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ABSTRACT 
 
Two of the primary factors in the development of 
networked multiplayer computer games are network 
latency and network bandwidth. Reducing the effects of 
network latency helps maintain game-state fidelity, 
while reducing network bandwidth usage increases the 
scalability of the game to support more players. The 
current technique to address these issues is to have each 
player locally simulate remote objects (e.g. other 
players). This is known as dead reckoning. Provided the 
local simulations are accurate to within a given 
tolerance, dead reckoning reduces the amount of 
information required to be transmitted between players. 
This paper presents an extension to the recently 
proposed Hybrid Strategy Model (HSM) technique, 
known as the Dynamic Hybrid Strategy Model 
(DHSM). By dynamically switching between models of 
user behaviour, the DHSM attempts to improve the 
prediction capability of the local simulations, allowing 
them to stay within a given tolerance for a longer 
amount of time. This can lead to further reductions in 
the amount of information required to be transmitted. 
Presented results for the case of a simple first-person 
shooter (FPS) game demonstrate the validity of the 
DHSM approach over dead reckoning, leading to a 
reduction in the number of state update packets sent and 
indicating significant potential for network traffic 
reduction in various multiplayer games/simulations. 
 
INTRODUCTION 

Networked multiplayer computer games are one of the 
most important areas of an already burgeoning 
computer games industry. In a formal domain such 
applications belong to a class more commonly known as 
Distributed Interactive Applications (DIAs). These 
systems typically involve many users simultaneously 
interacting in a simulated virtual environment. Game 
designers are constantly seeking to scale such 
applications to more and more simultaneous users 
whilst still maintaining a high quality of interactivity 
and responsiveness. However, a number of technical 
problems combine to make delivery of such an 

experience difficult (Singhal and Zyda 1999; McCoy et 
al. 2003). One such problem is latency, which is the 
time it takes for information to propagate across the 
network to all participants. Another closely related issue 
is the problem of network bandwidth. Within a DIA we 
refer to these problems as the information updating 
issue. Several methods have been devised to reduce the 
quantity of data that needs to be transmitted between 
participants. The standard for Distributed Interactive 
Simulation (DIS) defines one such method known as 
dead reckoning (IEEE 1995), a form of client predictive 
contract mechanism. 
 
Recently, an alternative technique known as the Hybrid 
Strategy Model (HSM) has been introduced, which 
offers an improvement over the performance of dead 
reckoning (Delaney et al. 2003; Delaney 2004). It is a 
hybrid predictive contract technique, which dynamically 
switches between a short-term dead reckoning model 
and a longer-term user behavioural model, allowing 
quasi-deterministic modelling of an entity’s dynamics. 
This can reduce the number of communicated update 
packets required for remote modelling of entities when 
compared to the use of a pure dead reckoning model 
alone. 
 
This paper demonstrates how to apply the HSM 
technique when behavioural models must be 
recalculated during run-time as users pursue a dynamic 
goal. The original exposition of the HSM method was 
only ever demonstrated with fixed navigational goals. In 
section two of this paper we describe predictive contract 
mechanisms as used for information updating in DIAs. 
Existing solutions to this issue, including dead 
reckoning, are outlined. In particular the HSM 
technique is summarized. Section three describes our 
extension of this proposed hybrid switching technique, 
referred to as a Dynamic Hybrid Strategy Model 
(DHSM), and its implementation is discussed in section 
four. Several test environments were developed to 
compare this new technique with existing dead 
reckoning techniques. These environments are described 
in section five. Example simulation results are presented 
in section six for both the DHSM and dead reckoning 
techniques. Finally, the paper ends with the conclusions 
and suggestions for future research. 
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PREDICTIVE CONTRACT MECHANISMS 

The most common solution to the information updating 
issue within DIAs involves a client-side predictive 
contract mechanism called dead reckoning (IEEE 1995). 
All participating clients agree to maintain the same low-
order local models of the dynamics of all other 
participating entities. This is the contract. Each 
participant also maintains a model of its own entity 
dynamics, which it continuously compares to its actual 
dynamics. When these differ by a pre-defined error-
threshold amount, update information is broadcast to all 
other participants, who then proceed to update their 
models for that entity based on this newly received state 
information. Convergence algorithms are typically 
incorporated to allow a natural transition to occur 
between the modelled and actual motion when update 
data arrives. 
 
Alternative methods have also been explored, and these 
include relevance/area-of-interest filtering and multicast 
groups (Rak and van Hook 1996), packet bundling 
(Liang et al. 1999), data compression (Van Hook et al. 
1994), time management, priority scheduling and 
visibility culling (Faisstnauer et al. 2000). A 
comprehensive overview of such consistency 
maintenance measures can be found in (Delaney 2004). 
In addition, various enhancements have also been 
proposed for use with the standard dead reckoning 
algorithm, including adaptive error-thresholds (Lee et 
al. 1999; Shim and Kim 2001), multi-step dynamic 
curve fitting (Singhal and Cheriton 1994) and pre-
determination of likely error-threshold deviations 
(Zhang et al. 2004). 
 
The Hybrid Strategy Model 

The Hybrid Strategy Model (HSM) as proposed in 
(Delaney et al. 2003) is a predictive model of the 
following form: 
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where x is any conventional dead reckoning model, 
Γ is a long-term model of entity behaviour and p is a 
binary weighting factor governed by: 
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where θ  represents a distance measure threshold 
between the actual behaviour E and the long-term 
model. 
 
The model given by M is used by participating clients 
in a DIA. The parameters and initial entity state used by 
the model are updated every time the state deviates from 
the true state by a predefined threshold amount mT . 

 

It has been shown that this approach leads to a reduction 
in the number of packets that need to be transmitted in a 
DIA for a given consistency. However up to now this 
approach has only ever been applied to DIAs where the 
long-term models are fixed navigational behaviours in 
which an entity is traversing an environment. To apply 
the HSM when a user’s behaviour is reacting to a 
changing goal (originally defined as a dynamic goal in 
Delaney’s original paper) is non-trivial. In such cases, 
suitable models of user behaviour are required which 
are clearly complex functions of, among other things, 
the environment, user experience and intention, and user 
ability. Nonetheless, for a restricted application such as 
an FPS many of these dependencies can be modelled 
adequately for HSM purposes in certain situations. In 
the following two sections, our approach to applying the 
HSM technique to dynamic goals in a realistic FPS is 
demonstrated. 
 
THE DYNAMIC HYBRID STRATEGY MODEL 

A Dynamic Hybrid Strategy Model (DHSM) consists of 
a set of i candidate prediction models given by: 
 

{ }icandidate mmM ,,1 KK=  

In addition, a default model is chosen to provide initial 
prediction for the DHSM (typically a short-term dead 
reckoning model would be chosen as default, though 
this is not a necessity): 
 

{ }candidatedefaultdefaultinitial Mmmm ∈= ,  
During each simulation step, the DHSM has a currently 
selected active model (beginning with the initial model) 
that is used to perform actual prediction and entity-state-
update (ESU) packet generation for a user. However, 
the DHSM also runs prediction for each candidate 
model in parallel with the active model and records each 
associated prediction error for every simulation step: 
 

For candidatecurrent Mm ∈  

- Predict ( )currentmP  

- Compute Error ( )currentmE  

Endfor 
 
When the current prediction error for the active model 
exceeds the allowable error-threshold, an ESU packet is 
required to be generated and transmitted. At this point, 
the average prediction error (APE) since the last 
transmitted ESU packet is computed for each candidate 
prediction model. This assigns a score to each model 
based on overall performance between consecutive ESU 
packet transmissions. The model that exhibits the best 
score (i.e. lowest APE) is then chosen to be the current 
best model. 
 

If ( ) holdErrorThresmE active ≥  

For candidatecurrent Mm ∈  



- Compute avg. error ( )currentmAPE  

Endfor 

bestm  = Argmin ( )( )currentcurrent mmAPE ∀,  

If bestactive mm ≠  

- bestactive mm =  

Endif 
Endif 

 
The currently selected active model is switched over to 
the determined best model if necessary (i.e. if we are not 
already using the best model), and an ESU packet is 
generated and transmitted. Appended onto the end of 
the packet is an identifier number indicating which 
candidate model is now in use. When remote clients 
receive this ESU packet, they can use this ID to switch 
their own local models of prediction in accordance with 
the new active model. This process is repeated every 
time the allowable error-threshold is exceeded, resulting 
in dynamic switching between prediction models based 
on their current performance in relation to one another. 
 
DHSM IMPLEMENTATION 

The DHSM implementation presented in this paper 
utilizes a candidate set of just two prediction models: 
dead reckoning and shortest-path. 
 
Dead-Reckoning (DR) 

This is the standard first-order, one-step short-term 
dead-reckoning prediction algorithm as originally 
detailed in the Standard for Distributed Interactive 
Simulations (DIS) (IEEE 1995). It is given by the 
following equation of motion: 
 

tVPP ∆+= 00  

where 0P  and 0V  refer to initial position and velocity 

respectively and t∆  is the time increment for the 
current prediction step. 
 
Shortest-Path (SP) 

This is a simple dynamic first-order, one-step 
behavioural model that assumes a user will move along 
the shortest-path from the current position to the target 
position (i.e. their dynamic goal) with constant speed. It 
is given by the following equation of motion: 
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where 0P  and 0V  refer to initial position and velocity 

respectively, t∆  is the time increment for the current 

prediction step and T  refers to the current target 
(dynamic goal) position. 
 

The design of this shortest-path model was driven by 
previous work that we have done in analysing the 
behaviour of users within various DIAs (and in 
particular networked multiplayer computer games) 
(McCoy et al. 2004a; McCoy et al. 2004b). It is 
grounded in the notion that within these networked 
games, users often exhibit tendencies to move directly 
closer to their target of interest when attempting to 
engage, thereby maximising their probability of 
disabling an opponent. During these time periods, 
correlation can often be observed between both sets of 
data, indicating a tight coupling of behaviour for both 
players. It is this coupling of data that we are exploiting 
with the shortest-path model in order to define a user’ s 
behaviour in terms of their dynamic goal. This allows us 
to reduce the transmission of state data required to 
accurately predict the user using a remote model. 
 
For the implementation of the DHSM, we have also 
included an ancillary line-of-sight score function used to 
weight the selection of the shortest-path model over the 
dead reckoning model. It states that unless there is a 
direct line-of-sight between a user and their dynamic 
goal, the DHSM will not switch from using the DR 
model to the SP model, even if the SP model would 
have provided a better average prediction error since the 
last received ESU packet. The motivation behind this is 
the assumption that if a user cannot see the dynamic 
goal, the probability of rapidly changing behaviour 
occurring is far greater, thus decreasing the chance that 
the SP model will provide any benefit for short-term 
prediction over that provided by the standard DR model. 
 
DATA COLLECTION 

We utilize the Torque Game Engine for performing 
experiments and data collection (Marshall et al. 2004). 
During a user’ s interaction within a test environment, 
data is sampled at a rate of 20Hz and consists of 
position, velocity, and forward facing direction vectors 
for each player (human or AI controlled). Discrete 
events are recorded for the cases of a player being 
disabled, firing their weapon or (in the case of a human 
user) interacting directly with the control device (i.e. 
mouse and/or keyboard). For each game tick, a trace can 
be performed to determine if there is an unobstructed 
line-of-sight (LOS) between any two players. This trace 
information is combined with the forward facing 
direction vectors in a post-processing step to determine 
onscreen LOS status for each sampling time. 
 
Figure 1 shows plan (top-down) views of the three 
environments used for the experiments. In each case, a 
single test subject was asked to play against a single 
non-reactive computer-controlled opponent (BOT). The 
goal here was to disable the BOT a desired number of 
times as fast as possible. Each environment consisted of 
a unique path network that was used by the BOT for 
constant circumnavigation. The motivation behind this 
particular set of test scenarios was to ensure that the 
user’ s dynamic goal (in this case the BOT) was known 



in advance, thus negating any possible requirement for 
performing some kind of target identification procedure 
(as would be the case if there were multiple independent 
dynamic goals for a user to choose from). 
 

 

Figure 1: Test environment plan views showing path 
networks 

 

RESULTS AND ANALYSIS 

Presented below in Tables 1-3 are simulation results for 
packet number, average prediction error and standard 
deviation error respectively for a collection of three 
datasets using a variety of increasing error-thresholds 
(to put the error-thresholds into perspective, the height 
of a player within our test environments is 
approximately 2.3 units). Each dataset was recorded 
using a different test subject and test environment (the 
particular environment is noted directly above the 
results in the tables). The term ‘DR’  refers to the 
standard first-order, one-step dead reckoning prediction 
model and is used as the base comparison with which to 
compare results. The term ‘DHSM’  refers to the 
Dynamic Hybrid Strategy Model using both the 
standard first-order, one-step dead reckoning prediction 
model and the first-order, one-step shortest-path 
prediction model (as outlined previously). The term ‘% 
Red’  refers to the percentage reduction (or increase) in 
the associated variable (number of packets sent, average 
prediction error or standard deviation error). A negative 
value indicates better performance with respect to the 
Dynamic Hybrid Strategy Model in direct comparison 
with the standard dead reckoning model. A heartbeat 
timeout of 5 seconds was set for both the DR and 
DHSM models (meaning if the error-threshold has not 
been exceeded for 5 seconds or more, an ESU packet is 
automatically generated). This reflects a typical timeout 
value that might be used within a DIA system (Singhal 
et al. 1999). Finally, ideal network conditions were 
assumed (i.e. no network latency or packet loss). 
 
From inspection of the results, it is noted that in almost 
every case, the DHSM offers a reduction in the number 
of packets sent that ranges from small bandwidth 
savings (in the region of 1% or lower packet reduction) 
to very large bandwidth savings (in the region of 20% 
and sometimes higher packet reduction). It is important 
to note here that a quantitative comparison of inter-
dataset results is not productive, as each test conducted 
is independent of any other. Despite this fact however, 
comparatively speaking it would appear that the 
percentage savings are partly dependent on the 
particular test subject and test environment, and 

Table 1: Packet number results for several datasets 

 
 

Table 2: Average prediction error results for several 
datasets 

 
 

Table 3: Standard deviation error results for several 
datasets 

 
 
definitely dependent in this case on the particular 
dynamic prediction model being used (i.e. shortest-
path). A more advanced and accurate prediction model 
would almost certainly yield even better results, 
particularly if it were tailored for a specific user’ s 
behavioural traits and habits. It is also worth noting that 
the reduction in number of packets sent does not appear 
to be linearly dependent on the error-threshold (i.e. 



increasing the error-threshold does not guarantee a 
higher reduction in number of packets sent over the 
corresponding standard dead reckoning prediction 
model). 
 

 

Figure 2: ∆PacketNum vs error-threshold (Dataset 1) 

 

Figure 3: ∆PacketNum vs error-threshold (Dataset 2) 

 

Figure 4: ∆PacketNum vs error-threshold (Dataset 3) 

Further inspection of the results highlights the fact that 
the reduction in packet numbers (and hence bandwidth 
savings) for the DHSM often comes at the cost of 
slightly reduced prediction accuracy for tight error-
thresholds ( 4≤ ). Conversely, at higher error-thresholds 
 ( 5≥ ) the DHSM often provides improved prediction 
accuracy. In addition, the DHSM also offers a smaller 
standard deviation for the prediction error over its DR 

counterpart in practically every case, implying a slightly 
more stable predictive capability. This is further 
evidenced in Figures 2-4 that present the rate of change 
of generated packets as a function of the increasing 
error-threshold for each dataset. Inspection of these 
plots reveals no erroneous packet generation behaviour 
for the DHSM when compared with the DR mechanism. 
On the contrary, they provide a close match for all three 
datasets. 
 
CONCLUSIONS 

In this paper, we have described a novel extension to the 
concept of the Hybrid Strategy Model (HSM) called the 
Dynamic Hybrid Strategy Model (DHSM). Like the 
HSM, the DHSM attempts to reduce the amount of 
entity-state-update (ESU) packets required to maintain 
consistency within a Distributed Interactive Application 
(DIA) such as a networked multiplayer computer game. 
Unlike the HSM, which uses fixed long-term goals, the 
DHSM takes account of a user’ s behaviour towards a 
dynamic goal and attempts to exploit the shared 
information contained within this relationship. By 
switching between various candidate prediction models 
at appropriate times, the DHSM provides improved 
remote prediction for clients participating within the 
DIA. 
 
We have provided simulation results for several 
different test subjects and test environments that verify 
the validity of our approach, showing a reduction in the 
number of ESU packets sent (bandwidth usage) in 
favour of the DHSM technique over pure dead 
reckoning in the majority of our specific test situations. 
In addition, improved average prediction error for 
higher error-thresholds and improved standard deviation 
error make this a promising technique for possible use 
within a prediction scheme incorporating some kind of 
adaptive error-threshold selection (Lee et al. 1999; Shim 
and Kim 2001). Despite the promising results however, 
a better understanding of the relationship between 
packet reductions, user experience and test environment 
topology is required, and to this end additional tests will 
need to be conducted utilizing more complex, real-
world scenarios. These include such things as realistic 
network conditions, reactive computer-controlled 
opponents and human vs. human experiments. 
 
Future work will involve the investigation of advanced 
user-modelling techniques to provide a better pool of 
candidate prediction models that work under more 
general and complex situations, where the likes of 
simple shortest-path type prediction will not provide 
enough prediction accuracy. Possible avenues of 
approach here include the use of neural networks 
(Thurau et al. 2003) and probabilistic independence 
networks (Smyth et al. 1996) to model the relationships 
between users and dynamic goals. In addition, 
extensions to the switching criteria and score functions 
used by the DHSM will also be investigated with the 
aim of ensuring optimal model switching. 
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