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ABSTRACT 
 
The Center for Telecommunications Value-Chain Research 
(CTVR) has developed an integrated software radio plat-
form that combines a reconfigurable hardware radio plat-
form, called NUIM SDR transceiver, and a modular soft-
ware radio framework, called Implementing Radio in Soft-
ware (IRIS). This paper outlines the design challenges in 
achieving the integration between these two systems, and 
also presents experimental results. The test consists of 
transmitting an image file using DQPSK modulation with 
IRIS and the Universal Software Radio Peripheral (USRP) 
RF front-end at 2.41GHz, and receiving it with IRIS and the 
NUIM SDR transceiver. The integrated software radio plat-
form presented in this paper enables new research opportu-
nities testing real-world environments and developing cog-
nitive radios for dynamic spectrum access techniques. 
 
 

1. INTRODUCTION 
 
With the proliferation of reconfigurable radio software, it 
has become viable to develop low cost, high performance 
software defined radio (SDR) systems. The improving ma-
turity of the technology has reduced the cost and increased 
the reliability of these systems, to a level where they are no 
longer concept demonstrators but can be considered for 
mainstream applications.  Though the technology is improv-
ing, construction of a complete SDR system requires the 
integration of hardware, firmware and software components 
with an overarching system perspective on partitioning re-
sources and tasks within the system.  The level of complex-
ity and range of disciplines required presents severe chal-
lenges to most research or design teams. 
 Some available frameworks for software defined radio 
and cognitive radios research are IRIS, GNU Radio and 
OSSIE. IRIS is a mature and modular software radio frame-
work that has been developed over the past number of years 
by the CTVR [1] as part of their effort in cognitive radios. 
IRIS allows the dynamic construction of waveforms using a 

using a library of signal processing components. GNU Ra-
dio is a software application for building and deploying 
software defined radio systems under a GNU General Public 
License [2] originally developed by the Massachusetts Insti-
tute of Technology (MIT). The GNU Radio is a signal-
processing package specifically designed for the USRP RF 
front-end [3], although it could be integrated with other 
hardware platforms. The fact that it is open source, easy to 
use and has efficiently implemented numerous signal proc-
essing modules has made it very popular amongst the SDR 
research communities. The Open Source SCA Implementa-
tion-Embedded (OSSIE) is another open source software 
defined radio developed by Virginia Tech [4]. As with IRIS 
and GNU Radio, OSSIE is a tool for rapid development of 
SDR components and waveforms applications but more 
complex and limited regarding the amount of signal proc-
essing blocks available.  

OSSIE is intended to use for educational and training 
purposes, IRIS focuses more on cognitive radio and GNU 
Radio’s main goal is to provide a free and quite complete 
signal processing package that gives researchers the 
opportunity to explore radio systems (see Table I). A 
performance evaluation of OSSIE and GNU Radio is also 
presented at this conference in [5]. Therefore, a wide range 
of research possibilities arises from the integration of the 

 
TABLE I 

SOFTWARE  RADIO PLATFORMS 

 Promote Main Goal 

GNU Radio Open-Source Soft-
ware  & Easy to use 

Efficient signal processing 
modules 

IRIS Rapid prototyping 
capabilities 

Cognitive Radio 

OSSIE Great Flexibility  & 
High Complexity 

Training & Education 
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NUIM SDR transceiver with these three radio frameworks. 
Elements of the reconfigurable radio platform were 
presented at SDR’07 Technical Conference [6][7].  
 This paper describes the experiences in achieving the 
integration of the NUIM SDR transceiver with IRIS and 
shows a demonstration of the two systems working together: 
an image file transmission using DQPSK modulation. This 
demonstration proves that the integration was successfully 
achieved and allows more complex experiments to be car-
ried out in future, such as audio or video transmission. It 
also allows developing complex cognitive radio systems, 
using a cognitive engine to sense the environment, decide 
which waveform to use, and reconfigure the running radio 
to accommodate these decisions. One example of such a 
system is the cyclostationary feature detector presented in 
[8]. 
 The structure of this paper is as follows: Section 2 in-
cludes a detailed description of each of the components of 
the integrated software radio platform, Section 3 describes 
the radio configuration of the demonstrated case study, and 
Section 4 shows some test results including the constellation 
diagram and the recovered image. Section 5 presents the 
conclusions and ends by outlining the future research lines 
to be followed. 
 
2. INTEGRATED SOFTWARE RADIO PLATFORM 
 
Figure 1 shows the elements of the integrated software radio 
platform: the NUIM SDR transceiver and a standard laptop 
computer. In order to enable the communication between 
IRIS and the NUIM SDR transceiver, several software 
modules were developed such as a USB device driver, an 
API library, the firmware running on the USB microcontrol-
ler and two additional IRIS DSP components. 

 

Figure 1. Integrated Software Radio Platform 

 The following subsections describe each of these com-
ponents and the challenges encountered in the integration of 
the two systems focusing on the software aspects.  
 
2.1. NUIM SDR Transceiver 
 

The NUIM SDR transceiver was designed to be flexible, 
easy to use and inexpensive. To meet these requirements it 
was decided to use direct conversion receiver and 
transmitter architectures as this approach allows large 
baseband bandwidth, avoids the use of fixed IF filters and 
has a lower component count than comparable 
superheterodyne or low IF configurations. Data and control 
communication is performed via a USB interface between 
the transceiver and a laptop PC.  

A block diagram of the NUIM SDR transceiver is shown 
in Figure 2.The transceiver connects to a PC via a USB 2.0 
interface that has a maximum data transfer rate of 480Mbps. 
In the baseband section there are two 16 bit DAC's with a 
sample frequency of 200Msps and two 16 bit ADC's with a 
maximum sampling frequency of 100Msps. These provide 
the I and Q signals to the RF transmitter and receiver 
boards. Although the ADC's and DAC's are capable of very 
high conversion rates, currently the maximum operating 
speed of the system is limited by the USB interface and the 
radio software running on the PC.  

Figure 2. Block diagram of the NUIM SDR transceiver 

The RF transmitter operates between 2.1 and 2.45GHz, 
with a maximum output power of 24dBm and 256 levels of 
power control all under full software control. The RF 
receiver operates over the same frequency range, has a noise 
figure of 5dB, bandwidth of 40MHz and 48dB of gain 
control. 

Figure 3 shows a picture of the NUIM SDR platform, 
which consists of several hardware elements including a 
radio transmitter, a radio receiver and a baseband interface. 
Both the RF transmitter and receiver boards plug into the 
baseband boards in ´piggyback´ fashion through a series of 
SMB connectors, this makes for a low loss robust 
connection. 
 In our design, a key criterion was to explore the concept 
of pushing the software engine as close to the antenna as 
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possible, therefore the responsibility for processing the raw 
IQ data was defined to be a task for the software engine. 
 

 
Figure 3. NUIM SDR Platform 

 
2.2. Firmware, USB driver and API library 
 
Since we are dealing with a new SDR hardware platform 
that uses a USB microcontroller, a customized USB driver 
and firmware were developed. Also an efficient API library 
was implemented in order to provide an interface with third 
party waveform applications. Figure 4 shows a high-level 
vision of the interconnection between the elements of the 
integrated radio platform. 

Figure 4. IRIS to NUIM SDR transceiver interface 

 As can be seen in Figure 4, the main requirements in 
terms of software are embedded code running on the USB 
microcontroller, an optimized USB driver and an API li-
brary providing an interface with third-party waveform de-
velopment tools, such as IRIS. The three modules were writ-
ten in the C language due to its low-level capabilities, speed 
and portability between a wide variety of PCs and operating 
systems. 
 The principal challenges were first to provide high-
speed and continuous data transfer without data loss, and 
second to enable the re-configurability of the hardware de-
vices. The debugging stage also required an additional effort 
due to the different location of the software modules: firm-
ware at hardware space, device driver in kernel space, and 
API library in user space. 
 High-speed data transfer without data loss was achieved 
by using optimized techniques in both USB driver and em-
bedded code. The USB driver utilizes USB request blocks 

(URBs) [9][10] as the data structure for transmit-
ting/receiving information due to their ability to be queued. 
This queue of URBs guarantees that there will be always 
information waiting to be processed in the communication 
channel, which causes maximum usage of bandwidth and a 
continuous stream of information. Using bulk transfer type 
guaranteed delivery of data [11], which solved the data loss 
problem. Regarding the embedded code running on the USB 
microcontroller, the General Programmable Interface 
(GPIF) [12][13] was programmed instead of the 8051 CPU 
since this programmable state machine provides the highest 
bandwidth achievable over the physical layer. The GPIF is 
powerful and versatile but added great complexity to our 
firmware development stage.   
 Regarding the hardware re-configuration capabilities, 
the API library includes C functions for configuring the 
sampling rate, the local oscillator frequency and the receive 
chain gain control. Changing one of these parameters is as 
easy as calling the appropriate function in software specify-
ing the new parameter.  
 The API library, the USB driver and the embedded 
code provide the required interface between IRIS and the 
NUIM SDR transceiver. It has been proven to work effi-
ciently since the received image in the QPSK experiment 
was perfectly recovered with no data loss or visible degrada-
tion. The experiment configuration and the obtained results 
are presented in Sections 3 and 4.  
 
2.3. Implementing Radio In Software (IRIS) 
 
The software radio framework utilized in our system is the 
IRIS software radio framework. IRIS has been under devel-
opment at Trinity College Dublin since 1999 [1]. It is a 
highly flexible and highly reconfigurable software radio 
platform for a GPP running either Windows or Linux. 
 The IRIS architecture is illustrated in Figure 5. The 
building blocks of an IRIS radio are DSP components, each 
performing a distinct task. Examples for such components 
are modulators, framers, or filters. Each of the components 
has a set of parameters and an interface to the control logic, 
which allow for re-use in different radio configurations. The 
control logic is a software component designed for a spe-
cific radio configuration, i.e., it is aware of the full radio 
chain while the processing components are not. This control 
logic can subscribe to events triggered by radio components, 
and change radio parameters or reconfigure the radio’s 
structure. A cognitive engine would therefore use this 
mechanism to control the radio.  
  The typical flow used to design a radio with IRIS is as 
follows. The radio designer writes an eXtensible Markup 
Language (XML) radio configuration specifying the radio 
components, their parameters and connections. Optionally 
the radio designer can implement a control logic for radio 
reconfiguration. On IRIS start up the XML file is parsed and 
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the IRIS run-time engine creates the radio by instantiating 
and connecting the specified components. The run-time en-
gine then loads the control logic and attaches it to the com-
ponents. Finally the radio is started and blocks of data gen-
erated by the source component will be processed by each 
of the components in the radio chain. The control logic can 
react to events triggered by components, with anything from 
diagnostic output to a full reconfiguration of the radio. 

Figure 5. IRIS architecture 

 In order to integrate our RF transceiver with IRIS, two 
new IRIS DSP components needed to be developed to pro-
vide an interface through an optimized low-level API to 
interact with the NUIM SDR transceiver. 
 These new components (one for transmit operation and 
one for receive operation) interact with the API library to set 
up the RF transceiver hardware. During radio operation, the 
IRIS components transmit or receive data to or from the 
hardware. 
 To avoid data loss in the receiver IRIS component, it 
was required to read continuously from the RF transceiver. 
We accomplished this by implementing the data fetch in a 
thread running independently of the DSP component. This 
thread continuously reads data from the hardware and in-
serts it into a buffer shared with the IRIS component. When 
this component is executed, it reads the data from this buffer 
and outputs it to the next component in the radio chain. Care 
had to be taken to avoid performance problems due to un-
necessary movements of data in memory. No data can get 
lost in the transmitter component, thus its implementation 
proved to be simpler. 
 These new components enable the transmission and 
reception of complex waveforms utilizing other DSP com-
ponents available in IRIS. 
 
3. INITIAL CASE STUDY 
 
To test the proposed SDR platform together with IRIS we 
successfully transmitted an image. To isolate transmitter 
from receiver problems we decided to use the USRP front-

end as transmitter, which is known to work, and focus on 
the receiver, which is more challenging to implement. The 
high level experimental setup is depicted in Figure 6. 

Figure 6. Experiment Setup 

 The transmitter radio components are depicted in 
Figure 7(a). The first component in the chain is the Image 
Reader, which reads a bitmap image and provides the data 
to the Framer component. The simple frame structure used 
for the initial case study starts with a frame check sequence, 
so that receiver can synchronize with each frame, followed 
by the payload length, the whitened payload and a check-
sum field. The payload is whitened with a pseudo random 
sequence known at the receiver, so that the data sent over 
the air appears random. This simplifies synchronization at 
the receiver. The DQPSK Modulator modulates every pair 
of bits to one of four phase shifts in the I-Q-space using 
differential encoding. To limit the spectral footprint of the 
signal, it is upsampled and filtered with a root raised cosine 
pulse shaper in the Upsampler and Pulse Shaper compo-
nents, respectively. This I and Q data is then transferred to 
the USRP by the USRP Transmitter software component, 
upconverted, and transmitted. 

 
Figure 7. IRIS transmitter and receiver chains 

 The first IRIS component in the receiver chain, shown 
in Figure 7(b), is the NUIM RF Receiver software compo-
nent as explained in Section 2.3. It receives I and Q data 
from the RF hardware and makes it available to IRIS. The 
Matched Filter is another root raised cosine filter matched 
to the one used at the transmitter. It increases the SNR of the 
signal and removes inter-symbol interference introduced by 
the pulse shaper at the transmitter. It is likely that the local 
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oscillator of the transmitter and receiver are not coherent. 
The Carrier Recovery corrects the frequency and phase off-
sets using a Costas loop [14]. After that the Clock Recovery 
component interpolates the data to the optimum sampling 
points for each symbol using a modified Mueller and Muel-
ler algorithm [15]. The DQPSK Demodulator converts these 
symbols back to bits by assessing the phase shifts between 
samples. In the Deframer that data is correlated with the 
known frame check sequence to find the beginning of a 
frame, the payload is extracted, converted to bytes, and de-
whitened. The Image Receiver component can then display 
this information in an image.  
 In the experiment we used a 1Msps transfer rate, with 
one symbol represented by four IQ samples. We are able to 
increase this rate, limited by the speed achievable on the 
USB 2.0 interface and the CPU performance of the laptop 
PC used. The results are presented in the following section. 

 
4. RESULTS 

 
The image selected for the experiment is a logo montage of 
the different institutions supporting this research as well as 
the IRIS logo. Figure 8 shows a screenshot of the receiver 
laptop with the recovered image on the left and a live con-
stellation diagram (before the demodulator) on the top. The 
screenshot also shows IRIS running on a Linux terminal and 
the xml file containing the receiver chain configuration (bot-
tom right). 

Figure 8. DQPSK receiver laptop screenshot 

 The quality of the recovered image was consistently 
high with no visible errors. The DQPSK constellation dia-
gram clearly shows the DQPSK symbol positions. Even 
though there is some scattering of the symbols, it is not suf-
ficient to cause loss of data. 

 
5. CONCLUSIONS AND FUTURE WORK 

 
Achieving a sustained high performance between these dif-
ferent systems has proven to be challenging and in this pa-
per we have showed the key issues encountered, and corre-
sponding solutions.  
 The integrated software radio platform described in this 
paper means a big step forward in our SDR research activi-
ties and opens new opportunities for integration with other 
frameworks for software defined radio such us GNU radio. 
Also more sophisticated multimedia applications can be 
carried out, such as audio or video streaming, with a small 
additional effort since high-speed data communication was 
achieved as shown in this paper. And lastly the cognitive 
radio capabilities of the IRIS framework will be explored 
with the NUIM SDR transceiver and compared against the 
USRP hardware platform. 
 Further RF performance measurements will be taken 
for a better indication of the NUIM SDR receiver quality, 
such as bit error rate, interference and blocking. Also the 
NUIM SDR transmitter will replace the USRP transmitter 
so the whole system functionality will be verified in subse-
quent experiments. Finally is worth mentioning our current 
research activities in building a transceiver to meet the 
TETRA standard, work that will also be presented at this 
conference in [16]. 
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