
Intra-Class Testing of Abstract Class Features

Peter J. Clarke, Djuradj Babich, Tariq M. King
School of Computing and Information Sciences

Florida International University
Miami, FL 33199, USA

{clarkep, dbabi001, tking003}@cis.fiu.edu

James F. Power
Department of Computer Science

National University of Ireland, Maynooth
Co. Kildare, Ireland
jpower@cs.nuim.ie

Abstract

One of the characteristics of the increasingly widespread
use of object-oriented libraries and the resulting intensive
use of inheritance is the proliferation of dependencies on
abstract classes. Such classes defer the implementation of
some features, and are typically used as a specification or
design tool. However, since their features are not fully im-
plemented, abstract classes cannot be instantiated, and thus
pose challenges for execution-based testing strategies.

This paper presents a structured approach that supports
the testing of features in abstract classes. Core to the ap-
proach is a series of static analysis steps that build a com-
prehensive view of the inter-class dependencies in the sys-
tem under test. We then leveraged this information to de-
fine a test order for the methods in an abstract class that
minimizes the number of stubs required during testing, and
clearly identifies the required functionality of these stubs.

Our approach is based on a comprehensive taxonomy of
object-oriented classes that provides a framework for our
analysis. First we describe the algorithms to calculate the
inter-class dependencies and the test-order that minimizes
stub creation. Then we give an overview of our tool, Ab-
stractTestJ that implements our approach by generating a
test order for the methods in an abstract Java class. Finally,
we harness this tool to provide an analysis of 12 substantial
Java applications that demonstrates both the feasibility of
our approach and the importance of this technique.

1. Introduction

The widespread use of object-oriented (OO) libraries,
and more recently plug-ins for integrated development en-
vironments (IDEs), has led to an emphasis being placed
on validating the correct behavior of these components.
These components extensively use the properties of the OO
paradigm, i.e., abstract data types, inheritance and dynamic
binding of method calls. One of the properties of inheri-

tance that increases its flexibility is the ability to defer the
implementation of members in one class, an abstract class,
to one or more of its concrete derived classes. Many of the
previously mentioned components implement design pat-
terns that use abstract classes as a key part of their imple-
mentation.

A plethora of testing techniques have been developed
during the last two decades to test OO software. These OO
testing techniques cover all the phases of the development
cycle, from unit testing through system testing. Most of the
testing techniques focus on aspects of the specification, im-
plementation, or a combination of both. One area of testing
OO software that has not received much attention is test-
ing of abstract classes. This lack of concentration partially
stems from the inability to instantiate objects of abstract
classes, thereby preventing them from being able to be ex-
ecuted at runtime. However, there are benefits to be gained
from testing the functionality of abstract classes. One such
benefit is the reuse of test cases from the test history of the
abstract class to validate any of its concrete derived classes
[15]. In addition, testing the features of an abstract class
to be used in libraries provides a level of confidence to the
developer with respect to the correctness of the functional-
ity derived from the abstract class. This testing activity can
lead to the provision of higher quality libraries to be used
by other software developers.

In this paper we present an approach to support the intra-
class testing of the features in an abstract class. Our ap-
proach first classifies the characteristics of the classes in
an OO application, then for each abstract class, identifies
the methods of the abstract class that can be tested in its
concrete descendants. The approach involves: performing
lightweight dependency analysis of the inherited methods
of the concrete descendants; generating an integration test
order for the methods in the abstract class; and using the
test order to minimize the number of stubs required when
testing the inherited methods in the concrete descendants.
To validate our approach and show its practicality, we have
developed a testing tool AbstractTestJ and performed ex-

18th IEEE International Symposium on Software Reliability Engineering

1071-9458/07 $25.00 © 2007 IEEE
DOI 10.1109/ISSRE.2007.11

191

18th IEEE International Symposium on Software Reliability Engineering

1071-9458/07 $25.00 © 2007 IEEE
DOI 10.1109/ISSRE.2007.11

191

18th IEEE International Symposium on Software Reliability Engineering

1071-9458/07 $25.00 © 2007 IEEE
DOI 10.1109/ISSRE.2007.11

191

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on April 14, 2009 at 07:50 from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by MURAL - Maynooth University Research Archive Library

https://core.ac.uk/display/297010448?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

periments on a cross-section of OO applications. These ap-
plications range in size from a few hundred classes to over
21K classes.

The contributions of this paper are as follows:

1. The development of an approach to support the intra-
class testing of methods in an abstract class through its
concrete descendants by:

(a) identifying truly inherited methods using depen-
dency analysis, i.e., those methods with depen-
dencies limited to the abstract class;

(b) generating a test order that minimizes the num-
ber of stubs required when testing methods of an
abstract class; and

(c) minimizing the number of methods that need to
be tested in a newly created concrete descendant
class.

2. The development of a tool that fully implements and
automates this approach.

This paper is organized as follows. Section 2 presents
background information and Section 3 the motivation for
the work. The overview of the testing approach is presented
in Section 4. The detailed testing approach and tool support
are described in Sections 5 and 6 respectively. Section 7
contains the experimental results. Section 8 presents the
related work and we conclude in Section 9.

2. Background

This section provides background information on the no-
tion of inheritance hierarchies and abstract classes, the cur-
rent approaches to test the features of abstract classes, and
how stubs are used during testing. We also introduce termi-
nology that threads the paper.

2.1. Inheritance and Abstract Classes

Inheritance is one of the major concepts of the OO
paradigm and can be used to provide extensibility and
reusability of classes. Meyer [22] informally defines inher-
itance as a mechanism whereby a class is defined in refer-
ences to others, adding all their features (fields and meth-
ods) to its own. This definition is captured formally as
R = P ⊕ ∆R, where R denotes the newly defined class
(or child), P the properties inherited from another class (or
parent), and ∆R the new properties that differentiate R and
P [26]. The operator ⊕ represents a method of combining
the inherited and new properties.

The inheritance hierarchy may be viewed as a tree (sin-
gle inheritance) due to the transitivity of the ⊕ operator, or

as a directed acyclic graph (multiple inheritance) due to ap-
plying ⊕ operator to more than one parent. We use the term
ancestor of a class C to refer to the immediate and non-
immediate parents of a class. Similarly, the terms descen-
dant refers to the immediate and non-immediate children
of a class [26]. In this paper we focus on the semantics of
inheritance as provided by the Java language [14].

An abstract class is a class that contains a deferred fea-
ture [22]. That is, at least one of the features in the in-
terface of the class is not implemented. No instances of
an abstract class can be created. A class inherited from
an abstract class that is not abstract will be referred to as
either a concrete child or a concrete descendant since we
do not consider non-immediate descendants in this paper.
Class features inherited unchanged are referred to as inher-
ited features (recursive in [15]) and the overridden methods
as redefined methods [15]. If an inherited method only has
dependencies in the parent class where it is defined we refer
to that method as a truly inherited method.

2.2. Testing Abstract Classes

Several approaches are described in the literature [5,
21, 28] that can be used to test the features of an abstract
class. These are: (1) defining a concrete class solely for
the purpose of testing the abstract class, (2) testing the ab-
stract class as part of testing the first concrete descendant,
(3) testing the minimal set of concrete descendants that do
not redefine the methods in the abstract parent class, and
(4) using guided inspection. The first three approaches
are execution-based, similar to the approach we present in
this paper. The test cases to validate the features in the
concrete descendants can be generated using specification-
based, implementation-based, or hybrid-based testing tech-
niques [5, 15].

When testing the features of a concrete class there may
be overhead incurred due to the creation of stubs. For exam-
ple, a stub may be required if there is a cyclic dependency
between two methods in a class or the there is a dependency
to another method that is not available at the time of testing.
Finding an integration test order for the features in a class is
similar to finding a test order for a cluster of classes. That is,
the test order is produced by generating a topological sort of
the acyclic graph that represents the dependencies between
the classes in the cluster. If there are cycles in the graph
then one or more edges are removed, thereby requiring the
use of stubs [6, 18, 19]. Note for our approach we assume
all dependent methods are available at the time of testing.

3. Motivation

There has been little or no research presented in the lit-
erature on techniques to test the features of abstract classes.

192192192

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on April 14, 2009 at 07:50 from IEEE Xplore. Restrictions apply.

App Application/ Domain Ver. Classes Abstract Concrete Concrete Impacted
No. Package Name in App. Classes Children Dependents Classes
1 SableCC [13] Parser Generator 3.2 281 32 (11%) 87 47 166 (59.1%)
2 Soot [24] Java Optimization 2.2.2 2,230 184 (8%) 821 179 1,184 (53.1%)
3 JRefactory [2] Reverse Eng. Tool 2.9.19 2,451 178 (7%) 807 209 1,194 (48.7%)
4 AspectJ [27] Aspect-oriented Tool 9.1 2,933 213 (7%) 868 582 1,663 (56.7%)
5 Twister [12] B2B oriented BPM 0.3 4,403 263 (6%) 775 535 1,573 (35.7%)
6 Compiere [1] Integrated Framework 2.5.2 9,074 478 (5%) 2,485 779 3,742 (41.2%)
7 org* [4] BEA Web package 9.1 9,411 994 (11%) 2,061 1,005 4.060 (43.1%)
8 JDK [25] Java Development Kit 1.5.05 15,418 1,187 (8%) 4,556 2,554 8,297 (53.8%)
9 Netbeans [23] IDE 5.0 16,144 850 (5%) 3,056 1,575 5,481 (34.0%)

10 Eclipse [11] IDE 3.1.1 17,794 965 (5%) 6,065 2,486 9,516 (53.5%)
11 weblogic* [4] BEA Web package 9.1 20,991 936 (4%) 5,533 1,871 8,340 (39.7%)
12 com* [4] BEA Web package 9.1 21,906 808 (4%) 6,061 1,556 8,425 (38.5%)

Totals 123,036 7,088 (6%) 33,175 13,378 53,641 (46.4%)

Table 1. Summary of the Java applications used in the study. * indicates a package taken from a
larger software application.

This dearth of testing techniques may have resulted from the
fact that objects of abstract classes cannot be instantiated.
However, abstract classes need to be adequately tested since
they play an important role in object-oriented design. The
Stable Abstractions Principle suggests that there should be
a correlation between stability and abstraction [20]. Here,
stability is a measure of the difficulty of changing a pack-
age or class, and is measured in terms of the number of other
packages or classes that depend on it. Thus, a good object-
oriented design will exhibit a high degree of dependencies
on abstract classes. While this is advantageous, since ab-
stract classes are easier to change than concrete ones, it
means that if an abstract class should change, there is a high
likelihood of a significant impact on the rest of the applica-
tion.

To demonstrate this high level of dependency, we con-
ducted a study of twelve (12) Java applications chosen from
a variety of domains, ranging from compiler tools to appli-
cation servers. Table 1 shows a summary of the applications
used in our study. Columns 1 (App No.) through 4 (Ver.) of
Table 1 contain the application numbers, name of applica-
tions, short descriptions and version numbers, respectively.
The names in Column 2 of Table 1 postfixed with * indi-
cate that the application used in the study is a package taken
form a larger application.

The data in Columns 5 (Classes in App.) through 8 (Con-
crete Dependents) of Table 1 provide an estimate of the de-
gree of dependence on abstract classes. Column 5 contains
the total number of classes (excluding interfaces) cataloged
and Column 6 shows the number abstract classes. As can
be seen from Column 6, abstract classes constitute a rela-
tively small percentage of the total number of classes, rang-

ing from 4% to 11%.
The remaining columns in Table 1 measure the level of

direct dependencies on these abstract classes. Column 7
shows the number of concrete children of abstract classes,
and Column 8 shows the number of other classes that make
a direct reference to a feature of an abstract class. Column
9 shows the total of Columns 6, 7 and 8, and provides an
estimate of the number of classes that would be directly im-
pacted by a change to an abstract class. As can be seen from
comparing Columns 6 and 9, even though abstract classes
form a relatively small percentage of the overall class count,
any change to them would have a high impact, ranging from
35.7% to 59.1% of the classes in the applications studied.
Note that this range is a conservative estimate, for a more
accurate estimate additional analysis would have to be per-
formed.

For example, application 12 in Table 1, com* , is a pack-
age from the BEA Web Logic Server 9.1 [4] and version
analyzed is 9.1. The application contains 21,906 classes of
which 808 (4%) are abstract, 6,061 are the concrete chil-
dren of the abstract classes, and 8,425 (38.5%) are directly
impacted by the abstract classes.

4. Overview of Testing Approach

In this section we present an overview of the approach
used to test the features of an abstract class by using its
concrete descendants. The approach can be applied during
unit and integration testing of a software application. We
also present an illustrative example that threads the paper.

The steps of the testing approach are as follows:

193193193

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on April 14, 2009 at 07:50 from IEEE Xplore. Restrictions apply.

Step 1: Catalog the classes in the component under test
and identify the abstract classes (Ais) and concrete children
(C(Ai)js) of each abstract class [3]. The intermediate data
generated in the cataloging process will be required to sup-
port steps later in the approach.

Step 2: For each abstract class Ai:

(a) Perform dependency analysis on the set of methods in
each C(Ai)j .

(b) For each C(Ai)j identify the inherited, new, and rede-
fined methods, using the data generated in Step 1.

(c) Generate a modified inter-method call graph for each
C(Ai)j using the data in parts (a) and (b) to identify
truly inherited methods, i.e. those methods that do not
violate the dependency relationships in Ai .

(d) Find the near minimal set cover of the C(Ai)js for Ai

based on the truly inherited methods in the C(Ai)js.

(e) If the inherited features in the C(Ai)js do not cover the
features in Ai, create a new concrete descendant C(Ai)0

for the methods not in the partial set cover.

(f) Generate an inter-method call graph for the methods in
Ai.

(g) Using the inter-method call graph, generate an integra-
tion test order for the methods in Ai that minimizes the
number of stubs required.

(h) Generate a test order for the truly inherited methods in
C(Ai)js, and if necessary those in C(Ai)0, based on the
test order generated in part (g).

(i) Using testing approaches described in Harrold et al.
[15] and Binder [5], reuse test cases or create new test
cases to test the inherited methods in Ai.

Illustrative Example. Figure 1 shows the Java code for
the illustrative example that will be used throughout the
paper. The code in Figure 1 shows a class hierarchy con-
sisting of four classes: the abstract base class ACsEx.A
(Ai), as well as classes ACsEx.B1, ACsEx.B2 and
ACsEx1.B3, the three concrete descendant of A, the
C(Ai)js. There is also class ACsEx.P used by the meth-
ods in classes ACsEx.A, ACsEx.B1 and ACsEx1.B3.

The example was constructed to include several of the
features typical in large Java applications, including: inheri-
tance of features across packages; inherited fields and meth-
ods; redefined methods; a combination of access specifiers
for the methods in the abstract class ACsEx.A, including
features declared as package private; and various combina-
tions of bindings of fields to methods.

1 / / P u b l i c c l a s s P i n package ACsEx
2 package ACsEx ;
3 c l a s s P{
4 p r o t e c t e d i n t x ;
5 }
6 / / P u b l i c c l a s s A i n package ACsEx
7 p u b l i c a b s t r a c t c l a s s A{
8 i n t x , y ; P p1 ;
9 p r i v a t e i n t z ;

10 p r o t e c t e d a b s t r a c t vo id a0 () ;
11 void a1 (P inP1){x = inP1 . x ; a4 (p1) ;}
12 void a2 (){ y = x∗x ; a8 (y) ;}
13 void a3 (){ y = y∗p1 . x ;}
14 p u b l i c vo id a4 (P p2){ p1 . x = p2 . x ;
15 y = y∗y ; a6 () ;}
16 p r i v a t e void a5 (){ a1 (p1) ;}
17 p u b l i c vo id a6 (){ a1 (p1) ; a5 () ;}
18 p u b l i c vo id a7 (){ a5 () ; a2 () ;}
19 p u b l i c vo id a8 (i n t i){
20 i f (i != 0){x = x∗10;
21 a8(−− i) ;}}
22 }
23 / / C l a s s e s B1 and B2 i n package ACsEx
24 c l a s s B1 ex tends A{
25 i n t x ;
26 p u b l i c B1 (i n t inX , i n t inY , P inP1){
27 x = inX ; y = inY ; p1 = inP1 ;}
28 p r o t e c t e d void a0 (){}
29 void a1 (P inP1){x = x+ inP1 . x ;}
30 void a5 (){ x = x +1;}
31 p u b l i c vo id a6 (){ a5 () ; a2 () ;}
32 p u b l i c vo id a8 (i n t i){
33 i f (i != 0){x = x∗100;
34 a8(−− i) ;}}
35 void b1 (i n t x){ t h i s . x = x ;}
36 }
37 c l a s s B2 ex tends A{
38 p r o t e c t e d void a0 (){}
39 void a2 (){ super . a2 () ;}
40 void a3 (){ super . a3 () ;}
41 }
42 / / C l a s s B3 i n package ACsEx1
43 package ACsEx1 ;
44 import ACsEx .∗ ;
45 c l a s s B3 ex tends A{
46 i n t x , y ; P p1 ;
47 p u b l i c B3(){}
48 p u b l i c B3 (i n t inX , i n t inY , P inP1){
49 x = inX ; y = inY ; p1 = inP1 ;}
50 p u b l i c vo id a0 (){ x = p1 . x ;}
51 }

Figure 1. Example source code.

5. Testing Approach

Our testing approach consists of four major parts which
correspond to the steps described in Section 4: (1) cata-
loging the classes in the component under test resulting in
the identification of the abstract classes and their respective
concrete descendants, and the classification of the features
in these classes - Step 1; (2) identifying the truly inherited
methods in the concrete descendants of each abstract class
by performing lightweight dependency analysis - Step 2(a)-
(c); (3) generating a near-minimal set cover of the concrete
descendants for each abstract class using the truly inherited
methods - Step 2(d)-(e); and (4) generating an integration
test order for the methods in each abstract class to minimize

194194194

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on April 14, 2009 at 07:50 from IEEE Xplore. Restrictions apply.

Classification Entity list
Abstract Parent ACsEx.A
Concrete ACsEx.B1, ACsEx.B2,
Children ACsEx1.B3

Class ACsEx.B1:
Inherited B1.a2(), B1.a3(), B1.a4(P),
Methods B1.a7()

Class ACsEx.B2:
Inherited B2.a1(P), B2.a4(P), B2.a6(),
Methods B2.a7(), B2.a8(int)
Class ACsEx1.B3:
Inherited B3.a4(P), B3.a6(), B3.a7(),
Methods B3.a8(int)

Table 2. Shows the abstract class, the con-
crete descendants and their inherited meth-
ods cataloged from the code in Figure 1.

the number of stubs required during testing - Step 2(f)-(h).
We do not address how the actual test cases for the abstract
classes are generated in this paper.

5.1. Feature Classification

The first step in our testing approach uses the Taxon-
omy of OO Classes by Clarke et al. [7, 8] to summarize
the properties of the features in the abstract class and its
concrete descendants. The taxonomy of OO classes facili-
tates the classification of an OO class C into a class group,
and its features (fields and methods) into a set of feature
groups. The classification is based on the characteristics
exhibited by the class and its features. We define the char-
acteristics of a class as the properties of the features in C
and the dependencies C has with other types (built-in and
user-defined) in the implementation. The properties of the
features in C describe how criteria such as types, accessibil-
ity, shared class features, polymorphism, dynamic binding,
deferred features, exception handling, and concurrency are
represented in the fields and methods of C. The dependen-
cies C has with other types are realized through declarations
and definitions of C’s features, andC’s role in an inheritance
hierarchy [8]. The cataloged summary of a class and its fea-
tures is contained in a cataloged entry.

In this paper we focus on the descriptors that indi-
cate whether or not a class is abstract, and whether or
not the methods of the derived class are inherited meth-
ods. Using the cataloged entries for the classes ACsEx.A,
ACsEx.B1, ACsEx.B2 and ACsEx1.B3 from the code
in Figure 1, the data in Table 2 was generated. Table 2
shows the abstract class, concrete descendants and their in-
herited methods.

Figure 2. The modified call graphs for
the classes ACsEx.B1, ACsEx.B2, and
ACsEx1.B3 shown in Figure 1.

5.2. Identifying Truly Inherited Methods

To determine if the behavior of an inherited method in
the concrete descendant is similar to that of the defined
method in the abstract superclass, we create a modified
inter-method call graph. The modified inter-method call
graph is created using the results of a lightweight depen-
dency analysis as described in Section 5.4. To obtain the
modified call graph we place two restrictions on the normal
call graph. The first restriction is that each source vertex
(a vertex with no incoming edges) in the graph represents
an inherited method. Edges from the source vertex may go
to any other vertex - representing methods accessible in the
scope of the concrete descendant class. The second restric-
tion is that a vertex representing a new or redefined method
must be a sink (a vertex with no outgoing edges).

Figure 2 shows the modified call graphs for the concrete
descendants ACsEx.B1, ACsEx.B2, and ACsEx1.B3
whose source is presented in Figure 1. Each vertex in the
call graph shown in Figure 2 is annotated with the name of
the method and a property indicating whether the method
is new, inherited (inher) or redefined (redef). We also
annotate the methods that are private (priv) in ACsEx.A.

Using the modified call graphs for the concrete descen-
dant classes, we determine if the inherited methods are truly
inherited with respect to their behavior. This is done by de-
termining the reachability of each vertex that represents an
inherited method in the graph, where the relation is “calls”.
If the set of reachable methods from an inherited method
m contains a vertex that represents either a new or rede-

195195195

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on April 14, 2009 at 07:50 from IEEE Xplore. Restrictions apply.

fined method, then m is classified as not being truly in-
herited. For example, in Figure 2 the graph for the class
ACsEx.B1 shows that the method B1.a7() is not truly
inherited, since B1.a8(int) (redefined) is in the reach-
able set of B1.a7().

The inherited methods associated with the concrete
classes, as shown in Table 2, can now be updated to re-
flect the true inherited methods. The only truly inherited
methods are as follows: class ACsEx.B1 - B1.a3();
class ACsEx.B2 - B2.a1(P), B2.a4(P), B2.a6(),
and B2.a8(int); and class ACsEx1.B3 - B3.a4(P),
B3.a6(), B3.a7(), and B3.a8(int).

5.3. Minimal Set Cover

To obtain a near-minimal set cover of the truly inherited
methods we use the greedy algorithm described in Cormen
et al. [9]. The truly inherited methods in each concrete
descendant C(Ai)j of the abstract class Ai are treated as
a subset of X , where X is a finite set containing the im-
plemented methods (methods that are not deferred) in the
abstract class Ai. The concrete descendant classes are con-
sidered as a family F of subsets of X . The objective of the
algorithm is to find a minimal set of subsets, C(Ai)js, in F
that covers all the methods in X . Applying the algorithm
to the example in Figure 1, we obtain the following partial
set cover: class ACsEx.B1 - A.a3(); class ACsEx.B2
- A.a1(P), A.a4(P), A.a6(), and A.a8(int); and
class ACsEx1.B3 - A.a7(). Note that we have to cre-
ate a new concrete descendant class C(Ai)0, referred to as
A IMPL, to test the methods A.a2() and A.a5() since
these methods were not in the partial set cover.

5.4. Test Order to Minimize Stubs

The artifact used to generate the integration test order
for the methods of the abstract class Ai is the class inter-
method call graph. The approach we use is similar to the
approach used to generate a class integration test order in
[6]. However, unlike the approaches used to generate a class
integration test order, the inter-method call graph has only
one type of edge.

We use the results of a lightweight dependency analysis
to generate the class inter-method call graph. The depen-
dency analysis involves processing each class in turn, and
examining the code in initializers and method bodies for
references to features of other classes. A dependency graph
is constructed whose nodes are the features of the class, and
where directed edges represent the use of one feature by
another. The call graph, as shown in Figure 3, is a strict
sub-graph of this dependency graph.

Constructing the dependency graph is a two-pass opera-
tion. The first pass extracts the basic information from each

Figure 3. Call graph for the methods in the
abstract class ACsEx.A shown in Figure 1.

class, while the second pass traverses the class hierarchy in
order from parents to children. This second pass propagates
the dependencies from parent classes to their children for
each inherited method. At each propagation step, the de-
pendencies on any dynamically-bound feature in the parent
are updated to become dependencies on the corresponding
feature in the children. Particular care must be taken with
overridden attributes in Java, such as attribute x defined on
lines 8 and 25 of Figure 1, to ensure that the bindings are
maintained in a manner consistent with the rules in Section
8.3.3 of the Java Language Specification [14].

Using the class inter-method call graph, we generate
a test order to minimize the number of stubs required
during testing as follows, using an approach similar to
[6]. One possible test order for the call graph in Fig-
ure 3 is A.a4(P), A.a1(P), A.a8(int), A.a5(),
A.a2(), A.a7(), A.a6(), A.a3(), A.a0(). One
stub is required to simulate the behavior of A.a6() before
A.a4(P) can be tested. Note that A.a8(int) makes a
call to itself but we assume no stub is needed for methods
that directly call themselves.

Using the test order stated in the previous paragraph and
the set cover generated in Section 5.3, we can now generate
a test order of the concrete descendant classes to minimize
the use of stubs. The test order is as follows:

1. A.a4(P) tested in ACsEx.B2.

2. A.a1(P) tested in ACsEx.B2.

3. A.a8(int) tested in ACsEx.B2.

4. A.a5() tested in A IMPL.

5. A.a2() tested in A IMPL.

6. A.a7() tested in ACsEx1.B3.

7. A.a6(P) tested in ACsEx.B2.

8. A.a3() tested in ACsEx.B1.

196196196

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on April 14, 2009 at 07:50 from IEEE Xplore. Restrictions apply.

Figure 4. Package diagram for AbstractTestJ.

One stub is required when using the above test order i.e., a
stub is required for A.a6() when testing A.a4(P).

6. Tool Support

In this section we describe the tool used to support test-
ing the features of an abstract class. The tool consists of
two components: (1) TaxTOOLJ - A Taxonomy Tool for the
OO Language Java [3] - that reverse engineers Java classes
producing cataloged entries, and (2) AbstractTestJ - An Ab-
stract Testing tool for Java - that generates a test order for
the methods in an abstract Java class. These components
are part of a larger testing framework - an Implementation-
Based Testing Framework for Java (IBTFJ), currently under
construction. Figure 4 shows the package diagram for the
tool containing TaxTOOLJ and AbstractTestJ. We refer to
the test tool as AbstractTestJ in the remainder of the paper.

6.1. Cataloging Class Features

TaxTOOLJ catalogs the Java classes in a software ap-
plication generating a cataloged entry for each class. The
cataloging of classes is accomplished by utilizing the reflec-
tion facility provided by Java, and generating and inspecting
the partial abstract syntax tree (AST) for each method in a
class. TaxTOOLJ therefore provides the user with two op-
tions during the cataloging process: (1) Reflection Only and
(2) Complete Catalog. In our experiments we only used the
Reflection Only option.

The package edu.fiu.strg.IBTFJ.taxTOOLJ in
Figure 4 shows the packages contained in TaxTOOLJ.
These packages are: (1) clouseauJ API - an interface that
provides access to the details of the class to support the cata-
loging process, (2) tax CatalogerJ - a repository that stores

the cataloged entries, and (3) tax ControllerJ - the subsys-
tem that catalogs the classes in a Java application.

6.2. Generating the Test Order

The major subsystem responsible for generating the test
order for the methods in the abstract class is the package
edu.fiu.strg.IBTFJ.abstractTestJ, shown in
the lower part of Figure 4. The package abstractTestJ
consists of three subsystems: (1) abstractJ - stores the
cataloged entries for the abstract classes and their concrete
descendant classes, as well as the intra-class method call
graph and other supporting graphs; (2) testOrder - im-
plements the near-minimal greedy set-cover algorithm [9]
and test ordering algorithm for the methods in the intra-class
method call graph; and (3) memberDepend - performs a
lightweight dependency analysis on the features of the ab-
stract classes and their concrete descendants. This subsys-
tem supports the construction of the intra-class method call
graph (Figure 3) and modified method call graphs (Figure
2), respectively. All the graphs used in the tool were cre-
ated using the JGraphT library [16].

The dependency analysis was performed using the
BCEL [10] package, which provides an API allowing di-
rect access to the bytecode stored in Java class files. Using
BCEL at the class file level meant that even programs dis-
tributed without Java source code could be analyzed. Fur-
thermore, the compiled bytecode in class files clearly and
unambiguously identifies static and dynamic binding sites,
as well as the fully-qualified attribute and method names,
which greatly facilitates the accurate classification of the
dependencies.

7. Experiments

In this section we present experiments that show the fea-
sibility of applying our testing approach to the cross-section
of Java 1.4.x and 1.5.x applications shown in Table 1. We
first describe the experimental setup, then present our re-
sults, and conclude this section with a discussion of the re-
sults.

The experiments were performed on a Xeon 2.40 GHz
PC with 3GBs of RAM. The settings for the JVM were -
Xms1000m -Xmx1300m -XX:MaxPermSize = 256m, i.e.,
a minimum heap size of 1.0GB, a maximum heap size of
1.3GB and a maximum permanent generation size for the
garbage collector at 256M. These settings were required due
to the large number of classes that were loaded during anal-
ysis.

197197197

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on April 14, 2009 at 07:50 from IEEE Xplore. Restrictions apply.

App. App. Entities Used During Testing: Time (sec)
No. Name Cjs/Ai IMPLs/Ai RMs/Cj RMs/IMPL Stubs/Ai Catalog Test Order
1 SableCC 1.00 0.06 7.13 2.00 0.00 2.2 3.3
2 Soot 0.76 0.39 8.07 5.79 0.29 10.0 27.0
3 JRefactory 0.78 0.63 10.17 5.81 0.12 10.8 39.8
4 AspectJ 0.79 0.59 13.43 6.05 0.51 21.7 72.6
5 Twister 0.64 0.74 9.15 9.72 0.22 33.6 43.3
6 Compiere 0.69 0.66 8.62 6.69 0.18 88.4 244.5
7 org* 0.42 0.73 12.52 4.78 0.14 87.9 198.3
8 JDK 0.52 0.67 6.98 4.97 0.19 186.2 662.8
9 Netbeans 0.54 0.69 6.79 5.88 0.23 154.4 325.2

10 Eclipse 0.83 0.64 10.51 6.70 0.18 269.0 327.2
11 weblogic* 0.68 0.67 8.48 6.35 0.20 252.8 361.1
12 com* 0.61 0.73 12.55 6.28 0.28 315.7 428.2

Summaries 0.69 0.60 9.53 5.92 0.21

Table 3. Summary of the results obtained after applying our testing approach to the applications
in Table 1. The following abbreviations are used in the column headings: Ai - abstract class, Cj -
concrete direct descendant, RM - inherited method, IMPL - class created for testing purposes.

7.1. Results

Table 3 shows a summary of the results obtained when
our testing approach is applied to the applications in Ta-
ble 1. The first two columns in Table 3 are similar to their
counterparts in Table 1. Columns 3 (Cjs/Ais) through 7
(Stubs/Ai) show data obtained during the execution of our
algorithms to generate the test order for the methods of the
abstract classes in the applications. Column 3 contains the
number of concrete direct descendants per abstract class
(Cjs/Ais) used during testing. Column 4 shows the data
for the number of IMPL classes used per abstract class
(IMPLs/Ais). Column 5 shows the number of methods
from the abstract class that were tested in the concrete di-
rect descendant on average (RMs/Cj). A similar number
was generated for the IMPL classes in Column 6. Column
7 contains the number of method stubs per abstract class
(Stubs/Ai) required during testing. We measured the aver-
age time (in seconds) required to perform the main parts of
our algorithm as shown in Columns 8 and 9 of Table 3. Col-
umn 8 shows the average time to catalog the classes in the
application and Column 9 the time to generate the test order
for the abstract class methods being tested in the concrete
direct descendants.

An example of the data presented in Table 3 is as follows:
the JDK [25] application, shown in Row 8, used on average
one concrete direct descendants class for every two abstract
classes tested (Column 3 - 0.52), and used two IMPL classes
for every three abstract classes tested (Column 4 - 0.67).
Recall that the IMPL class is a newly created concrete child
of the abstract class to be tested. Column 5 shows that on

average approximately 7 (6.98) methods from the abstract
classes tested in their concrete children and Column 6 ap-
proximately 5 (4.97) methods testing in the IMPL class.
Column 7 shows that one method stub was required on av-
erage for every five abstract classes tested (0.19). Columns
8 and 9 show that to catalog the 15K classes in JDK took
186 seconds and to generate the test order for the methods
in the abstract classes 662 seconds, respectively.

7.2. Discussion

In this section we highlight the characteristics of the re-
sults that substantiate the use of concrete descendant classes
to test the features of abstract classes. We also consider
other factors that need to be considered when using our ap-
proach, such as minimization of method stubs. In addition,
we discuss threats to the validity of the results for our ex-
perimental data.

7.2.1 Approaches to Testing Abstract Classes

As mentioned earlier, the three dynamic approaches used to
test the features of an abstract class include: (1) defining a
concrete class solely for the purpose of testing the abstract
class, (2) testing the abstract class as part of testing the first
concrete descendant, and (3) testing the minimal set of con-
crete descendants that do not redefine the methods in the ab-
stract parent class. The data in Table 3 favors our approach
to testing the features of abstract classes. The summaries
for Columns 5 and 6 in Table 3 indicate that on average
9.53 out of 15.45 (62%) of the methods in abstract classes

198198198

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on April 14, 2009 at 07:50 from IEEE Xplore. Restrictions apply.

can be tested in their concrete direct descendants. If the
first testing strategy (defining a concrete class for testing) is
used, then the IMPL class for each abstract class would be
created with 16 methods. After testing IMPL class the con-
crete direct descendants would still need to be tested. The
one advantage of using the IMPL class to test the methods
of the abstract class is that these methods are all tested in
one class. That is, there is no need to interleave testing the
methods in other classes due to the test order gnerated to
minimize the number of stubs used, as in our approach.

The second approach to testing the features of an abstract
class (as part of the first concrete descendant) is clearly not
applicable in all situations. The example code in Figure 1
supports this claim, since several of the methods inherited
by the classes B1 and B2 from the abstract class A are re-
defined. The results in Table 3 also support this claim due
the number of IMPL classes required during testing. On
average, for every five abstract classes tested, three IMPL
classes are needed to test some of the methods in the ab-
stract classes (Summaries Row of Column 4 Table 3). Us-
ing the third approach mentioned above without performing
dependency analysis can result in the incorrect behavior of
the methods in the abstract class being tested. The discourse
presented in Subsection 5.3 supports this claim.

Our approach attempts to minimize the number of stubs
required when testing the features of an abstract class (Ai)
by generating an integration test order for the inherited
methods in the concrete descendants (C(Ai)js). The order
generated by our approach may not be optimal when consid-
ering the testing effort for each individual C(Ai)j , since we
did not consider the integration test order for all the methods
in the C(Ai)j . Our focus was on using truly inherited meth-
ods for testing Ai. Note that the truly inherited methods
need not be retested when the concrete descendant classes
are being tested after testing the abstract classes.

7.2.2 Threats to Validity

Since there are no other empirical studies in the research
literature comparing the approaches to testing the features
of abstract classes, it is difficult to completely validate our
results. However, we partially validated the results by gen-
erating similar numbers in two components of the tool. For
example, we generated the number of abstract classes and
the number of concrete direct descendants in TaxTOOlJ and
memberDepend, which uses the BCEL package. The re-
sults generated from both components were consistent. The
subsystems of the abstractTestJ package (see Figure
4) were validated using the illustrative example that threads
the paper and performing a structured walkthrough using
the SableCC application shown in Table 1.

There are several limitations of the study including: (1)
finding the class libraries required by the various applica-

tions, (2) using the library JGraphT [16], and (3) limitations
of the JVM. During the preparation of the applications for
the study, it was difficult to obtain all the libraries used by
the applications being analyzed. The JGraphT library is a
very useful library for generating and manipulating graphs.
However, a few operations are based on pointer arithmetic,
e.g., comparing if two vertices in a graph are equal. Sev-
eral problems were encountered with the JVM when we at-
tempted to catalog large applications. The main problem
was an out of memory error. This was the main reason for
splitting the BEA Web logic [4] into three packages.

8. Related Work

The research literature on testing the features of abstract
classes is sparse. The work by Thuy [28] is most closely
related to our work. Thuy presents three rules for testing
abstract classes. These include: (1) deferred methods must
be redefined in a concrete class and can be tested in that
class, (2) an inherited method can be tested in the frame-
work of a concrete derived class that does not redefine it,
and (3) an inherited method in a concrete class that calls an
extended method in a derived class must be tested in the de-
rived class. The example presented in [28] uses the above
rules to test the methods of the abstract class, and in some
cases the same methods are tested in multiple concrete de-
scendants. Thuy also suggests that it may be better, from
a test management perspective, to test all methods of the
abstract class in one concrete descendant if possible, or to
create minimal set cover. However, this claim was not val-
idated by any study to the best of our knowledge. We ex-
tended the rules presented by Thuy to include the test order
of the concrete descendants in the minimal set cover and the
use of a new concrete descendant if there is no set cover of
the existing concrete descendants. In addition, we perform a
lightweight dependency analysis to ensure that the behavior
of the inherited methods tested in the concrete descendants
is similar to that of the abstract base class.

Kong and Yin [17] describe new testing principles and
an extension of the JUnit tool to support the testing of ab-
stract classes. Their testing approach is based on the par-
allel architecture of class testing (PACT) [21] and uses a
factory design model when used with JUnit to test abstract
classes. For an abstract class A and concrete descendant
B, Tester classes are created in JUnit. This is done to im-
plement the PACT architecture. The A Tester class, which
is also abstract, contains methods to test the features of A.
The B Tester class inherits from the A Tester class and im-
plements the abstract methods from A Tester. The B Tester
implementation is then used to perform testing on A Tester,
thereby testing A. Our approach does not provide the im-
plementation details to perform the actual unit testing of the
abstract class as in the work by Kong and Yin.

199199199

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on April 14, 2009 at 07:50 from IEEE Xplore. Restrictions apply.

9. Concluding Remarks

In this paper we have presented an approach that sup-
ports the intra-class testing of the features in an abstract
class. The approach generates a method integration test
order for an abstract class that minimizes the number of
method stubs required, and identifies the methods in the
abstract class that can be tested through its concrete de-
scendants. We also presented a description of the testing
tool (AbstractTestJ) that implements our approach, and the
results of experiments performed on classes from a cross-
section of Java applications using AbstractTestJ. Our future
work includes performing comparative studies with other
techniques used to test the features of abstract classes.

10. Acknowledgments

This work was supported in part by the National Science
Foundation under grant HRD-0317692.

References

[1] ComPiere, Inc. Compiere, August 2005. http://www.
compiere.org/.

[2] M. Atkinson. JRefactory, May 2004. http://
jrefactory.sourceforge.net/.

[3] D. Babich, K. Chiu, and P. J. Clarke. TaxTOOLJ: A tool to
catalog Java classes. In 18th International Conference on
Software Engineering and Knowledge Engineering, pages
375 – 380, July 2006.

[4] BEA Systems, Inc. WebLogic Server 9.1 , Dec. 2005.
http://www.bea.com/.

[5] R. V. Binder. Testing Object-Oriented Systems: Models, Pat-
terns, and Tools. Addison-Wesley, 2000.

[6] L. Briand, Y. Labiche, and Y. Wang. Revisiting strategies for
ordering class integration testing in the presence of depen-
dency cycles. In 12th International Symposium on Software
Reliability Engineering, pages 287–297, Los Alamitos, CA,
Nov. 2001.

[7] P. J. Clarke and B. A. Malloy. Using a taxonomy to analyze
classes during implementation-based testing. In 8th IASTED
Intl. Conf. on Software Engineering and Applications, pages
288–293, Nov 2004.

[8] P. J. Clarke and B. A. Malloy. A taxonomy of OO classes to
support the mapping of testing techniques to a class. Journal
of Object Technology, 4(5):95–116, 2005.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. MIT, and McGraw Hill, Cam-
bridge, MA, 2nd edition, 2001.

[10] M. Dahm, J. van Zyl, E. Haase, D. Brosius, and T. Curdt.
Byte Code Engineering Library v5.2, June 2006. http:
//jakarta.apache.org/bcel/.

[11] Eclipse Foundation. Eclipse, Jan. 2007. http://www.
eclipse.org/.

[12] F. D. C. Fernandes and M. Riou. Twister, Mar 2005.
http://www.smartcomps.org/confluence/
display/twister/Home.

[13] E. M. Gagnon, B. Menking, M. Nowostawski, K. K. Ag-
bakpem, and K. Gergely. SableCC, Dec 2005. http:
//sablecc.org/.

[14] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Lan-
guage Specification. Prentice Hall, 3rd edition, 2005.

[15] M. J. Harrold, J. D. McGregor, and K. J. Fitzpatrick. In-
cremental testing of object-oriented class structures. In Pro-
ceedings of the 14th International Conference on Software
Engineering, pages 68–80. ACM, 1992.

[16] JGraphT Development Team. JGraphT 0.7.0, July 2006.
http://jgrapht.sourceforge.net/.

[17] L. Kong and Z. Yin. The extension of the unit testing tool
Junit for special testings. In 1st Intl. Multi-Symposium on
Computer and Computational Sciences, Vol 2, pages 410–
415, Washington, DC, 2006.

[18] Y. Le Traon, T. Jéron, J.-M. Jézéquel, and P. Morel. Efficient
object-oriented integration and regression testing. IEEE
Trans. on Reliability, 49(1):12–25, 2000.

[19] B. A. Malloy, P. J. Clarke, and E. L. Lloyd. A parameter-
ized cost model to order classes for class-based testing of
C++ applications. In 14th International Symposium on Soft-
ware Reliability Engineering, pages 353–364. IEEE Com-
puter Society, 2003.

[20] R. C. Martin. Agile Software Development: Principles, Pat-
terns, and Practices. Prentice Hall, 2003.

[21] J. D. McGregor and D. A. Sykes. A Practical Guide To
Testing Object-Oriented Software. Addison-Wesley, 2001.

[22] B. Meyer. Object-Oriented Software Construction. Prentice
Hall PTR, 1997.

[23] NetBeans Development Team. NetBeans, Jan. 2006. http:
//www.netbeans.org/.

[24] Soot Contributors. Soot, Aug 2005. http://www.
sable.mcgill.ca/soot/.

[25] Sun Microsystems, Inc. Core Java J2SE 5.0, February 2005.
http://java.sun.com/j2se/1.5.0/.

[26] A. Taivalsaari. On the notion of inheritance. ACM Comput.
Surv., 28(3):438–479, 1996.

[27] The AspectJ Team. AspectJ, Dec. 2005. http://www.
eclipse.org/aspectj/.

[28] N. Thuy. Testability and unit tests in large object-oriented
software. In 5th Intl. Software Quality Week, pages 1–9.
Software Research Institute, May 1992.

200200200

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on April 14, 2009 at 07:50 from IEEE Xplore. Restrictions apply.

