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Abstract. The integrationist principles of systems theory have proven hugely
successful in the physical sciences and engineering. It is an underlying assump-
tion made in the systems approach to biology that they can also be used to
understand biological phenomena at the level of an entire organism or organ.
Within this holistic vision, the vast majority of systems biology research projects
investigate phenomena at the level of the cell, with the belief that unifying prin-
ciples established at the most basic level can establish a framework within which
we may understand phenomena at higher levels of organization. In this spirit,
and to use a celestial analogy, if a disease – effecting an organ or entire body – is
our universe of discourse, then the cell is the star we gaze at. In building an
understanding of disease and the effect of drugs, systems biology makes an
implicit assumption about direct causal entailment between cell function and
physiology. A skeptic might argue that this is about the same as trying to predict
the world economy from observations made at a local supermarket. However,
assuming for the moment that the money and hope we are investing in molecular
biology, genomics, and systems biology is justified, how should this amazing
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intellectual achievement be possible? In this chapter we argue that an essential
tool to progress is a systems theory that allows biological objects and their op-
erational characteristics to be captured in a succinct yet general form. Armed
with this conceptual framework, we construct mathematical representations of
standard cellular and intercellular functions which can be integrated to describe
more general processes of cell complexes, and potentially entire organ.

6.1 Crossing Levels

The cell is the basic building block for higher levels of structural or-
ganization, including the various tissues and organs within a body. It
is for this reason that in trying to understand phenomena at the level
of an organ or whole organism, the vast majority of systems biology
research projects focuses on observations at the level of the cell. What
is suggested here is that we are dealing with two kinds of organization:
structural and functional organization. The cell’s structural organiza-
tion is given by the cell membrane, a nucleus in eucaryotic systems,
and all those components that make up the cell as a biophysical en-
tity. For the functional organization of a system, say an organ such
as the liver, detoxification is achieved through hepatocyte cells realiz-
ing their role (function). At the level of the cell then, the concept of
a pathway, understood as a network of biochemical reactions, is used
to explain cell function, including cell differentiation, proliferation, and
apoptosis.

To explain disease mechanisms, we need to understand the structural
and functional organization of cells and organs. The internal structural
organization of the cell, the molecular characterization of its compo-
nents, has been the focus of modern molecular and cell biology, with
the areas of genomics and bioinformatics taking center stage as a means
of understanding the process. The recent emergence of systems biology
on the other hand, signals a shift in focus, away from molecular charac-
terization and cataloguing of components, toward an understanding of
functional activity. This trend is illustrated in Fig. 1, where the diagram
shows the continuity of development from the contribution of bioinfor-
matic cataloging to the functional description using systems biology.
Our proposition is that this shift of attention toward functional organiza-



A Plea for More Theory in Molecular Biology 119

Fig. 1. The Emergence of Systems Biology as an Area of Research, Separate from
Genomics and Bioinformatics, Signals a Shift of Focus, Away from Molecular
Characterization and Toward an Understanding of Functional activity

tion is the crucial next step toward understanding the mechanisms of life.
To use a culinary comparison, bioinformatics gave us the ingredients list
in the recipe of life. But ingredients can combine in many different ways
and with different outcomes. Therefore, to complete the recipe we must
understand how to combine the ingredients in the correct way. We will
argue that to do this will require new theoretical tools from systems
theory.

While the structural units that make up the parts of a larger whole
suggest themselves more easily, the identification of functional units
(e.g., pathways) and the study of their interactions is a major challenge
for systems biology research. To us the most important questions of
systems biology are

How do the components within a cell interact, so as to bring about the
cell’s structure and realize its functioning? (intra-cellular dynamics)
How do cells interact, so as to develop and maintain higher levels
of structural and functional organization? (inter-cellular dynamics)
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With systems theory being the study of function and organization
per se, systems biology is appropriately defined as a merger of systems
theory with molecular biology [1, 2]. To demonstrate this in technical
terms, the following section takes us from the general systems descrip-
tion of function and organization within an abstract setting, to a systems
description of signal transduction pathways as functional units. By go-
ing from a general system to the model of a specific pathway, we show
that once we look beyond single pathways there is a conceptual frame-
work in which to study truly complex systems in the abstract, and which
allows observations of biological function to be generalized. The reader
with an allergic reaction to mathematical expressions may skip the next
section, in order to read the discussion on why abstraction is useful and
how theory can be practical.

6.2 Systems Thinking

Reviewing the book Systems Theory and Biology: Proceedings of the
3rd Systems Symposium (Cleveland, Ohio, October 1966, edited by
M.D. Mesarović, [3]), Robert Rosen writes in 1968:

“There is no doubt that system-theoretic ideas seem somewhat
strange, and perhaps just a little frightening, to the present genera-
tion of structurally oriented biologists. It is not without irony that
these system-theoretic ideas actually mark a return to the holistic,
functionally oriented view of organisms entertained by biologists
prior to the emergence of biochemistry and molecular biology,
a view which was displaced by the rapid growth of these fields. (. .
.) System theory is emerging as a force in modern biology because
(i) extremely powerful new formal tools are now available for the
study of functional activities (particularly regulation, control, and
information processing) and (ii) the limitations of what we can
really learn about basic biological problems in purely structural
terms are rapidly becoming apparent.” [4]

The early encounters of systems theory with biology unfortunately
could not fulfill their promise. This was no fault of systems theory per se,
but due to the lack of experimental data with which the systems theorist
could test and develop methodologies. Optimists would of course argue
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that the current situation is very different in that we have now vastly
improved technologies to make observations and take measurements
of the cell. Indeed, buoyed forward by the success of high-throughput
measurement in the Human Genome Project, measurement technologies
continue to improve and now extend beyond the measurement of static
‘omic’ properties to the crucial area for systems theoretic modeling – sys-
tem dynamics. General systems theory [5, 6] not only provides us with
techniques to model and tools to simulate systems, but also a methodol-
ogy that is a way of thinking about complex hierarchical organizations.
What we are therefore assuming is that the inside of the cell, as well as
populations of cells, are not random collections of bio-molecules, but
organized entities that we can describe in terms of interacting functional
and structural units.

For complex systems, the well-known dictum is that “the whole is
more than its parts, looked at in isolation.” The correct conclusion from
this is that the cell must not be looked at in isolation but must be con-
sidered in its social context. However, we cannot escape reductionism.
Indeed, the very complexity of the systems under consideration and the
difficulties in conducting experiments force us to look at parts or sub-
systems, but these must be considered in their context if we wish to
understand how they realize their function in a larger whole.

The most basic definition of a system is that of a set of related objects.
Formally, a general system is a relation on variables/indicators/items
defined in set theoretic terms

S ⊂ O1 × O2 × · · ·
The definition of a complex system follows naturally as a relation on
systems/subsystems, i.e.,

S ⊂
∏

j∈J

S j ,

such that there is a distinct behavior of the complex system while the
integrity of the subsystem is preserved. When (sub)systems interact,
they do this through defined interfaces, which we may refer to as inputs
and outputs. For example, in cell signaling, membrane receptors sug-
gest themselves as inputs, receiving a stimulus in the form of ligands
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binding to them. The expression level of a target gene may be defined
as the response, respectively output of the pathway as a system. More
formally, a signal transduction pathway may thus be described as the
system

S ⊆ Ω × Γ ,

where Ω and Γ are related to the stimulus and response, respectively.
Most important for a philosophy of systems biology is that we under-
stand a pathway not as a static graph, but as a network of biochemical
reactions, that is to say, a dynamic system that establishes a causal
connection between stimulus and response. This means that we define
a pathway formally as the mapping

σ : Ω → Γ

ω �→ γ

where a stimulus ω (respectively, response γ) is defined as a temporal
sequence of events

Ω = {ω : I → U} , Γ = {γ : I → Y} .

At any point in time t ∈ I , our system σ receives a stimulus u(t) to which
it responds at time t with y(t). We assume that stimuli and responses
take their values from constant sets U , respectively Y .

A key concept in systems biology is that of a signal ω: ]t0, t1] → U
acting on the system between time t0 and t1, generating a response
γ : ]t0, t1] → Y . In general, we denote the set of acceptable stimuli in
terms of the mapping

ω : I → U ,

and for the response

γ : I → Y ,

where for concentrations we usually assume positive real values U ⊆ Rm+
and Y ⊆ Rq

+. For m = 1 and q = 1 the vector-valued notation reduces to
a single signal or time series. If I = Z+ we have a discrete-time system
model, which corresponds to the collection of experimental data, and
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in which case we could consider Ω and Γ as finite-dimensional vector
spaces, encoding sequences of events

ω = (
u(0), u(1), . . .

)
,

γ = (
y(1), y(2), . . .

)
.

In modeling it often makes sense to assume a signal that is continu-
ous in value and time. For I = R+ a continuous-time system, with
ω: ]t1, t2] → U in Ω and γ : ]t2, t3] → Y in Γ . The entire sets of stim-
uli and responses that the cell can realize form the objects Ω and Γ of
our definition of a stimulus–response system.

The description of a pathway σ as a mapping from Ω to Γ , is an
external description, without consideration for the internal interactions
that generate its input–output behavior. Extending therefore our abstract
model with a state-space X, we have the following state-space represen-
tation:

Dynamic pathway modeling is the process by which we identify and
characterize the mathematical objects Ω, Γ , X as well as the mappings
that put these objects in relation to another. At any point in time, the
behavior of the system is thus encapsulated by the state x ∈ X. The
temporal evolution of the state, x(t), implies the existence of a state-
transition map

ϕ : I × I × X × Ω → X

whose value is the state x(t) = ϕ(t; t0, x,ω), that is, an element of the
state-space X. In this setting, the state x at time t arises from an initial
state x0 = x(t0) ∈ X at some initial time t0 ∈ I under the action of
stimulus ω ∈ Ω.

Depending on the nature of the biological process under considera-
tion, but also motivated by personal preference and mathematical conve-
nience, one can choose among a number formalisms by which to translate
biological understanding into a mathematical model. To name but a few,
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we can distinguish between mass-action, power-law, or S-systems, and
Michaelis-Menten models [7, 8] that are based on differential equations.
The computer scientist tends to find the setting of automata theory,
machines and formal languages (π-calculus, Petri-nets, process alge-
bras) more preferable. For any formalism mentioned, one question is
always the role or relevance of randomness [9]. If the answer is that
random fluctuations cannot be ignored, we are led to stochastic mod-
els, based on Markov-processes, Langevin-, or Chapman-Kolmogorov
equations [10].

By far the most frequently employed approach is to represent temporal
changes of protein concentrations as differential (rate) equations

ẋ = V
(
x(t), u(t)

)

y(t) = h
(
x(t)

)

Here ẋ describes the rate of change in state vector x = (x1, . . . , xn)

at time t. Above V is again a map, which in the context of dynamic
systems theory, is referred to as a vector field. The map h describes the
observations we make on the states of the system. A special case of the
above representation is a class of nonlinear systems models for which
there exists some experience

ẋ = f
(
x(t)

) +
m∑

i = 1

gi
(
x(t)

)
ui(t), y j = h j

(
x(t)

)
, 1 ≤ j ≤ q .

Variable u is considered a state-independent external control input to
the system. Not surprisingly, most of the research around this formalism
has emerged from the control engineering community (e.g. [11, 12,
13]). A computer simulation of the temporal changes, x(t), of protein
concentrations is referred to as the solution of the differential equations
above. Toward this end we interpret the above introduced map ϕ as
an evolution operator ϕt : X → X, satisfying the semigroup properties
ϕ0 = id and ϕt+s = ϕt ◦ϕs. The action of ϕt on a set of initial conditions
is then referred to as a flow. The graph of ϕ in I × X, that is, the set
{ϕt ◦ x0} is called the orbit through x0. The orbits {x(t)} are also known
as solution trajectories of the system.

Let us now look at an example and consider the following simple
biochemical reaction network:
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In this pathway map, S denotes the stimulus, R the response, and E
is an intermediate component, and E∗ denotes its activated form. The
diagram immediately suggests the existence of some positive feedback
loop: an increase in R causes an increase in the activation of E, which
in turn should increase R. A rate equation that realizes this system is the
following

dR

dt
= k0 E∗(R) + k1S − k2 R

where E∗(R) is short for the Goldbeter-Koshland function [14]. The
analysis of the system proceeds as follows: The right-hand side of the
rate equation above consists of two parts, positive contributions for the
production of R, that is, k0 E∗(R) + k1S, and its degradation, k2 R. If we
plot these two curves (Fig. 2), we at once see that this simple system
can show some interesting behavior. The intersections of the two lines
indicates steady states in which the rate of production and the rate of
degradation are balanced. The number of such steady states and their
nature are an important characteristic for the behavior of a dynamic
system. We see that for different levels of the stimulus, the system
may display rather different behaviors without the system itself having
changed.

Figure 3 (left) illustrates the bistable behavior of this system. As
a critical threshold of S is passed, the system switches to a high steady
state level of R. The simulation of the system for different initial con-
ditions R(o) (shown on the right) reveals the sensitivity of the systems
behavior on initial conditions.

What we have discussed so far provides us with an analysis of the
qualitative behavior of the system. The stimulus–response curve pre-
dicts what kind of temporal behavior could display. This is very im-
portant since the observations we make strongly depend on the strength
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Fig. 2. Comparison of the rate of degradation (solid line) and the rate of produc-
tion for different signal strengths (dashed lines)

and duration of the stimulus as well as initial conditions. As shown in
Fig. 4, if in two separate experiments we choose a stimulus which is
below/above the critical point or we choose a stimuli of different dura-
tion, we may observe rather different curves from the same system. It
appears that without exhaustive perturbation studies, we are not able to
unambiguously describe the system. The conclusions we can draw from
this simple system are significant. If we accept the view that the cell
realizes its function in space and time, then for even simple systems the
design of experiments will require systematic perturbations, which are
far more expensive and time- consuming than what is currently feasible
or considered acceptable. To make matters worse, despite considerable
advances of dynamic systems theory, there is a need for more research
on methods that help us reconstruct or hypothesize rate equations from
experimental data.
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Fig. 3. First: Signal-response curve. The steady states (stable solutions) are
shown as solid lines. The unstable solution is drawn as a dashed line. Because of
the two stable branches, the system is called bistable. Second: Relaxation into
the steady state for different initial response signals R0. For R0 < Rss(S) the
system achieves a steady state on the lower branch. Outside this range the upper
branch becomes the final state. For comparison, the unstable solution and the
critical response signal Rcrit are shown
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Fig. 4. First: The temporal evolution for two different stimuli, the first subcriti-
cal and the second supercritical. Once the response relaxes into the S-dependent
steady state, the signal is switched off. The critical response signal Rcrit is
important for the change of the behavior of the system. At this point the ac-
tivation/deactivation strongly increase from a lower to a high level. Second:
temporal evolution for a supercritical signal S = 14 of different durations. The
activated state is reached only and only if the separatrix Rss(0) is exceeded
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6.3 The Role of Mathematical Modeling

Why do we need mathematical models in the life sciences? To answer
this question, we need do no more than turn to the physical sciences,
where mathematical modeling underpins everything we do, from fun-
damental research to the most practical of technologies. In the physical
sciences, mathematical modeling is seen as a fundamental prerequisite
to understanding observed phenomena as part of an integrated whole,
rather than merely explaining them in isolation as did philosophers in
antiquity [15]. As a tool for understanding, the act of developing a math-
ematical model adds to an integrated lexicon of knowledge. A mathemat-
ical model makes observed phenomena part of that universal language
which all systems speak – namely mathematics. At a practical level,
this understanding allows us to generalize and develop shorthand de-
scriptions of complex dynamic phenomena in a way that clarifies their
complexity.

In the physical sciences, these shorthand methods are embedded in
standard modeling methods based upon dynamics as an energy- han-
dling phenomenon [16]. The techniques developed from this approach
are routinely used to explore physical system dynamics and design
products in-silico. So why don’t similar standard mathematical model-
ing techniques exist in the life sciences? The answer to this question
lies in the complexity of cell-biological systems and their behavior. The
simple energy- handling motifs used in the physical sciences are not
adequate to describe the complexity of biomolecular dynamics. Com-
plexity is of the essence here, and since it extends beyond the issues of
complexity of energy handling into structure and plasticity of behavior,
it merits some elucidation. Specifically, complexity in systems biology
is the consequence of:

– The nonlinearity of relations between biological objects.
– The relatively large number of variables (proteins, genes).
– The large size and diversity of data sets (e.g., in whole genome

studies).
– The heterogeneity of information.
– The fact that interactions among proteins are dynamic rather than

static. Thus it is not the presence or absence of a protein that mat-
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ters, but its spatiotemporal concentration profile, which in turn is an
adaptive function of its context.

– The coordinated and multilevel (both in space and time) nature of
biological processes within an organism.

– The difficulties in generating accurate and comprehensive quantita-
tive measurements.

The objective of modeling as a means of dealing with complexity is to
reduce it without losing predictability. Modeling is a process of abstrac-
tion, that is, a reduction of complexity by capturing the essential elements
of complexity in a succinct manner. The energy-handling paradigm does
this magnificently for the physical sciences. To do the same for biolog-
ical systems, we must find models that reduce a complex biological
process to its essence, capturing a general principle by which the cell
functions (say feedback regulation of transcription) from its experimen-
tal context of a particular culture, cell line, or organism. The modeling
methods of the physical sciences capture general principles in a set of
primal energy-handling motifs that simplify apparently complex behav-
ior and unify apparently diverse phenomena. It is natural to ask whether
the same can be true of biological processes. In this connection, certain
motifs – some of which are illustrated in Fig. 5 – can be identified in
biology. This, however, is a work in progress since these motifs are not
primal – rather they are macro-descriptors of frequently occurring ob-
jects. Given the increased complexity of biological function compared
to the physical sciences, the job of finding general modeling tools will
be a long one.

The search for motifs within a system is motivated by an aim to
simplify complexity of structure within a model. A further, and equally
challenging form of complexity is associated with complexity of behav-
ior, whereby as parameters or operating conditions change the observed
behavior changes radically. For some classes of systems, such behavioral
complexity can be routinely clarified using systems theoretic methods,
which transform temporal phenomena to simpler operator models. While
all dynamic behavior shows complexity, the nonlinear spatiotemporal
relationships found in biology in particular are incomprehensible with-
out the support of formal modeling. For example, we have demonstrated
in the foregoing that a simple three-component pathway can exhibit
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Fig. 5. A selection of dynamic motifs. For a more comprehensive survey see [17]

a strong dependence of the observed behavior on initial conditions, and
both the strength and duration of the stimulus. If however, a systems
theoretic representation, based on an operator model, is written for the
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process, then the behavioral complexities are revealed as belonging to
one system.

If we are to accept that cell functions (growth, differentiation, prolif-
eration, apoptosis, and the cell cycle) are regulated/controlled nonlinear
dynamic systems, then the use of modeling to demystify structural and
behavioral complexity will be mandatory. This in turn will have radi-
cal consequences on the design of experiments – and in particular the
operational conditions that pertain during an experiment. It is here that
modeling and simulation can demonstrate that theory can be practi-
cal because it acts as a guide in the choice of experiment and proce-
dure. In this spirit, mathematical modeling is an experiment-design and
decision-making guide. It provides a formal framework within which
the experimentalist can objectively:

– Decide which variables to perturb, and in what manner
– Determine what the experimental operating conditions should be
– Establish which variables should be measured and with what fre-

quency

Experiment design is central to effectively and efficiently conducting
practical experiments and measurements. Within this formal framework
for experiment design, every feature of the experimental environment is
important. For example, methods of test signal design [18] tell us that
the perturbation of a system over time must be conducted in a system-
atic fashion if we are to efficiently and unambiguously identify a model.
Structural issues, such as the presence of feedback, can also cause unan-
ticipated ambiguities in poorly designed experiments [19].

The above are but two examples of experiment-design issues. There
is, however, a general body of techniques available. In particular, the
system-theoretic concepts of stability, identifiability, observability, and
distinguishability [20] are of particular value. An interesting challenge
for systems biology is to make these theoretical and somewhat difficult
concepts applicable to pathway models and accessible to experimen-
talists. Specifically, these concepts have been highly developed in their
current sphere of use – namely control and dynamical analysis of tech-
nological systems – but will require new systems theoretic advances to
be generally applicable to the very different structures and functions
found in biological processes. In this context, we firmly believe that
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systems biology will only succeed if we can demonstrate that theory can
be useful and practical. A mathematical model should not only confirm
expectations but also challenge hypotheses. The modeling process itself
can guide the experimentalist, helping him to save time and money for
experiments. However, the aim of mathematical modeling is not simply
to guide experiment or to produce exact in silico replicas of natural sys-
tems. Rather it is to provide a conceptual framework in which to analyze
complex nonlinear dynamic systems.

The areas of genomics and bioinformatics have shown that molecular
characterization of components and static associations will not suffice to
understand disease mechanisms. High-throughput and whole-genome
analysis are a vital step in drug target identification but this is not
enough for the validation of potential drug targets. Most diseases will be
related to cell function, i.e., cell growth, differentiation, proliferation and
apoptosis. These cell functions are nonlinear dynamic processes. There
is therefore no alternative but to apply systems theoretical analysis,
develop corresponding mathematical models and numerical simulations
if we wish to understand the mechanisms that generate the correlations
and associations we observe across experiments.

6.4 The Role of Theory

Research projects in molecular and cell biology, genomics, bioinfor-
matics, and systems biology aim at an improved understanding of how
cells function. This knowledge in turn is the basis for drug development
and combating diseases. In other words, biomedical research is trying
to understand the physiology of an organ in terms of knowledge about
the cell. How is this amazing intellectual achievement possible?

How can/do we unravel those chains of causal entailment that
take us from the level of the cell to the level of an organ?

Clearly the development of general modeling tools, as advocated in the
previous section, will address some aspects of these questions. However,
an intellectual leap of a different dimension is required to answer the
questions at their most profound level. Science must demonstrate its
ability to cross levels not yet breached – levels that will take us:
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– From cells to organs and organisms
– From cell function to physiological phenomena
– From model organisms to human diseases

A systems biology for medical applications has to study the cell not
in isolation but in its social context, as part of a larger whole that is
a tissue or organ. It may appear that advances in this area are incidental,
individual research projects providing pieces for a large puzzle in which
every so often a piece of the overall picture emerges and that from this
the whole will eventually emerge. But such a piecemeal approach will
not suffice. The complexity of the systems we deal with is such that the
distance between pieces of the puzzle can be infinitesimally small, and
still we will not be able to connect them by empirical means alone. An
interdisciplinary approach is dictated in which systems theory plays an
underpinning and unifying role.

The need for interdisciplinary research is widely accepted but un-
fortunately it is most commonly understood as an alliance between
experimentalists and data analysts or software developers, not between
experimentalists and theoreticians. We argue that if cell function is in-
deed a nonlinear dynamic system we need alliances between fields that
could hardly be further apart: advanced theoretical research in systems
theory and biomedical and clinical research. Data mining and computa-
tional simulations are fields in which computer scientists feel confident
and it is fair to say that these fields are now well developed. This is, how-
ever, very different to the analysis of nonlinear dynamics, something that
is in the remit of systems and control theory and that (as hinted earlier)
is far from having suitable techniques available at present. Data mining
and numerical simulations are a simpler route than formal analysis but
no full alternative. They are only an approximation to the real thing;
they cannot explain the mechanisms that generate the pattern in data.

If the aim is to develop predictive and personalized medicines, we
first need to identify generic or universal principles and then adapt this
information and knowledge to the biochemical make-up of an individual.
Universal principles are therefore general rules that are valid in vitro as
well as in vivo and in situ; which can be studied in model organisms and
also translated to humans whose observations are independent of a cho-
sen cell line or experimental set up. A predictive medicine relies on the
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discovery of universal biomolecular principles. Personalized medicine,
on the other hand, requires us to know the parameters that define the in-
dividuality of the particular patient. What conceptual framework is nec-
essary for us to cross levels of structural and functional organization in
cells and organs, to distinguish the general and the particular in disease,
to integrate an understanding for a larger whole in terms of its parts?

What methodologies are required to predict a general disease
mechanism from which to derive drugs that apply to the special

case of an individual patient?

What is addressed here is what we would call the uncertainty prin-
ciple of systems biology: as the complexity of the experimental system
increases, our ability to make general and yet relevant predictions dimin-
ishes. To overcome this hurdle, new methodologies and scientific prac-
tices are required. More specifically, we need to integrate approaches:

– Experimental data and theoretical models.
– Combine data mining (correlations/associations) and systems theory

(dynamic interactions).
– Move from molecular characterization to an understanding of func-

tional activity.
– Extend single-model analysis to hierarchies of interacting systems;

scaling up from pathway models to cells and beyond.
– In light of the many proteins one could consider, how do we identify

subsystems or modules, suitable for experiments but without losing
the context of the larger whole.

– Study single cells but in their social context.
– Integrate metabolic and signaling pathways.

The second section of the present text introduced a simple example of
a pathway with only three components. Nonetheless, this simple example
contains features that already challenge experimentalists and theoreti-
cians alike. A key aspect of this challenge, as elsewhere in biological
processes, is the presence of feedback. Indeed feedback mechanisms
are the basis for all forms of regulation, control, and coordination at
all levels within living organisms. They cannot be understood through
conventional data analysis, data mining, or machine learning – instead
they require dynamic systems theory. In contrast to the aforementioned
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fields, there is a lack of theory to support the analysis of dynamic path-
way models. Although undesirable for many, the simple conclusion is
that we need to support theoretical research as part of systems biology.
This will take time, a lot more time than most are prepared for. The
only consolation is that it is inexpensive and that the reward of a true
understanding is more satisfying than data engineering. As we tried to
indicate in the second section, there are avenues to generalize pathway
models and initial efforts are under way to develop categories of dynam-
ical systems. As esoteric as these ideas may sound, we are convinced
that they are going to be useful and of practical value in our endeavor to
make sense of life itself.

On a final positive note, several Nobel Prizes for game-theoretic stud-
ies in economics are evidence that unlikely partnerships between abstract
mathematics and the everyday world can exist and can be fruitful. What
is more, such alliances frequently yield practical results that go far be-
yond any original intentions or vision of the theoretician. It is often thus
with key mathematical theories, for – to paraphrase Hilbert – there is
nothing more practical than good theory.
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