IQ samples. We are able to
increase this rate, limited by the speed achievable on the
USB 2.0 interface and the CPU performance of the laptop
PC used. The results are presented in the following section.

4. RESULTS

The image selected for the experiment is a logo montage of
the different institutions supporting this research as well as
the IRIS logo. Figure 8 shows a screenshot of the receiver
laptop with the recovered image on the left and a live con-
stellation diagram (before the demodulator) on the top. The
screenshot also shows IRIS running on a Linux terminal and
the xml file containing the receiver chain configuration (bot-
tom right).

Figure 8. DQPSK receiver laptop screenshot

 The quality of the recovered image was consistently
high with no visible errors. The DQPSK constellation dia-
gram clearly shows the DQPSK symbol positions. Even
though there is some scattering of the symbols, it is not suf-
ficient to cause loss of data.

5. CONCLUSIONS AND FUTURE WORK

Achieving a sustained high performance between these dif-
ferent systems has proven to be challenging and in this pa-
per we have showed the key issues encountered, and corre-
sponding solutions.
 The integrated software radio platform described in this
paper means a big step forward in our SDR research activi-
ties and opens new opportunities for integration with other
frameworks for software defined radio such us GNU radio.
Also more sophisticated multimedia applications can be
carried out, such as audio or video streaming, with a small
additional effort since high-speed data communication was
achieved as shown in this paper. And lastly the cognitive
radio capabilities of the IRIS framework will be explored
with the NUIM SDR transceiver and compared against the
USRP hardware platform.
 Further RF performance measurements will be taken
for a better indication of the NUIM SDR receiver quality,
such as bit error rate, interference and blocking. Also the
NUIM SDR transmitter will replace the USRP transmitter
so the whole system functionality will be verified in subse-
quent experiments. Finally is worth mentioning our current
research activities in building a transceiver to meet the
TETRA standard, work that will also be presented at this
conference in [16].

7. ACKNOWLEDGEMENTS

Research presented in this paper was funded by a Centre for
telecommunications Value-Chain Research (SFI
03/CE03/I405) by Science Foundation Ireland under the
National Development Plan. The authors gratefully ac-
knowledge this support.

8. REFERENCES

[1] P. MacKenzie, “Software and reconfigurability for software

radio systems”, Ph.D. dissertation, Trinity College Dublin,
Ireland, 2004.

[2] Free Software Foundation, Inc. (2008) GNU radio - the GNU
software radio, http://www.gnu.org/software/gnuradio/

[3] Universal Software Radio Peripheral – The Foundation for
Complete Software Radio Systems, Ettus Research LLC,
Mountain View, California, USA, Nov. 2006,
http://www.ettus.com/downloads/usrp_v4.pdf

[4] Open Source SCA Implementation – Embedded (OSSIE),
http://ossie.wireless.vt.edu

[5] A. Palomo, R. Villing, R. Farrell, “Software Defined Radio
Architectures Evaluation”, SDR Technical Forum, Washing-
ton DC, October 2008.

[6] M. Sánchez Mora, G. Baldwin, R. Farrell, “Software Engine
Development for SDR”, SDR Technical Forum 2007, 5-9
November 2007, Denver, Colorado.

Proceedings of the SDR ’08 Technical Conference and product Exposition, Copyright © 2008 SDR Forum, Inc. All Rights Reserved

[7] G. Baldwin, L. Ruíz, R. Farrell, “Low-Cost Experimental
Software Defined Radio System”, SDR Technical Forum
2007, 5-9 November 2007, Denver, Colorado.

[8] P.D. Sutton, K.E. Nolan, L.E. Doyle, "Cyclostationary Signa-
tures for Rendezvous in OFDM-Based Dynamic Spectrum
Access Networks", 2nd IEEE International Symposium on
New Frontiers in Dynamic Spectrum Access Networks,
DySPAN, vol., no., pp.220-231, 17-20 April 2007.

[9] J. Corbet, A. Rubini, G. Kroah-Hartman, Linux Device
Drivers, Third Edition, O'Reilly, 2005.

[10] G. Kroah-Hartman, Linux kernel in a nutshell, O'Reilly, 2006.
[11] Compaq, Hewlett-Packard, Intel, Lucent, Microsoft, NEC and

Philips, Universal Serial Bus Specification, Revision 2.0,
April 27, 2000.

[12] Cypress Semiconductor Corporation, EZ-USB Technical
Reference Manual, version 1.4, 2000-2006.

[13] Cypress Semiconductor Corporation, EZ-USB® FX2™ GPIF
Primer, 2003.

[14] M. Xiao, T. Cheng, "Improved Implementation of Costas
Loop for DQPSK Receivers Using FPGA", International
Conference on Communication Technology (ICCT), vol., no.,
pp.1-4, Nov. 2006.

[15] G.R. Danesfahani. T.G. Jeans, "Optimisation of modified
Mueller and Muller algorithm", Electronics Letters, vol.31,
no.13, pp.1032-1033, 22 Jun 1995.

[16] L. Gao, R. Farrell, “Using SDR to embed WiMAX channels
within the TETRA framework”, SDR Technical Forum,
Washington DC, October 2008.

