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1. ABSTRACT 

This paper focuses on the development of the software 
engine for an SDR hardware platform [1][2]. This SDR 
hardware system operates across the frequency band from 
1.6GHz to 2.5GHz with the capability to support the 
GSM1800, PCS 1900, UMTS-FDD, UMTS-TDD and 
802.11b standards. It consists of TX/RX RF front-ends, data 
converters and the USB 2.0 PHY interface. 
 

2. INTRODUCTION 

Software Defined Radio gains more interest with the 
increasing number of communication standards and the 
associated requirements for individual base stations with 
specific needs. In traditional wireless devices, most radio 
functionality is implemented in hardware. The SDR solution 
has the advantage of reconfigurability; the base station can 
implement many different standards by software 
reconfiguration. 
Our software engine for SDR hardware has a maximum 
speed of 384Mbps (24 MHz). This performance is much 
better than the one obtained by the Universal Software 
Radio Peripheral (USRP) created by the GNU Radio 
project. The USRP is capable of processing signal up to 16 
MHz wide [3].  
The software engine can be divided into three main parts 
each of them is executed in different software spaces: 

1) User space: an application-programming interface 
(API) provides the configuration and data transport 
interfaces to the SDR hardware platform. 

2) Kernel space: the USB driver allows 
communication between PC and SDR hardware via 
the USB 2.0 interface. 

3) Embedded space: the firmware in the Cypress 
CY7C68013A chip implements the communication 
between the USB device and the external logic. 

 The three modules have been written in C language due 
to its low-level capabilities, speed and portability between a 
wide variety of PCs and operating systems. 
 The API integrates all digital signal processing and 
recovery functions, such as modulation/demodulation and 

carrier/timing recovery, hardware control functions and 
communication functions. The SDR hardware is 
reconfigured through the hardware control functions. These 
control functions communicate with the embedded software 
on the hardware platform to implement changes to the ADC 
and DAC sampling rates, and to the local oscillator 
frequencies and the gain in both the transmitter and receiver. 
In this way the performance of the hardware is under 
software control from the PC. The communication functions 
enable the connection between user-space applications and 
the SDR hardware platform. Adding new signal processing 
functions or new hardware reconfigurable functions can 
easily extend this API. 
 The second part of the software engine is the USB 
driver, which follows the USB 2.0 specifications and runs as 
a kernel-module of the Linux operating system. It 
implements the bulk transfer type in high-speed mode, 
which ideally has a maximum speed of 480Mbps. Kernel 
buffering mechanisms are needed in order to achieve the 
highest USB speed. The buffering mechanisms are also 
useful for caching data in kernel space, which avoids lost 
packets due to USB device 'not ready for next packet' errors. 
The kernel buffer implemented on our USB driver follows a 
FIFO processing scheme, the packet that comes first is sent 
first to the USB host controller. In summary, the 
information from the user-space applications is temporarily 
stored on the FIFO kernel buffer and sent to the USB host 
controller by the USB driver. 
 The third part is the firmware which provides a high 
speed communication path between USB driver and the rest 
of the SDR hardware components, such as data converters 
and local oscillator. 
 The result is a software engine that hides hardware 
specific details and provides a consistent platform to 
develop user-space applications for controlling SDR 
hardware platforms. 
 
 
 
 
 
 



Figure 1.  Software engine modules 

3. USER SPACE: API 

The three parts of the API can be seen on Figure 2. Digital 
signal processing/recovery functions and hardware control 
functions make use of the data transport functions in order 
to communicate with the USB driver at kernel space. 

 
Figure 2. User space block diagram 

 
3.1. Data transport functions 

Three basic functions have been implemented to enable 
communication with the USB driver from user-space 
applications (digital signal processing and hardware control 
functions). These are write_sock(), read_sock() and 
ioctl_sock() functions. In the Linux operating system the 
USB device is treated as a socket, which greatly simplifies 
the communication process. Basic socket operations such as 
open, write, read and close are enough to interface with the 
USB driver. 
 By using ioctl_sock(), the user selects the source or 
destination endpoint. After that, read_sock() and 
write_sock() calls can be made indicating the buffer and 
block size of the information to be sent or received. 
 
3.2. Digital signal processing and recovery functions 

The FIR (finite impulse response) digital filter along with 
the 16QAM modulation scheme, m-power non data aided 
carrier recovery functions and early-late gate timing 
recovery functions are implemented in C language as part of 

a library of digital signal processing functions. The use of 
Matlab is quite limited by its low performance at real time 
execution speed. Consequently the C programming 
language is used instead; hence the bandwidth will not be 
limited by the user space applications. 
 
3.3. Hardware control functions 

The operating rates of the ADC and DAC, the gain of the 
transmitter and the automatic gain control at the receiver are 
some of the configurable variables at the SDR hardware 
from user space. As we will explain later in section 5, these 
configurations are performed using the I²C bus controller. 
 

4. KERNEL SPACE: USB DRIVER 

The developed USB driver follows the USB 2.0 
specification [4] and is configured for high-speed mode, 
maximum speed of 480Mbps. The USB driver is a loadable 
kernel module (LKM) which extends the running kernel 
capabilities of the Linux operating system to enable 
communication with the SDR hardware via the USB device.  
It is basically an object file which has been written in the C 
language.  
 It has the following characteristics: 
 - Bulk transfer type: this kind of USB transfer 
guarantees delivery of data but does not guarantee 
bandwidth or latency. The access to the USB will be on a 
bandwidth-available basis. It is mostly suitable for 
transferring large amounts of data at highly variable times 
and bandwidth. 
 - The maximum bandwidth for bulk transfer at high-
speed mode is 53MBps (425Mbps) according to the USB 
2.0 specifications. 
 - Alternate Settings 0 to 3: these settings define the 
endpoint (ep) characteristics. Our USB driver utilizes 
alternate setting 1 at high-speed mode, which has ep2 and 
ep4 as double bulk-out buffers (512bytesx2), ep6 and ep8 as 
double bulk-in buffers  (512bytesx2), and ep1out/ep1in as 
64 bytes bulk buffers (see Table 1). Notice that in means 
source and out destination, so the USB driver writes to ep2-
ep4 and reads from ep6-ep8. 
 The functions implemented in this USB driver can be 
divided into two groups: control functions and transfer 
functions. The control functions allow endpoint selection 
from the user application. Therefore, it is possible to select 
the source/destination endpoint before doing any 
reading/writing operation from the user space. 
 
 
 



Table 1. High-speed alternate setting 1 

Alternate Setting 1 

ep0 64 

ep1out 64 

ep1in 64 

ep2 512 bulk out (2x) 

ep4 512 bulk out (2x) 

ep6 512 bulk in (2x) 

ep8 512 bulk in (2x) 

 
 The transfer functions perform read/write operations 
over the endpoints (bulk-in and bulk-out buffers). In order 
to communicate between our USB driver and the USB 
device, we use USB request blocks (URBs)[5][6]. These are 
extremely useful data structures to send/receive data to/from 
a USB endpoint. The main advantage of using URBs is that 
many of them can be sent to a particular endpoint creating a 
queue of URBs, which is continuously processed by the 
USB controller improving the achieved data rate. As 
opposed to other procedures such as bulk messages, URBs 
allow our driver to achieve the highest possible data transfer 
speeds. 

 
Figure 3.  Queue of URBs on  out-ep2 

 The size of each URB is limited, therefore the USB 
driver needs to split the user message into smaller pieces 
and creates a FIFO buffer in kernel space. This feature 
avoids packets being missed because they are too big to be 
sent on a single URB to the USB controller. 
 

5. EMBEDDED SPACE: FIRMWARE 

As mentioned previously, the SDR hardware consists of 
TX/RX RF front-ends, data converters and the USB 2.0 
PHY. The Cypress EZ-USB FX2LP (CY7C68013A) chip 
has been selected to interface between SDR hardware and 
USB driver [7]. The main objectives are to provide a high 
speed communication path between the USB driver and the 
rest of the SDR hardware components, such as data 
converters and the local oscillator. In order to implement 

this behavior, the firmware software has to be designed and 
written for the FX2LP device. The next subsection outlines 
its main characteristics. 
 
5.1. USB FX2LP Characteristics 

The following figure shows the simplified architecture of 
the FX2LP device. 

 
 

Figure 4. EZ-USB FX2LP diagram (source [7]) 

A brief explanation of each main part is included below: 
 1) USB transceiver and Serial Interface Engine (SIE). 
 2) Enhanced 8051 CPU running at up to 48 MHz. 
 3) The endpoint and interface FIFOs: double-, triple- 
and quad-buffered endpoint FIFOs to achieve the 480 Mbps 
USB data rate. 
 4) General Programmable Interface (GPIF): a 
programmable state machine which provides the highest 
possible bandwidth achievable over the physical layer. 
 Due to the fact that the standard 8051 CPU runs at 48 
MHz and uses four clocks per instruction cycle, it does not 
participate in our high speed data path. The GPIF is used 
instead in order to achieve the best performance between the 
internal FIFOs and the external logic. 
 There are no speed requirements for the control 
communication path so the programmable I²C bus controller 
is utilized. In this case, the 8051 CPU participates in the 
communication. 
 
5.2. GPIF: data path 

The GPIF [7] is a programmable state machine which 
generates up to six control and nine address outputs, and 
accepts six external and two internal ready inputs. It is 
powerful enough to implement such interface such as the 
one between USB and an IDE hard drive. However, its 
flexibility comes with added complexity thus a very good 
understanding of the GPIF architecture and implementation 
is required by the developer. Figure 5 shows the 
input/output signals between GPIF and the external logic.  



Figure 5. GPIF interfacing with the peripheral 

 The GPIF allows the definition of up to four user-
defined waveform descriptors which control the state 
machine. In general, one is written for FIFO reads, one for 
FIFO writes, one for single reads and one for single writes. 
In our case, we have created only two different waveforms: 
one for FIFO reads and one for FIFO write. This is mainly 
because the low performance obtained by using single 
read/write operations. 

Figure 6. State diagram for FIFO read operations 

 The maximum performance was achieved by different 
embedded code versions; one for FIFO reads and one for 
FIFO writes. Figure 6 and Figure 7 show the state diagram 
for both FIFO operations. Notice that the waveforms never 
go to idle state, so the 8051 CPU is never involved in the 
communication path. 

Figure 7. State diagram for FIFO write operations 

 In terms of the GPIF and endpoint configuration is very 
important to mention that the GPIF is externally clock and 

the endpoints are respectively in AUTOIN and AUTOOUT 
mode. 
 
5.3.  I²C bus: control path 

I²C (Inter-Integrated Circuit) is a serial bus controller 
invented by Philips and is one of the communication 
systems provided by the EZ-USB FX2LP device. I²C uses 
two bidirectional lines: Serial Data (SDA) and Serial Clock 
(SCL) [7]. We have selected the I²C standard mode which 
has a speed of 100 kbps. The master is configured in master 
transmit mode and the slave in slave receive mode. Thus, 
the master is in control of the clock and is sending data to a 
slave in order to perform the configurations. 

Figure 8. Master transmit mode (source [7]) 

 The transmission starts by sending a start bit followed 
by the 7-bit address of the slave device, and a single bit 
representing write to or read from the slave device. Each 
peripheral device on the I²C has a unique address. After 
that, the slave will respond with an acknowledgment bit 
(ACK). Consecutive master write operations are followed 
by the slave ACK bit. 
 The configuration data to be sent across the I²C bus is 
obtained from the specification data sheets of each slave 
device (slave’s address together with configuration 
information). This information will be sent through the 
hardware control functions from the user application (see 
section 3). 
 From the point of view of the embedded code, the 
address line, data line and bus configuration are addressed 
by writing on the I2CTL, I2CS and I2DAT registers. The 
64-byte ep1 is the communication channel between USB 
driver and I²C bus. Thus, once EP1 is full, the embedded 
code will take (see Figure 9): 

- ep1[0] as the slave’s device address 
- ep1[1] as the communication mode (S for sending 

individual bytes and M for sending blocks of data) 
- ep1[2] as the number of bytes to be transmitted 
- ep1[3 to 63] as the configuration data itself 

After that, the serial communication starts through the I²C 
bus. 



Figure 9. Enpoint 1 structure 

 Due to the I²C bus will be used only for short periods of 
time and for too few data, it will not be any speed variation 
through the GPIF channel. 
 

6. CONCLUSIONS 

This paper shows the description of a software engine for 
SDR hardware which achieves a speed of 384Mbps. This 
data rate corresponds which the 90% of the highest data rate 
that could be obtained using USB bulk transfer type. This 
high performance is achieved by a combination of different 
techniques at all levels of the software spaces: user, kernel 
and firmware. Even higher performance than the current 
USRP from GNU Radio is achieved. 
 The hardware performance is totally under software 
control from the PC side. Therefore, a software engine has 
been built that hides hardware specific details and provides 
a high speed platform for controlling SDR hardware 
platforms. 
 

7. FUTURE WORK 

The future work can be divided into the three main software 
spaces: 
 - The user-space applications, the library of signal 
processing and recovery functions will be continuously 
extended with more components such as different 
modulation schemes. 
 - The kernel space: a more flexible and versatile USB 
driver version will be developed, which will include 
functions such as selection of alternate settings or transfer 
types from user space. It is planned to develop a driver for 
the Windows operating system as well as an open source 
code driver for GNU radio software [3].This will make the 
great potential of our USB driver available for the wide 
community of GNU radio users.  
 - The embedded space: the next generation of the SDR 
hardware [8], which includes a FPGA, will be finished in 

the near future. Therefore, a more sophisticated state 
machine is needed to include the control and ready signals 
that interface with the FPGA. In relation to the current SDR 
hardware version, an improvement is to combine read and 
write operations in the same embedded code maintaining at 
least the current speed rate. 
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