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(Received 19 June 2006; In final form 2 July 2007)

In this paper we present a methodology based on multiple models and switching for realtime estimation of center of gravity (CG)position in automotive
vehicles. The method utilizes well-known simple linear vehicle models for lateral and roll dynamics and assumes the availability of standard stock automotive
sensors. We illustrate the technique with numerical simulations as well as with measured sensor data from an SUV vehicle. Wealso compare our estimation
results with traditional linear-least squares estimators to show the efficacy of our technique. Finally, we give a simple application example for implementing
the idea in automotive vehicles as a switch for rollover controller activation.
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1 Introduction

Vehicle center of gravity (CG) position and inertial properties are of primal importance in the assessment of vehicle
handling and performance characteristics as well as its accident behavior. Although automotive manufacturers often
provide the measurement of these parameters, such information often pertains to an empty vehicle with known load
distribution. Considering the fact that passenger, and/orload distribution in road vehicles can vary significantly, and
sometimes even dangerously, it is difficult to overlook the change in the CG position and its consequences. While
the importance of this is known on the handling behavior, automotive manufacturers usually employ robust active
road-handling control strategies to account for the unknown and changing CG position; they simply design for the
worst case scenario. Another common approach in the case of Sport Utility Vehicles (SUVs) is to intentionally
design the vehicle heavier than usual by adding ballast in the undercarriage, which aims to lower the CG position
while reducing the percent margin of the load variation and thus constraining the variation of the CG location.
While such approaches are successful up to certain extent, they also come with obvious drawbacks; performance
loss under normal driving conditions and reduced efficiency due to added weight.

Analysis of recent car accident data indicates that vehicles with a high center of gravity such as vans, trucks
and SUVs are more prone to rollover accidents than others [1].Moreover it is known that rollover accidents alone
constitute only a small percentage of all car accidents, while they cause disproportionately high rates of fatalities [2].
According to [1] non-collision rollover occurred in only 2.3% of all vehicle crashes during 2004 in the USA, while
it was responsible for a massive 10.6% fatality rate, rendering it to be the most dangerous type of accident. Again
according to the same data, light trucks (pickups, vans, SUVs) were involved in nearly 70% of all the rollover
accidents, with SUVs alone responsible for almost 35% of thistotal. Considering the fact that composition of
the current automotive fleet consists of nearly 36% light trucks, minivans and SUVs [3] along with the recent
increase in the popularity of SUVs worldwide, makes the rollover an important safety problem. As CG height is
the most prominent factor in un-tripped rollover occurrence, this problem can greatly benefit from real-time CG
position estimation capabilities. Such estimators can be used as a warning system to the driver or can conveniently
be integrated into active road handling or rollover prevention controllers thus improving the overall vehicle and
passenger safety.
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With this background in mind, and inspired by the Multiple Model Switching & Tuning (MMST) methodology
[4–6], we present in this paper a multiple model and switching estimation algorithm based on simple linearized
models and employing only standard stock automotive sensors [7]. While simplified linear models such as the
single track model (i.e., bicycle model) and the roll plane model can represent the real vehicle behavior in a limited
range of maneuvers and speeds, it is possible to use a multitude of these models and switch between them in
an intelligent way in real time, to track the vehicle behavior accurately over the complete operating conditions.
Moreover, proper parametrization of these models gives wayto the rapid estimation of unknown and time-varying
vehicle parameters through the selected models. Using the described multi-model approach in conjunction with
linear roll plane models, one can estimate parameters such as the CG height and linear suspension parameters
in relation to the rollover prevention problem. Through a similar implementation of multiple single track models
one can also estimate parameters relevant to lateral dynamics control, such as the longitudinal CG position and
linear tire stiffnesses. One of the benefits of this realtime estimation method is the fact that the method is immune
to the nonlinear dependance of unknown vehicle parameters in the models as shall be apparent in the Section 2.
During the derivation of the method in Section 3 we make no assumptions about the parameter vector having a
linear dependance on the states. This is particularly important as the traditional linear regression type estimation
techniques can not work in the case of non-linear parameter variations, which we shall demonstrate with numerical
simulations in Section 3.

Recent publications related to automotive CG position measurement and estimation include that of Mango [8],
where he described a method for accurately calculating the CG location based on portable wheel scales. His method
requires external measurement equipment and is not intended for online measurement during regular driving con-
ditions as it requires the vehicle to be stationary. In another recent article, Allen et al. [9] made a statistical analysis
of vehicle inertial properties and CG positions as a function of weight, width, length and the height of the vehicle
using the data for several existing stock cars. Although their analysis is useful in demonstrating the relationship
between the several physical parameters of vehicles to their handling characteristics, their method can not be em-
ployed for realtime estimation purposes. There has been a number of recent publications about realtime estimation
of vehicle parameters including the CG position. Vahidi et al. suggested a recursive linear least squares estimator
with multiple forgetting factors in [10], for simultaneousestimation of the road grade and the vehicle mass in real
time. Their algorithm took into account the different rates of change in both unknown parameters and incorporated
different forgetting factors into the cost function of the recursive least squares algorithm. Their results are promis-
ing as demonstrated with both numerical and measured data, however their method assumes that vehicle model is
linear in the unknown parameters, which is not the case for the method presented in the present paper as shall be
clear in the sequel. In a recent thesis [11], a model based estimation method for road bank angle and CG height
was suggested using extended Kalman filters. The presented results showed slow convergence rates in the estima-
tions and the accuracy was questionable. In a recent Europeanpatent EP 0918003B1 [12] an alternative method
for estimating the height of the CG in real-time was described. The method utilizes an estimated drive/brake slip
of at least one wheel using the wheel speed sensors, which is then used to compute the instantaneous radius of the
corresponding wheel. Using this information, the angle of the corresponding wheel axle with respect to the ground
is computed and then used in an equation related to the lateral dynamics of the car to compute the CG height. Since
there are no other publications other then the cited patent,the details and the limitations of this method is not known
to the authors. As a last remark we note in the context of rollover prevention that all the methods suggested to date
assume known CG height [2, 3, 13–19]. However as we have explained, it is particularly unrealistic to assume the
CG height to be known, and this parameter can vary significantly with changing passenger and loading conditions
especially in large passenger vehicles such as SUVs.

2 Vehicle modelling

In this section we present three different models for the lateral motion and roll plane dynamics of a car. We use
linear models to simplify the implementation of the algorithm as well as to keep the required sensory information
at a minimum level. All the models introduced here assume small angles and are valid when the steering input is
small. Also, in the second order linear single track model described below, a weak relationship between the lateral
and the roll dynamics is assumed, which is the case when the steering angle is small [20]. Note that the choice of
the models here is a trade off between complexity and sensitivity to different operating conditions. The assumption
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Table 1. Model parameters and definitions

Parameter Description Unit

m Vehicle mass [kg]
g Gravitational constant [m/s2]
vx Vehicle longitudinal speed [m/s]
δ Steering angle [rad]
Jxx Roll moment of inertia of the sprung mass measured at the CG[kg·m2]
Jzz Yaw moment of inertia of the chassis measured at the CG [kg·m2]
L Axle separation, such thatL = lv + lh [m]
T Track width [m]
lv longitudinal CG position measured w.r.t. the front axle [m]
lh longitudinal CG position measured w.r.t. the rear axle [m]
h CG height measured over the ground [m]
c suspension damping coefficient [kg·m2/s]
k suspension spring stiffness [kg·m2/s2]

Cv linear tire stiffness coefficient for the front tire [N/rad]
Ch linear tire stiffness coefficient for the rear tire [N/rad]
β Sideslip angle at vehicle CG [rad]
αv Sideslip angles at the front tire [rad]
αh Sideslip angles at the rear tire [rad]
φ Roll angle measured at the roll center [rad]
φ̇ Roll rate measured at the roll center [rad]

of linear models and small angles in the following discussion is indeed a restrictive argument as the linear models
are not dependable during extreme driving situations, where the knowledge of the unknown vehicle parameters is
required most (e.g., for the deployment of a suitable control action). However, the method described in this paper
is intended for estimating the unknown parameters during normal driving conditions and long before such extreme
driving conditions occur. Use of more accurate nonlinear models that are valid both in the linear and the nonlinear
regions of the vehicle operation envelope, in conjunction with the multiple model estimation algorithm that shall be
described in sequel, is a straightforward future directionfor this work.

Notation and definitions of the model parameters and variables are given in Table 1. In what follows we give three
different dynamical equations of the motion of the car. For athrough coverage of the derivations see [21], and [20].
Note that for simplicity, we assume in the following equations that, relative to the ground the sprung mass of the
vehicle rolls about a horizontal axis along the centerline of the body.

2.1 Single track model

This two state linear model represents the horizontal dynamics of a car. It is also referred to as “the linear bicycle
model” in the literature and is commonly used in automotive applications (see [22] for a good application example).

The model assumes constant velocity and small steering anglefor linearization. See Fig. 1 for the representation
and notation of the model. Notice that in this model we lump left and right tires into a single one at the axle
centerline, hence the name “Bicycle Model” or “Single Track Model”. We represent the horizontal dynamics in
terms of the state variablesβ andψ̇ . The lateral tire forcesSv,Sh for front and rear tires respectively, are represented
as linear functions of the tire slip angles such thatSv = Cvαv, andSh = Chαh, where for small angles tire slip angles
are given as follows

αv = δ −β −
lv
vx

ψ̇ (1)

αh = −β +
lh
vx

ψ̇. (2)

Also notice that since we assume small angles and constant longitudinal velocity, sideslip angleβ satisfies the
following;

β ≈
vy

vx
, β̇ ≈

v̇y

vx
. (3)
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Figure 1. Linear bicycle model.

Using above relations and Newton’s 2nd law of motion, one canget the following state space representation of the
horizontal dynamics of the vehicle

[

β̇
ψ̈

]

=

[

− σ
mvx

ρ
mv2x

−1
ρ
Jzz

− κ
Jzzvx

]

·

[

β
ψ̇

]

+

[

Cv
mvx
Cvlv
Jzz

]

δ , (4)

where the auxiliary parametersσ ,ρ, andκ are defined as follows

σ , Cv +Ch

ρ , Chlh−Cvlv (5)

κ , Cvl
2
v +Chl2

h.

We make use of this model mainly for the estimation of the uncertain model parametersCv,Ch, lv, lh based
on the multiple model structure. Note that although (4) is linear in the state variables, it is nonlinear with
respect to unknown parameter variations, which is a factor limiting the use of traditional recursive estimation meth-
ods such as the linear least squares for the estimation of unknown parameters, as shall be demonstrated in the sequel.

Comment: In the version of the linear second-order single track modelintroduced here, the effect of the
variations in longitudinal CG position to the variations inthe effective yaw moment of inertiaJzz were ignored
on the grounds that such changes are insignificant for small vehicles, where loading options are limited and the
resulting changes in the inertia are quite small. For the sake of simplicity, parameters for a compact class vehicle
were used in the simulations in this paper and therefore thisassumption makes sense. However for larger vehicles
such as busses and trucks the changes in yaw moment of inertiawith changing longitudinal CG position can be
quite significant and thus can not be ignored in the analysis.

Comment: It is important to note here also that the single track model assumes a weak coupling from the
vertical (i.e., roll) dynamics onto the lateral. Therefore,there are no terms in (4) that reflect the effect of vertical
dynamics, which is reasonable when the vehicle is operatingin the linear regime at low levels of lateral acceler-
ation [23]. However, the reverse argument is not true for theroll dynamics even under small angles assumption,
since the roll motion is heavily influenced by the lateral dynamics via lateral acceleration, as shall be clear in the
next subsection.
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2.2 Roll plane model

We use the 2-state roll plane model described here for the realtime estimation of CG heighth as well as the param-
eters of the suspension systemk,c based on the multiple model switching method. This is the simplest model that
captures the roll dynamics of the car and it is free from the effects of uncertainties originating from unknown tire
stiffness parameters, which in turn makes it suitable for the estimation task.

Assuming all vehicle mass is sprung, effective linear torques exerted by the suspension system about the roll
center are defined as follows

Tspring = k φ , (6)

Tdamper= c φ̇ , (7)

wherek, c denote the linear spring stiffness and damping coefficients respectively. Using these one can then apply a
torque balance in the roll plane of the vehicle in terms of theeffective suspension torques (see Fig. 2 for the notation
of the roll plane model), and obtain the following relationship

Jxeqφ̈ +cφ̇ +kφ = mh(aycosφ +gsinφ). (8)

Note that for simplicity, it is assumed that, relative to theground, the sprung mass rolls about a fixed horizontal roll
axis which is along the centerline of the body and at ground level. In the last equationJxeq denotes the equivalent roll
moment of inertia derived using the parallel axis theorem ofmechanics taking into account the CG height variation
as described below

Jxeq , Jxx+mh2. (9)

For smallφ , we can approximate nonlinear terms in equation (8) ascosφ ≈ 1, sinφ ≈ φ and represent this equation
as in the following state space form

[

φ̇
φ̈

]

=

[

0 1
−k−mgh

Jxeq
− c

Jxeq

]

·

[

φ
φ̇

]

+

[

0
mh
Jxeq

]

ay. (10)

Note that at steady state one can calculate the CG height using a single model using the relationship

h =
kφ

m(gφ +ay)
, (11)

given that the roll angleφ , and the lateral accelerationay measurements as well as an accurate knowledge of the
spring stiffnessk are available. While former can be measured using suitable sensors,k is unknown and needs to
be calculated depending on the specific maneuver and loading condition, and is effected by various other factors.
As will be explained in Section 3, using the multiple model switching method we neither need the exact knowledge
of the suspension parameters, nor steady state type excitation to get an accurate estimation of the CG height. As a
final remark note that although (10) is linear in the state variables, again observe that it is nonlinear with respect to
unknown parameter variations ofk,c andh.

2.3 Single track model with roll degree of freedom

While we utilize the previous two models for the estimation task of the unknown vehicle parameters, we employ
the linear bicycle model with roll degree of freedom described here, to generate the reference vehicle behavior.
The model is the simplest model with coupled lateral and roll dynamics, which assumes thatδ ,φ ,β are small and
all vehicle mass is sprung. We can write the equations of motion for the single track model with the extended roll
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Figure 2. Linear bicycle model with roll degree of freedom.

degree of freedom as follows

ẋ =











− σ
mvx

Jxeq
Jxx
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mv2x

Jxeq
Jxx

−1 − hc
Jxxvx

h(mgh−k)
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ρ
Jzz
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Jzzvx

0 0

−hσ
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hρ
vxJxx
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mgh−k
Jxx
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Cv
mvx

Jxeq
Jxx

Cvlv
Jzz
hCv
Jxx

0











δ , (12)

wherex =
[

β ψ̇ φ̇ φ
]T

is the state vector. Representative state responses of thismodel to a step steering input
are shown in Fig. 3 below, where the steering magnitude was 30◦ with a steering ratio of 1 : 18, and the vehicle
velocity during the simulation wasvx = 30m/s.
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Figure 3. State responses of the single track model with roll degree of freedom to a step steering input (vx = 30m/s, δ = 30
18

◦
.)

2.4 Sensors and vehicle parameters

In this subsection we describe the configuration of sensors, and summarize the list of the assumptions on the known
and estimated vehicle parameters.
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2.5.1 Sensors: In this paper we assume the availability of lateral acceleration ay, yaw rate ψ̇, velocity vx

and the steering angleδ measurements which are available as part of the standard sensor packs found in modern
cars that are commonly utilized for lateral and yaw dynamicscontrol implementations such as the ESP (Electronic
Stability Program) [22], [24]. Moreover, a measurement or an estimation of the vehicle roll angle is required
for the implementation in this paper, which can be obtained through spring displacement sensors (displacement
transducers) found in vehicles with active suspension systems such as the ABC (Active Body Control).

Comment: The analysis given in this paper does not necessarily requirethe use of particular type of sensor
to obtain the roll angle information: gyroscopic roll rate sensors, or any other suitable set of sensors can be utilized
for computing the roll angle.

2.5.2 Parameters: We assume that vehicle massm is known, which can be estimated as part of the braking
system (see for example [10]), yet this is outside scope of this paper. FurthermoreCv,Ch, lv,k,c and h are all
assumed beunknown parameters of the vehicle and are estimated through the multiple model switching algorithm.
We further assume that these parameters vary within certainclosed intervalsCv ∈ Cv, Ch ∈ Ch, lv ∈ Lv, c ∈ C ,
k ∈ K and h ∈ H , and these intervals can be found via accurate numerical simulations as well as field tests.
The number of models necessary to estimate these parameters relates to the size of the interval and the accuracy
demand on the estimation, as shall be explained in the following section.

Comment: It is possible to extend the estimation scheme described in the next section to include the un-
known and time-varying vehicle mass. However, as there are alternative and dependable methods for estimating
the vehicle mass [10], as well as for the ease of exposition ofthe method described here, we omitted this parameter
in the following discussion.

3 Vehicle parameter identification through multiple models& switching

While the conventional approach to parameter estimation isto employ a well-established linear least square type
identification technique, such methods are susceptible to loss of identifiability due to feedback [25], [26] as is the
case for the estimation problem described here. Also, the linear models introduced in Section 2 are nonlinear in the
unknown vehicle parameters further complicating the formulation of the estimation problem using the traditional
approaches. Although linear regression techniques typically converge quickly, they require measurement signals
that are persistently exciting [25], [27]. For our problem this would mean to impose some specific maneuver re-
quirements on the driver input such that all the modes of excitation are covered and a dependable estimation of
the unknown parameters could be made. Such a demand on the driver input would not only be unrealistic but also
unreliable. Thus there is a need for a different approach for the parameter identification task, which imposes no
restriction on the driver input, has fast convergence ratesand requires minimum additional output information (sen-
sors). Here we introduce a multiple model switching algorithm [7] to identify unknown vehicle parameters rapidly
in real-time. The method achieves this, in part, as a result ofthe fact that the model space representing the parameter
uncertainty is bounded, and includes only the feasible parameters of the vehicle. This restricts infeasible estima-
tions in cases when sensor signal are not persistently excited, and where the standard estimation methods such the
recursive linear least squares are destined to fail. Although we have no theoretical proof that the multiple model
estimation algorithm is more immune to persistence of excitation issues, our numerical analysis shows that this is
the case, at least as compared to the standard recursive least square algorithm. An extensive theoretical analysis of
this is a future research direction for this work.

A natural approach here would be to setup the multiple estimation models using (12), which in this setup would
imply that there is no modelling error. However in this case,the resulting parameter space would be too complex
to handle. Instead we take a modular approach of decoupling the vehicle dynamics into subsystems by assuming a
weak relationship from the roll dynamics onto the lateral. In the following two subsections we present our method-
ology and give numerical simulation results correspondingto the decoupled identification algorithms, which are
then compared to recursive least squares based estimations.
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3.1 Online identification of longitudinal CG location and tire stiffness parameters

The multiple model switching identification algorithm to estimate longitudinal CG locationlv and tire stiffness
parametersCv,Ch makes use of the lateral dynamics model given in (4). The method assumes that each unknown pa-
rameter belongs to a closed interval such thatCv ∈Cv, Ch ∈Ch, andlv ∈Lv. These intervals are divided into certain
number of grid points and they can be represented asCv = {Cv1,Cv2,Cv3, . . . ,Cvp}, Ch = {Ch1,Ch2,Ch3, . . . ,Chq},
andLv = {lv1, lv2, lv3, . . . , lvr} with dimensionsp,q andr respectively.

Comment: There is a trade-off between the choice of the number of grid points in the parameter space and
the numerical complexity, which is a design consideration depending on the accuracy demand from the estimation
and the available computational resources for the specific problem under consideration.

With these in mind we formn = p×q× r different models corresponding to the cross combinations of the grid
points in the parameter space. Utilizing (4), the equationsof motion corresponding to each model can be represented
as

[

β̇i

ψ̈i

]

=

[

− σi
mvx

ρi
mv2x

−1
ρi
Jzz

− κi
Jzzvx

]

·

[

βi

ψ̇i

]

+

[

(Cv)i
mvx

(Cv)i lvi
Jzz

]

δ , (13)

wherei = 1,2, . . . ,n denotes the model number. We assume that all models have zeroinitial conditions such that
βi(0) = 0, andψ̇i(0) = 0, for i = 1,2, . . . ,n. Furthermore, each model is driven by the same inputsδ andvx as
depicted in Fig. 4, measurements of which are assumed to be provided by suitable set of sensors. In order to select
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Figure 4. Multiple Model System Identification Algorithm.

the model with the correct parametrization we look at the difference between the model and the plant outputs. The
identification errorei correspondingith model is defined as

ei = yplant− (ymodel)i , (14)

wherey denotes the model or the plant output. In this implementation of the algorithm the output to be utilized
is y = [ay, ψ̇], and it is further assumed that the measurement of these are available for the vehicle. Thus we can
represent the identification error for theith model as follows

ei(t) =

[

ay(t)−ay,i(t)
ψ̇(t)− ψ̇i(t)

]

, i = 1,2, . . . ,n. (15)

Note here thatay(t) andψ̇(t) are the respective plant lateral acceleration and yaw rate output measurements obtained
from the sensors, whilėψi(t) is obtained from the second state of theith single track model given in (13), and
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correspondingay,i(t) is calculated using the following function of the states at every instant

ay,i = vx(ψ̇i + β̇i) = −
σi

m
βi +

ρi

mvx
ψ̇i +

(Cv)i

m
δ . (16)

By utilizing the identification errors it is possible to switch and choose a model that has the minimum distance to
the plant outputs. Although control design is outside the scope of the current paper, using a model that has the closest
outputs to those of the plant is likely to yield the best feedback performance. In other words a small identification
error leads to a small tracking error [6], which, in the senseof adaptive control, is based on the principle of certainty
equivalence from tuning to switching [28]. Control design implementation of the algorithm shall be explored in our
future work.

Based on empirical observations, the choice of the switching index should include both instantaneous and steady-
state measures in order to reliably determine the identification models representing the plant at all instants. While
there exist many such indices, we utilize the cost functionJi corresponding to theith identification error as given
below, which is inspired by the quadratic cost optimizationtechniques and was originally suggested by Narendra et
al. in [4–6] as a switching scheme

Ji(t) = α||ei(t)||+β
∫ t

0
e−λ (t−τ)||ei(τ)||dτ. (17)

In this cost functionα > 0, andβ > 0 are free design parameters controlling the relative weights given to transient
and steady state measures respectively, whereasλ ≥ 0 is the forgetting factor. As will be demonstrated in the
sequel, switching based on (17) with nonzero combinations of α,β gives better results then using just the transient
measures, e.g.Ji(t) = ei(t)2, or the steady-state measures, e.g.Ji(t) =

∫ t
0 ||ei(τ)||dτ alone. This is illustrated in Fig.

5, where a comparison of the switching rule based on transient (α = 1,β = 0), steady-state (α = 0,β = 1) and
combined (α = 0.2,β = 0.8) output error dynamics is presented during the estimationof the longitudinal position
of CG, where the true value of the reference vehicle is 1.2m. It is obvious from the figure that the switching based
on just the transient measures causes an undesirable chattering, while switching based only on the steady state
measures has slower response in the estimations. For the details of the simulation see the following subsection on
numerical analysis. Note that it is possible to use other type of cost functions depending on the specific estimation
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Figure 5. Comparison of switching based on transient, steady-state and combined output error dynamics during the estimation of longitudinal CG position.

requirements from the problem at hand. Here we selected the model with the least cumulative identification error
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Table 2. Reference Model Parameters

parameter value unit

m 1300 [kg]
g 9.81 [m/s2]
vx 30 [m/s]

δpeak 30· 1
18 [deg]

Jxx 400 [kg·m2]
Jzz 1200 [kg·m2]
lv 1.2 [m]
lh 1.3 [m]
L 2.5 [m]
h 0.7 [m]
c 5000 [kg·m2/s]
k 36000 [kg·m2/s2]

Cv 60000 [N/rad]
Ch 90000 [N/rad]

according to (17) using

i⋆ = arg min
i=1,...,N

Ji(t). (18)

Within the parameter space described byCv,Ch andLv, selected modeli⋆ and the corresponding model parameters
C⋆

v ,C
⋆
h andl⋆v have the minimum cumulative distance to the parameters of the plant.

Comment: As a rule of thumb based on our numerical experimentation, choosing 0.9≤ β ≤ 1 and 0< α ≤ 0.1 for
this problem gave the best estimation results in conjunction with the multiple model switched estimation algorithm.
Also, the forgetting factorλ becomes important if the plant undergoes rapid switches; asthis is not the case when
CG position variation is considered, we setλ = 0 in the following discussion.

Numerical analysis: In the following figures we present the estimation results forthe algorithm based on
simulated sensor signals generated by the vehicle model (12). The model parameters used are given in Table 2.
The maneuver was conducted at 108km/h, and as seen in Fig. 6 the maneuver tested was an obstacle avoidance
maneuver commonly known as the elk-test, with a peak magnitude of 30◦ at the steering wheel (the steering ratio
is 1/18 between the tires and the steering wheel). The model space consisted of 140 models in total. The uniformly
distributed parameter space were selected asCv = [50000,80000] with intervals of 10000,Ch = [60000,100000]
with intervals of 10000 corresponding to the range of tire stiffness parameters, andLv = [1,1.6] with intervals of
0.1 corresponding to the space of possible longitudinal CG positions. For this numerical example the free design
parameters for the cost function were set asα = 0.05 andβ = 1, while the forgetting factorλ was chosen to be 0.
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Figure 6. Steering input.

In Fig. 7 the corresponding simulated sensor data and selected model outputs are compared. The discontinuous
jumps in the model outputs are the result of the switching between the models. In Fig. 8 the longitudinal CG position
estimation is presented, where switching is more obvious. It is observed that based on the simulated measurement
data, the multiple model switching algorithm successfullyestimated the longitudinal CG location to be 1.2m, pre-
cisely matching the reference model. Similarly in Fig. 9 the estimations for the front and rear tire stiffnesses with
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exact model match are presented. The algorithm successfullyestimated the front tire stiffnessCv as 60000 and
rear tire stiffnessCh as 90000, which are the exact parameters of the reference model. Finally in Fig. 10 reference
model sideslip angleβ is compared with respect to that of the selected model which shows good agreement. For
all practical means, the estimation result presented here is within sufficient tolerances for use in automotive control
applications, particularly for adaptive lateral dynamicscontrol problem.
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Figure 7. Sensor and the selected model output comparison for the longitudinal CG position estimation.
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Figure 8. Longitudinal CG position estimation with exact match.

Comment: A theoretical issue related to switching between the identification models based on the cost function
(17) of the identification errors is due to fact that it is difficult to guarantee one-to-one correspondence between
the distance (or error) in the output space and the distance in the parameter space at every instant. This can be
demonstrated by defining a normalized parameter error corresponding to theith identification model as follows

εi =

√

(

1−
(lv)i

lv,p

)2

+

(

1−
(Cv)i

Cv,p

)2

+

(

1−
(Ch)i

Ch,p

)2

, i = 1,2, ...,n, (19)

where lv,p,Cv,p, andCh,p, denote the real parameters of the vehicle that we are tryingto estimate. Note that for
a given identification model, the normalized parameter errordefined above is constant. At a given time instant
t, the relationship betweenεi andJi(t) can be shown by comparing their variations across the model space (i.e.,
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Figure 9. Estimation of the front and rear linear tire stiffness with exact model match.
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Figure 10. Comparison of the sideslip anglesβ for the vehicle and the selected models during the maneuver.

models corresponding to all combinations of the parameters). This is given in Fig. 11 at an instant shortly after
the initiation of the maneuver(t = 5.25sec) for the 140 models used in the numerical simulation, and the result
clearly demonstrates the problem with the non-correspondence between output and parameter spaces at this instant,
where transient dynamics are dominant. In Fig. 12 however, the time history of the normalized parameter error
corresponding to the selected model at each instant during the estimation is shown, where it is observed that the
parameter error goes to zero. This can be attributed to the fact that as the steady-state dynamics start to dominate,
the cost functionsJi(t) corresponding models with large parameter errors grow muchfaster than those with small
parameter errors, yielding the desired estimation result.To the best of the authors’ knowledge, determination of a
cost function of the output errors that has a one-to-one correspondence in the parameter space at every instant, is
still an open question in this framework.

3.2 Online identification of CG height and suspension system parameters

In this subsection we present the multiple model switching algorithm to estimate CG heighth along with the
linear suspension parametersk, c based on the roll-plane model (10). Similarly, we assume thateach unknown
parameter belongs to a closed interval such thath ∈ H , k ∈ K , and c ∈ C . These intervals are divided into
sufficient number of grid points and they can be represented asH = {h1,h2,h3, . . . ,hp}, K = {k1,k2,k3, . . . ,kq},
andC = {c1,c2,c3, . . . ,cr} with dimensionsp,q andr respectively. We then formn = p×q× r different models
corresponding to the cross combinations of the grid points in the parameter space. Utilizing (10) the equations of
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Figure 11. Variation of the cost functionsJi across the model space at an instant(t = 5.25sec) shortly after the initiation of the maneuver and compared to
the normalized parameter errorεi for the numerical example.
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Figure 12. Time history of the normalized parameter errorε(t) of the selected model during the simulation.

motion corresponding to each model can be represented as

[

φ̇i

φ̈i

]

=

[

0 1
−ki−mghi

Jxeq,i
− ci

Jxeq,i

]

·

[

φi

φ̇i

]

+

[

0
mhi

Jxeq,i

]

ay, (20)

wherei = 1,2, . . . ,n denotes the model number. We assume that all models have zeroinitial conditions such that
φi(0) = 0, andφ̇i(0) = 0, for i = 1,2, . . . ,n. Similar to what is shown in Fig. 4, every model is driven by the same
input ay, which is measured. According to (14) we again calculate identification errorsei , however this time the
plant and model outputs to compare are the roll angles, as follows

ei(t) = φ(t)−φi(t), i = 1,2, . . . ,n. (21)

Note that one can also include the roll rateφ̇ measurement if available, in the output vector. However, the influence
of φ̇ on the estimation results for the CG height was relatively insignificant as compared to the roll angleφ , thus
was omitted here. This is also in accordance with our assumption of no additional sensors to the available ones.

Now one can compute cost functions (17) corresponding to each identification error. Switching among the
models based on (18) yields the one with the minimum cumulative identification error and the selectedk⋆,c⋆ and
h⋆ represent the plant in the parameter space described byK , C andH respectively.

Numerical analysis:Here we present the CG height estimation results for the simulated measurement data
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described in the previous subsection. The model space consisted of 240 models in total. The uniformly distributed
parameter space were selected asK = [30000,40000] with intervals of 2000,C = [4000,6000] with intervals of
500 corresponding to the parameter space for suspension parameters, andH = [0.5,0.85] with intervals of 0.05
corresponding to the range of possible CG heights. For this numerical example the free design parameters for the
cost function were set asα = 0.01 andβ = 1, while the forgetting factorλ was chosen to be 0.

In Fig. 13 sensor and the switched model outputs are compared whereas in Fig. 14 the CG height estimation
results are shown. Based on the results, we again observe that the multiple model switching algorithm successfully
estimated the CG height to be 0.7m, precisely matching the reference vehicle data. Finally in Fig. 15 the
corresponding estimations of the suspension parameters are presented. The linear torsional spring stiffnessk was
estimated as 36000 exactly matching that of the reference vehicle model, while the roll damping coefficientc was
estimated to be 6000 with a 20% estimation error.

Comment: The 20% estimation error in the damping coefficient can be attributed to the specific expression
chosen for the model identification errorsei(t) given in (21), which is based on the roll angle measurements alone.
As apparent from the expression for roll dynamics as described by (8), the damping coefficientc relates to the roll
rate of the vehicle. Since we do not consider the roll rate estimation error in (21), this results in some expected
estimation offset inc.
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Figure 13. Sensor and the selected model output comparison forthe CG height estimation.
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Figure 14. CG height estimation with exact match.

Despite the estimation offset in the roll damping coefficient, the suggested algorithm was successful in providing
a fast and accurate estimation of the CG height, which is the main concern in this discussion. Therefore, for all
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Figure 15. Estimation of the suspension parametersk, andc.

practical means, the method described here is suitable for use in active automotive handling control systems,
particularly in rollover mitigation control applications.

Comment: For the CG height estimation algorithm, the road bank angle (road superelevation) was not con-
sidered. When a measurement or an estimation of this parameter is provided, (where there is vast number
of literature on this topic), the analysis presented in thissection can be extended and applied without much
modification.

Comment: In the numerical simulations presented in this and the previous subsection, the parameter sets
Cv,Ch,L ,K ,C ,H representing the uncertainty in the system were constructed such that the grid points include
the unknown plant parameters of the reference model. When the parameter sets do not contain the exact model
parametrization then the method can only guarantee that theselected model outputs match the sensor measure-
ments, yet the selected model may not necessarily have the closest distance in the parameter space to the plant. It
is however possible to include a vast amount of grid points toresolve this issue, which may be computationally
difficult to implement in automotive applications. Alternatively, parameter adaptation rules or redistribution of the
parameter space can be implemented to provide the exact model match, which we shall investigate as a continuation
of this work. For automotive applications it is reasonable to utilize a uniform parametrization as described in the
preceding sections as the loading conditions are usually restricted and can be represented with a small number of
parameter sets.

3.3 Estimation of CG position using recursive least squares

In order to compare the quality of estimations described in the preceding subsections thus far, we now introduce a
conventional method for estimating the CG position based onrecursive linear least squares method. Although there
exists other, perhaps more suitable methods, we chose this one since it is easier to implement. We first define the
estimation method for a generic scalar system given by

y(t) = ξ T(t)θ + ε(t), (22)

wherey(t) is the measurement corrupted by noise,ε(t) is the measurement error,θ = [θ1,θ2, ...,θN]T is the un-
known parameter vector, andξ = [ξ1,ξ2, ...,ξN]T is the known regression vector. Using this system and denoting
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θ̂(t) as the estimation of the unknown parameter vectorθ at timet, we can give the recursive least squares method
as follows

κ(t) = P(t −1)ξ (t)[1+ξ (t)TP(t −1)ξ (t)]−1

P(t) = [I −κ(t)ξ (t)T ]P(t −1) (23)

θ̂(t) = θ̂(t −1)+κ(t)[y(t)−ξ (t)T θ̂(t −1)],

whereP(t) is error the covariance matrix, andκ(t) is the gain vector. Initial value for the covariance matrix is
selected asP(0) = αI , whereI is the identity matrix andα is a large scalar constant. Notice that the estimationθ̂(t)
is calculated based on the previous estimationθ̂(t−1) and the current measurements only. For a detailed derivation
of these equations see [26].

We give the implementation of CG height estimation based on this method and making use of (8). In this im-
plementation we assumed availability of the measurements for φ ,φ̇ ,φ̈ as well asay, where simulated sensor signals
are generated by the single track model with roll degree of freedom given in (12). We first denote the measurement
vector as follows

ameas
y = aycosφ +gsinφ . (24)

As our reference model (12) is linear in the states as a resultof the small angles assumption, for consistency, we
can also express the measurement vectorameas

y using the same assumption as follows

ameas
y = ay +gφ . (25)

Making use of (25) therefore, one can express the roll dynamics (8) as

y(t) = ameas
y =

1
mh

[Jxeqφ̈ +cφ̇ +kφ ]. (26)

Notice here that there is a nonlinear coupling between the measurement variabley(t) and the state variableṡφ andφ ,
which is likely to induce errors in the estimations as the linearity assumption of the least squares do not hold. For this
type of coupled estimation problems more complicated instrumental-variable type methods are employed [25]. For
demonstration purposes however we proceed with the recursive least squares method to present the shortcomings
of this method as compared to ours. Keeping these in mind, we further denote the regression and the unknown
parameter vectors respectively as follows

ξ =
[

φ̈ φ̇ φ
]T

, (27)

θ =
[

θ1 θ2 θ3
]T

, (28)

whereθ1 =
Jxeq
mh , θ2 = c

mh, andθ3 = k
mh. One can now use the recursive formulas (23) to computeθ̂ that minimizes

the square of the cumulative measurement error. Based on theestimated parameterŝθ , the CG height can then be
calculated from the roots of the polynomial below

mh2−mθ1h+Jxx = 0. (29)

As there are two roots of this polynomial, it is uncertain which one is closer to the real unknown parameter. In order
to be conservative we always selected the larger root in the computations. The estimation result using this algorithm
and employing the reference vehicle data introduced in the preceding section is given in Fig. 16 as compared to the
multiple model based estimation. As it is apparent from the figure, even though least squares method utilized a vast
amount of sensory information (some of which are unmeasurable using the standard vehicle sensor equipment),
the corresponding estimation has an undesirable bias and its convergence rate is slower than the multi-model based
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estimation. This clearly demonstrates the efficacy of our estimation technique over the traditional least squares
approach for this specific problem. There are, however more sophisticated, and perhaps more suitable recursive
estimation methods such as the instrumental-variable predictors or the least squares algorithm with multiple
resetting as described in [10]. More extensive comparison of these alternative methods with the multiple model
switching algorithm will be conducted in a future extensionof the current paper.

Comment: One of the advantages of the multiple model based estimationover the recursive least squares
method is due to the fact that the former limits the possible set of solutions of the estimation problem by using a
finite number of models and performs, basically, hypothesis testing. This inherently eliminates infeasible solutions.
However, in recursive least squares method it is possible toget numerical problems due to dynamics that are not
stimulated persistently (for an example of this, see [20] Section 7.2).
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Figure 16. CG height estimation based on recursive least squares method as compared to the multiple model switching approach.

4 Preliminary evaluation of the CG position estimation algorithm with off-line sensor measurements

In this section we present the results of preliminary tests conducted with sensor measurement data obtained from
an industrial partner without disclosing the type and make of the test vehicle. The mass and inertia properties of
the vehicle were specified asm= 3062kg, Jzz= 4892kg/m2, andJxx = 1174kg/m2. The velocity and steering angle
corresponding to the measurement are shown in Fig. 17. It is important to note here that no feedback control systems
were active during the measurements.

For the estimation of the longitudinal CG position, the parameter space consisted 180 models with the grid
points selected asLv = [1.3,1.4,1.425,1.45,1.475,1.5,1.525,1.55,1.6], Cv= 1000· [80,100,120,140], andCh =
1000· [120,140,160,180,200]. For this numerical example the free design parameters for the cost function were
set asα = 0.01 andβ = 0.99, while the forgetting factorλ was chosen to be 0. Comparison of the measured lateral
acceleration and yaw rate of the vehicle to that of the multiple model algorithm is shown in Fig. 18. Note here that
there is a noticeable bias in the yaw rate measurement. Corresponding unknown parameter estimates oflv, Cv and
Ch are shown in Fig. 19.

The results of the estimation of CG height using multiple rollplane models using the measurement data
are shown in Fig. 20 and Fig. 21. In this estimation, the model space consisted of 275 models in total
with parameter grid points set asK = 1000· [190,195,200,205,210] , C = 100 · [30,40,50,60,70] and
H = [0.55,0.6,0.65,0.675,0.7,0.725,0.75,0.775,0.8,0.825,0.85]. For this numerical example the free design
parameters for the cost function were set asα = 0.01 andβ = 0.99, while the forgetting factorλ was chosen to
be 0. In this measurement data, the roll angle was obtained from spring displacement sensors, which measure the
vertical travel of the suspensions. Despite the significant offset in roll angle measurement as noticeable from Fig.
20, the estimation results were successful.
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Figure 17. Velocity and steering angle inputs.
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Figure 18. Comparison of the estimated and measured lateral acceleration and yaw rate.

Comment: It is important to note here that the specific problem at hand isabout the estimation of un-
known vehicle parameters in real-time rather than the control of specific vehicle states. Therefore, the abrupt
switching between models and the corresponding “chattering” behavior in the estimations during the transient
phase of the maneuvers is acceptable.

5 An application example: load condition estimator

In this section we introduce a problem related to rollover prevention for implementing our estimation technique.
The problem originates from a particular robust rollover controller design in an SUV class vehicle such that when
the vehicle is empty excluding the weight of driver, there isno risk of un-tripped rollover. In this case, a possible
intervention of the controller results in a loss of performance and must be avoided. In what follows, we give a
version of the multiple model & switching algorithm to estimate whether the load condition of the vehicle is above
the threshold weight. The threshold weight here is defined by the total weight of the empty vehicle and the driver.
For this problem we employed the roll plane model (10) and further assumed the availability of the set of the roll
angle (φ ), and the lateral acceleration (ay) sensors. We also assumed that we know the parameters of the vehicle
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Figure 19. Estimations of longitudinal CG position and the linear tire stifnesses.
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Figure 20. Roll angle measurement compared to the corresponding multiple model output.

corresponding to the threshold loading condition.
For the multiple model switching algorithm we set the known massm, CG heighth, damping coefficientc, and

roll moment of inertiaJxx corresponding to the threshold loading condition to be the same in every model, where
the models are parameterized with different spring stiffnesses. We assumed that spring stiffness belongs to a closed
interval such thatk ∈ K , where the interval is divided inton grid points such thatK = {k1,k2,k3, . . . ,kn}. In
other words we haven different models corresponding to the differentk values. The equations of motion for the
models with zero initial conditions can be expressed with (20). While each model is driven by the same inputay,
the corresponding identification errorsei are calculated according to (21). Given this setup, one can compute cost
functions (17) corresponding to each identification error and switching among the models based on (18) yields the
one with the minimum cumulative identification error. The selectedk⋆ represents the plant in the parameter space
K , and if it is different than that of the vehicle with threshold load condition then we can conclude that there is
more load on the vehicle than the threshold value.

Numerical Analysis: In our simulations we chose the parameters given in Table 2 torepresent the threshold
loading of the vehicle. We also used the same obstacle avoidance maneuver introduced in the preceding section,
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Figure 21. Estimations of CG height and the suspension parameters.

Table 3. Loading Scenarios

Case Weight [kg] CG height [m] Threshold Loading?

1 1300 0.70 yes
2 1350 0.70 no
3 1400 0.70 no
4 1450 0.70 no
5 1500 0.70 no
6 1300 0.75 no
7 1300 0.80 no
8 1300 0.85 no
9 1300 0.90 no

at the speed of 108km/h and with a steering profile as shown in Fig. 6. We tested 9 different loading scenarios as
described in Table 3, where the first case corresponds to the threshold loading condition. The model space consisted
of 11 models in total, where the uniformly distributed parameter space was chosen asK = [30000,40000] with
intervals of 1000. Based on the described algorithm, only the first case was recognized as the threshold loading
condition, and the recognition took less then 1.5 seconds into the maneuver in all the cases.

Based on the results, we conclude that this version of the multiple model & switching algorithm can successfully
be used to rapidly recognize a specific loading condition of the vehicle based on the dynamics of the car alone, and
utilizing only a small number of models.

6 Conclusions and discussions

In this paper we have presented a realtime parameter estimation algorithm using a multiple model switching ap-
proach incorporating simple linear models. Based on the simulation results, we demonstrated the accuracy of the
suggested technique as compared to the traditional least squares identification approach, which shows significant
benefits. We also presented preliminary tests of the algorithm with off-line measurement data taken from an undis-
closed test vehicle, and results were promising. The resultsshowed that the algorithm can also work in cases where
the signals are corrupted by noise and bias. Moreover, the load condition estimator example demonstrated that a
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simple version of the suggested algorithm can easily be integrated into current rollover or lateral dynamics con-
trollers to enhance their performance.

Although the use of linear models in this analysis may be too restrictive for representing vehicle behavior,
especially during extreme maneuvers, the method produced acceptable performance in the majority of the
numerical tests. Exploration of more sophisticated and accurate nonlinear models, which are valid both in linear
and nonlinear regions of operating regime, in conjunction with the multiple model approach shall be a future
direction for research. In the follow-up of this work we shall also compare our estimation technique with nonlinear
methods such as instrumental-variable type estimators to fully asses its potential, as these methods are more suited
to the nonlinear parameter estimation task described in this paper, unlike the recursive least squares algorithm.
In addition, we shall look into adaptive versions of the multiple model algorithm to deal with the cases when
the parameter sets do not include the exact vehicle parameterizations. One important observation in our analysis
was that the multiple model algorithm employing only fixed models required too many models to produce the
desired estimation accuracy and performance (as apparent from numerical simulations where we had 140 models
for lateral dynamics and 240 models for roll dynamics). This many models can cause a significant computational
overhead for the current on-board computers used in cars. Inorder to remedy this problem, adaptive model space
distribution techniques can be used, which employ only a small number of models initially and are updated
and re-parameterized in fixed time intervals: this we shall exploit in our future work. Another direction for
research shall look into integration of the algorithm with direct rollover prevention as well as lateral dynamics
controllers and compare their feedback performance to thatof alternative robust control approaches. We also aim
for implementing the algorithm in a real vehicle and do extensive tests to asses the real-time performance as well
as to determine the robustness of the algorithm to sensor uncertainties and/or other real life complications.

Comment: In the context of rollover mitigation control design, the CGheight is an important parameter.
We can demonstrate this by defining a non-dimensional parameter known as the load transfer ratio (LTR), which is
obtained by a torque balance in the roll plane of the vehicle model given in Fig. 2. Based on this modelLTRcan
be defined simply as follows

LTR=
Load on Right Tires-Load on Left Tires

Total Load on All Tires
. (30)

It is evident that this parameter varies in the interval[−1,1], and during straight driving for a perfectly symmetric
car it is 0. The extremum is reached in the case of a wheel lift-off of one side of the vehicle, in which case it becomes
1 or−1. Therefore, a direct measurement or an estimation of this parameter can be used as a rollover warning, or as
a switch for a rollover controller. IndeedLTRappeared previously in literature in a number of rollover prevention
controller designs, most notably in [15] and [19], for assessing the rollover threat. A steady state approximation of
LTR in terms of lateral accelerationay and the CG heighth, as described in [15], is given below

LTR≈
2ay

g
h
T

. (31)

From this approximation the dependence ofLTR, thus the rollover threat to the vehicle parametersay/g andh/T
is apparent. Note thatay

gT can be measured whereash is an unknown vehicle parameter. As apparent from (31), CG
height is a prominent factor affecting rollover tendency ofa vehicle, yet it isnot measurable. Therefore any rollover
mitigation controller can greatly benefit from the estimation of this specific parameter by tuning of the control
parameters based on the estimated CG height. This in turn can significantly improve the lateral and the cornering
performance of the vehicle in extreme driving situations without sacrificing its safety and handling capability. In
the follow up of the current paper, we shall report a successful utilization of LTRparameter for rollover mitigation
controller design, which incorporates the CG position estimation method described in this paper.
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