
The E-Motion System: Motion Capture and Movement-based
Biofeedback Game

D.Kelly*, D.Fitzgerald**, J.Foody*, D.Kumar**, T. Ward***, B.Caulfield** and C.Markham**

*Department of Computer Science, N.U.I Maynooth, Ireland.
**School of Physiotherapy & Performance Science, University College Dublin, Dublin, Ireland.

***Department of Engineering, N.U.I. Maynooth, Ireland

dan_kelly_ie@hotmail.com

Abstract:

This paper describes the development of a movement
based training game aimed at teaching users an
exercise program. This is achieved through analysing
body posture as the player performs the exercise
routine while concurrently receiving real-time
feedback from the game. An in-depth post game
feedback system also features, giving the player a
detailed account of their performance after
completing the exercise routine. Analysis of the
player’s posture is achieved by placing orientation
sensors on appropriate parts of the players’ body. The
game can then read and interpret data from these
sensors reconstructing a live 3D model of the players’
posture. The game has the kinematic data of an expert
performing the current exercise routine stored in
memory, which is compared to the kinematic data of
the current player and appropriate feedback is given
to aid the player in performing the exercise. The
theme of the prototype game currently developed is
that of a yoga training game (E-Yoga).

Keywords: Motion Capture, Real time motion
rendering, Biofeedback, Exercise Training,
Kinematics, Performance feedback, Orientation
Sensors,

I Background and Introduction

With the increasingly sedentary lifestyles of modern
living, more and more people are suffering from
various musculoskeletal pathologies such as back
pain and neck pain. In addition obesity particularly
amongst children is emerging as the most serious

health challenge of our times. Ironically in the light
of the contribution of this paper, computer and video
games have been identified as one of the main
culprits in contributing to the low level of exercise
engaged in by children in the developed world.
Therapeutic exercise programmes are advocated both
to prevent and treat these physical conditions but
adherence levels to such programmes are poor.
Motivating people to participate in such exercise
programmes is a challenge. We feel creating a
computer game to increase the enjoyment during the
exercise and give feedback and encouragement
during the programme; players’ m otivations to
participate in therapeutic exercise programs can be
enhanced.

Current movement based games (i.e. EyeToy games)
are based on 2 dimensional movements and allow the
player to deviate from the desired exercise sequence
without direct warning or feedback. This can be
solved by tracking body movements using orientation
sensors and analyze all 3 dimensions of the players’
movement. We utilized commercial orientation
sensors [1] to develop a prototype game with the
view of integrating our own low cost sensors [2] at a
later date.

The theme of the currently developed game is that of
a yoga training game. Kinematic data of a yoga
expert performing the sun salutation yoga exercise
sequence was recorded by equipping a trained yoga
teacher (i.e. the expert) with the orientation sensors
and recording the kinematic data of the sequence (see
Figure 1). T he experts’ data is stored in the system

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by MURAL - Maynooth University Research Archive Library

https://core.ac.uk/display/297010388?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and a players’ performance of the routine is
calculated using a comparison system between the
players’ and experts’ kinem atic data.

Figure 1 Expert training poses for Sun Salutation
sequence.

The graphics and 3D environment of E-Yoga were
designed with the aim giving the game a relaxing
feel. The game was developed using the DirectX 9
API within a managed environment using C# as the
development language. The main contribution of
this paper is the design and building of a real time
kinematic feedback application capable of live
motion rendering and feedback.

II Development

The development of the game can be divided into two
components. (1) Motion capture development using
orientation sensors and (2) development of the game
framework, engine and graphics. Each of these two
components will now be described:

Motion Capture Engine:

Ten orientation sensors are used as the basis of the
kinematic sensor system for the development of the
game. The Xsens Mtx sensor, seen in Figure 1, is the
sensor used for the current version of the system.
Each Xsens sensor is a small lightweight sensor
which detects 3 dimensional orientation using 2
accelerometers, a magnetometer and a gyroscope [3].

Figure 2 MTx orientation tracker

Each of the ten sensors is connected to a small
wearable base unit which sends data to the motion
capture engine via Bluetooth. If each of the sensors is
placed on appropriate parts of the body, the
orientation of each part can be tracked dynamically.
Using this data it is then possible to animate a 3D
character model mimicking the movements of the
player wearing the orientation sensors.

When modelling a 3D character for animation, the
model is set up such that the bones of the character
are in a hierarchical tree structure with the hips being
the root of the tree [4]. This data structure means that
a bones’ position is described relative to its parent
bone. However, each of the orientation devices
detects its orientation relative to the global world
meaning that some computation must be applied to
the raw output of each sensor before the
corresponding bone in the 3D model can be
repositioned to a new orientation. The motion capture
engine developed here does all orientation
calculations using quaternion algebra [5]. To
calculate the orientation of a bone relative to its
parent bone the following equations are used:

1 parentRawrawrelative qqq (1)

Where:

2
3

2
2

2
1

2
0

32101

qqqq
kqjqiqqq




 (2)

Where qraw is the quaternion representing the global
orientation of the current sensor and qparentRaw is the
quaternion representing the global orientation of the
parent sensor of the current sensor.

Using these equations we can now calculate a
quaternion for each bone to describe its orientation
relative its parent, and in the case of the root bone its
orientation is defined by the corresponding sensors’
raw output only as it has no parent. The game is
developed using the DirectX 9 API, therefore all
movements of objects within the environment must
be defined as a rotation and translation using
homogenous matrices [6]. To convert the quaternion
calculated in (1) to a rotation matrix that can be used
to rotate a particular bone within the game
environment, (3) is used [5]:






















1222222

2212222
2222122

2
3

2
010322031

1032
2
2

2
03021

20313021
2
1

2
0

qqqqqqqqqq
qqqqqqqqqq
qqqqqqqqqq

M

 (3)

In order for the 3D character model to accurately
mimic the players’ movements, the game must
perform some calibration. The calibration consists of
getting the player to stand upright with legs straight,
arms parallel to the ground and looking straight. Then
to calibrate, the sensors are reset having the effect of
setting the current orientation of all sensors to zero
degrees rotation about all axes, setting the origin pose
for the player. All orientation changes made to the
sensors, and thus the corresponding bone on the 3D
model, will be made relative to the same origin pose.
Therefore the 3D model now mimics the players’
movement.

This motion capture engine is utilized within a game
architecture to playback live and recorded motion, to
record motion and to analyze and give feedback on
motion. An overview of this game architecture is
provided in the next section. Figure 4 shows the
motion capture engine in operation within the game
system.

Figure 3 Real Time Motion Capture and Rendering

Game Engine / System Design

A game was developed to utilize the motion capture
engine. The aim of the game is to teach players,
wearing the motion sensors, an exercise routine by
analyzing players movement and giving feedback. A
screenshot of the game can be seen in Figure 3.

Figure 4 In game display; Expert in a Yoga pose
(Pose 8: Downward facing dog pose)

 The game system consists of the following main
components:

1. Game Engine

This module manages creation of game modules,
communication between game modules, input via

mouse and keyboard, timing and rendering to the
screen.

2. User Interface Modules

Modules which render user interface graphics and
manage user input via buttons and text boxes.

3. In-game Controller

When in game mode the game can be in one of four
different states at any given time:

i. Calibrate Mode

The character model is animated using live
Xsens data. A button is provided so users
can invoke sensor calibration. After a
successful calibration the 3D character
model will mimic player movement.

ii. Expert Playback Mode

The character model is animated using pre-
recorded expert kinematic data and an audio
description of each milestone pose is played
at the beginning of each milestone sequence.

iii. Live Mode

The character model is animated using pre-
recorded expert kinematic data, while
kinematic data for live player is being
retrieved and stored in background. The
experts exercise sequence contains a number
of milestone poses which the player must
perform before progressing (see Figure 1 for
the 12 milestone poses for the sun salutation
sequence). On completing each milestone
pose, an audio playback encourages the
player to the next pose. After completing the
motion sequence, offline analysis is
performed on the players’ kinem atic data.
This is achieved by comparing data to that
of the expert. Feedback on performance is
then given and a detailed breakdown of the
players’ performance is displayed.

iv. Player Playback Mode

The character model is animated using pre-
recorded data recorded during the live mode i.e.
playback of users motion.

4. Character Renderer

Creates a character 3D model from a specified .X file
and animates the character given data from a specific
instance of a Motion interface module (see below for
Motion interface module description).

5. Motion Interface Module

This module provides kinematic data to the character
renderer object from live Xsens sensors or pre-
recorded Xsens data. A choice of 2 constructor
overloads determines the source of the kinematic
data. These two calls reflect the two possible modes
of operation for the motion interface module. The
first mode sets up the object so that data is retrieved
from the set of live Xsens sensors and relative
orientation calculations are performed on the data.
The second mode sets up the object so that data is
retrieved from a specified pre-recorded motion file.
Regardless of the mode, data is retrieved by the
calling object in the same manner, that is, a method is
called with the input being an instance of a bone
enumerator. The enumerator specifies w hich bone s’
kinematic data is to be returned. As a result, different
instances of motion interface modules can be easily
interchanged within the character render module,
therefore changing between live animation and pre-
recorded animation can be done in a transparent way.

6. Motion storage and control module

This module manages the loading and saving of
kinematic data to and from file. When parsing from a
file, kinematic data is stored in a 2D array with each
row of the array corresponding to a single frame of
animation. Associated with each frame of animation
is a time, indicating when that frame should be used
to animate the 3D character model, and a marker.
Each motion sequence contains milestone postures
which players must perform before progressing. The
marker is used to indicate if the corresponding frame
is or is not a milestone pose.

The motion object also controls frame timing. This is
achieved by monitoring the amount of time elapsed

since the last frame was returned to the motion
interface module. Using this value it can calculate
which frame to play next using the timing data
associated with each frame. When in live mode and
retrieving data from an expert sequence, the
get_frame method requires an extra Boolean
parameter specifying whether or not the player is in
the same pose as the expert. If the expert is currently
in a milestone pose then the time will not be
advanced until such time as the player performs the
same pose.

7. Environment Renderer

Manages loading and rendering of the 3D
environment, lighting and camera position.

8. Player Info storage and control module

Manages storing, loading and creating player
accounts.

9. Offline Feedback

After completing a motion sequence, the players’
motion data is saved and loaded in a motion object.
The offline feedback takes as input both the players
and the experts motion object and calculates
performance values for each of the sequences
between milestones (4). Currently this figure is
calculated using a distance metric in Euler space.

 




 


























1

1

0
,,,,,,

X

X

MileStone

Milestonei XX

NumBones

j
jijijijijiji

MileStoneMileStoneNumBones

EPEPEP
ceRatingPoseSequen



 (4)

Where E represents Expert, P represents Player, θ
represents yaw , φ represents pitch and ψ represents
roll

In addition a timing rating and a smoothness score is
calculated for the sequence. The smoothness score is
determined through differentiation and comparative
analysis of the respective movement loci.

III Conclusion

In this paper we have demonstrated the possibility of
a movement based biofeedback system allowing a

player to learn, and get feedback on, an exercise
routine such as a yoga routine. It has been shown that
the posture of a person wearing orientation sensors,
positioned at different parts of the body, can be
modelled and analysed by the system. Modelling and
analyzing a sequence of postures performed by an
expert and an amateur (i.e. the player) and comparing
the results can be used as the basis for a feedback
system.

IV References

[1] www.xsens.com, Xsens Technologies B.V.

[2] J Foody, D Kelly, D Kumar, D Fitzgerald, B
Caulfield, C Markham, T Ward, A real time motion
capture system, using usb based tri-axis magnetic
and inertial sensors, for movement based relaxation,
Irish Systems and Signals Conference 2006

[3] MT Software Development Kit Documentation,
Document MT0200P

[4] M. Meredith and S.Maddock, Motion capture file
formats explained, Department of Computer Science,
University of Sheffield.

[5] Jack B. Kuipers, Quaternions and Rotation
Sequences – A primer with applications to orbits
aerospace and virtual reality, Princeton University
Press, ISBN 0-691-05872-5

[6] Tom Miller, Managed Direct X 9, Graphics and
Game Programming, ISBN 0-672-32596-9, Sams
Publishing

V Author Biography

Dan Kelly is a 23 year old Computer Scientist/
Software Engineer and has just graduated with a first
class honours degree in Computer Science from
N.U.I. Maynooth. Dan also has over 15 months
experience working in the software industry working
for Microsoft.

http://www.xsens.com/

