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In this paper we present a methodology based on multiple moddlswitching for realtime estimation of center of gravity (Q@sition in automotive
vehicles. The method utilizes well-known simple linear véhinodels for lateral and roll dynamics and assumes the aMéyaddistandard stock automotive
sensors. We illustrate the technique with numerical simutatas well as with measured sensor data from an SUV vehiclal&Weompare our estimation
results with traditional linear-least squares estimatorshow the efficacy of our technique. Finally, we give a simplglization example for implementing
the idea in automotive vehicles as a switch for rollover anlfer activation.
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1 Introduction

Vehicle center of gravity (CG) position and inertial projes are of primal importance in the assessment of vehicle
handling and performance characteristics as well as ifd@athehavior. Although automotive manufacturers often
provide the measurement of these parameters, such infomzdten pertains to an empty vehicle with known load
distribution. Considering the fact that passenger, arildaat distribution in road vehicles can vary significantlydan
sometimes even dangerously, it is difficult to overlook tharge in the CG position and its consequences. While
the importance of this is known on the handling behaviomeaugitive manufacturers usually employ robust active
road-handling control strategies to account for the unkmand changing CG position; they simply design for the
worst case scenario. Another common approach in the caseoof Splity Vehicles (SUVSs) is to intentionally
design the vehicle heavier than usual by adding ballastarutidercarriage, which aims to lower the CG position
while reducing the percent margin of the load variation amngstconstraining the variation of the CG location.
While such approaches are successful up to certain extaytalso come with obvious drawbacks; performance
loss under normal driving conditions and reduced efficieney tv added weight.

Analysis of recent car accident data indicates that vehiglith a high center of gravity such as vans, trucks
and SUVs are more prone to rollover accidents than otherdfdjeover it is known that rollover accidents alone
constitute only a small percentage of all car accidentdgthey cause disproportionately high rates of fatalitids [
According to [1] non-collision rollover occurred in only34% of all vehicle crashes during 2004 in the USA, while
it was responsible for a massive 10.6% fatality rate, reindet to be the most dangerous type of accident. Again
according to the same data, light trucks (pickups, vans, SWUxse involved in nearly 70% of all the rollover
accidents, with SUVs alone responsible for almost 35% of tittisl. Considering the fact that composition of
the current automotive fleet consists of nearly 36% lightksuaeninivans and SUVs [3] along with the recent
increase in the popularity of SUVs worldwide, makes the k@toan important safety problem. As CG height is
the most prominent factor in un-tripped rollover occurmenihis problem can greatly benefit from real-time CG
position estimation capabilities. Such estimators can kd as a warning system to the driver or can conveniently
be integrated into active road handling or rollover prei@ntontrollers thus improving the overall vehicle and
passenger safety.
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With this background in mind, and inspired by the Multiple 8&b Switching & Tuning (MMST) methodology
[4-6], we present in this paper a multiple model and switghéstimation algorithm based on simple linearized
models and employing only standard stock automotive sser§¢r While simplified linear models such as the
single track model (i.e., bicycle model) and the roll plansdel can represent the real vehicle behavior in a limited
range of maneuvers and speeds, it is possible to use a meltitithese models and switch between them in
an intelligent way in real time, to track the vehicle behawocurately over the complete operating conditions.
Moreover, proper parametrization of these models givestavdlye rapid estimation of unknown and time-varying
vehicle parameters through the selected models. Usingdberided multi-model approach in conjunction with
linear roll plane models, one can estimate parameters ssitheaCG height and linear suspension parameters
in relation to the rollover prevention problem. Through aiamimplementation of multiple single track models
one can also estimate parameters relevant to lateral dgsasantrol, such as the longitudinal CG position and
linear tire stiffnesses. One of the benefits of this realtister@ation method is the fact that the method is immune
to the nonlinear dependance of unknown vehicle parametdfei models as shall be apparent in the Section 2.
During the derivation of the method in Section 3 we make norag$sions about the parameter vector having a
linear dependance on the states. This is particularly irapbis the traditional linear regression type estimation
techniques can not work in the case of non-linear paramat@&tions, which we shall demonstrate with numerical
simulations in Section 3.

Recent publications related to automotive CG position muegsent and estimation include that of Mango [8],
where he described a method for accurately calculating Gé&€ation based on portable wheel scales. His method
requires external measurement equipment and is not indeied@nline measurement during regular driving con-
ditions as it requires the vehicle to be stationary. In aeotacent article, Allen et al. [9] made a statistical anialys
of vehicle inertial properties and CG positions as a fumctdweight, width, length and the height of the vehicle
using the data for several existing stock cars. Althouglr guealysis is useful in demonstrating the relationship
between the several physical parameters of vehicles tohhedling characteristics, their method can not be em-
ployed for realtime estimation purposes. There has been d&uof recent publications about realtime estimation
of vehicle parameters including the CG position. Vahidilesaggested a recursive linear least squares estimator
with multiple forgetting factors in [10], for simultaneoestimation of the road grade and the vehicle mass in real
time. Their algorithm took into account the different ratéslwange in both unknown parameters and incorporated
different forgetting factors into the cost function of thexursive least squares algorithm. Their results are promis-
ing as demonstrated with both numerical and measured daigeMer their method assumes that vehicle model is
linear in the unknown parameters, which is not the case ®nibthod presented in the present paper as shall be
clear in the sequel. In a recent thesis [11], a model bas@una&in method for road bank angle and CG height
was suggested using extended Kalman filters. The presentdtsreisowed slow convergence rates in the estima-
tions and the accuracy was questionable. In a recent Eurggeant EP 09180l [12] an alternative method
for estimating the height of the CG in real-time was desctiiehe method utilizes an estimated drive/brake slip
of at least one wheel using the wheel speed sensors, whibhrisused to compute the instantaneous radius of the
corresponding wheel. Using this information, the anglenef¢orresponding wheel axle with respect to the ground
is computed and then used in an equation related to thelldigramics of the car to compute the CG height. Since
there are no other publications other then the cited patentletails and the limitations of this method is not known
to the authors. As a last remark we note in the context of vellprevention that all the methods suggested to date
assume known CG height [2, 3,13-19]. However as we haveiegplait is particularly unrealistic to assume the
CG height to be known, and this parameter can vary signifigavith changing passenger and loading conditions
especially in large passenger vehicles such as SUVSs.

2 Vehicle modelling

In this section we present three different models for theré&dtmotion and roll plane dynamics of a car. We use
linear models to simplify the implementation of the algionit as well as to keep the required sensory information
at a minimum level. All the models introduced here assumdlsangles and are valid when the steering input is
small. Also, in the second order linear single track modsktdbed below, a weak relationship between the lateral
and the roll dynamics is assumed, which is the case whenekersg angle is small [20]. Note that the choice of
the models here is a trade off between complexity and seitgiid different operating conditions. The assumption
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Table 1. Model parameters and definitions

Parameter  Description Unit
m Vehicle mass kgl
g Gravitational constant m/<]
Vx Vehicle longitudinal speed m/s
) Steering angle rad|
Jyx Roll moment of inertia of the sprung mass measured at the Cj&g- mz}
Xz Yaw moment of inertia of the chassis measured at the CG kg- mz}
L Axle separation, such that= I, + 1y, m|
T Track width m|
ly longitudinal CG position measured w.r.t. the front axle m|
Ih longitudinal CG position measured w.r.t. the rear axle m|
h CG height measured over the ground m|
c suspension damping coefficient [kg-m?/s
k suspension spring stiffness kg-m?/<]
Cy linear tire stiffness coefficient for the front tire N/rad]
Ch linear tire stiffness coefficient for the rear tire N/rad]
B Sideslip angle at vehicle CG rad]
ay Sideslip angles at the front tire rad|
on Sideslip angles at the rear tire rad]
Q Roll angle measured at the roll center rad|
[0} Roll rate measured at the roll center [rad]

of linear models and small angles in the following discusssindeed a restrictive argument as the linear models
are not dependable during extreme driving situations, ektes knowledge of the unknown vehicle parameters is
required most (e.g., for the deployment of a suitable cdmiztton). However, the method described in this paper
is intended for estimating the unknown parameters duringhabdriving conditions and long before such extreme
driving conditions occur. Use of more accurate nonlineadef®that are valid both in the linear and the nonlinear
regions of the vehicle operation envelope, in conjunctidth the multiple model estimation algorithm that shall be
described in sequel, is a straightforward future directarthis work.

Notation and definitions of the model parameters and vaadie given in Table 1. In what follows we give three
different dynamical equations of the motion of the car. Ftraugh coverage of the derivations see [21], and [20].
Note that for simplicity, we assume in the following equatdhat, relative to the ground the sprung mass of the
vehicle rolls about a horizontal axis along the centerlifithe body.

2.1 Single track model

This two state linear model represents the horizontal dyosufi a car. It is also referred to as “the linear bicycle
model” in the literature and is commonly used in automotpelizations (see [22] for a good application example).
The model assumes constant velocity and small steering &ordleearization. See Fig. 1 for the representation
and notation of the model. Notice that in this model we lumip dad right tires into a single one at the axle
centerline, hence the name “Bicycle Model” or “Single Trackdél”. We represent the horizontal dynamics in
terms of the state variablgsand(. The lateral tire force§,, S, for front and rear tires respectively, are represented

as linear functions of the tire slip angles such Bat C,ay, andS, = C,an, where for small angles tire slip angles
are given as follows

ly .
a=5-p- 4 1)
%=—3+$w @

Also notice that since we assume small angles and constagitudinal velocity, sideslip anglg satisfies the
following;

W g W
B~ B ®)



4 S. Solmaz et al.

—

e e

T
|
|
| .
3l
|

—
=

Figure 1. Linear bicycle model.

Using above relations and Newton’s 2nd law of motion, onegetrihe following state space representation of the
horizontal dynamics of the vehicle

_0o P _ oY
B } ma\& mé 1 {B ] m
+ 0, 4
|:¢’ JlZz _JZZVX L)U %IZV ( )
where the auxiliary parametegs p, andk are defined as follows
0 =Cy+GCp
P £ Ciln—Cily 5)

K £ C\,I§+Chlﬁ.

We make use of this model mainly for the estimation of the wago®e model parameter§,,Ci,ly,ln based

on the multiple model structure. Note that although (4) reedir in the state variables, it is nonlinear with
respect to unknown parameter variations, which is a fagtotihg the use of traditional recursive estimation meth-
ods such as the linear least squares for the estimation abwikparameters, as shall be demonstrated in the sequel.

Comment: In the version of the linear second-order single track madd#bduced here, the effect of the
variations in longitudinal CG position to the variationsthre effective yaw moment of inertid,, were ignored

on the grounds that such changes are insignificant for smhithes, where loading options are limited and the
resulting changes in the inertia are quite small. For the sdilsimplicity, parameters for a compact class vehicle
were used in the simulations in this paper and thereforeagsmption makes sense. However for larger vehicles
such as busses and trucks the changes in yaw moment of ingtii@hanging longitudinal CG position can be
quite significant and thus can not be ignored in the analysis.

Comment: It is important to note here also that the single track modmsiumes a weak coupling from the
vertical (i.e., roll) dynamics onto the lateral. Therefdtegre are no terms in (4) that reflect the effect of vertical
dynamics, which is reasonable when the vehicle is operatirige linear regime at low levels of lateral acceler-
ation [23]. However, the reverse argument is not true forrtlledynamics even under small angles assumption,
since the roll motion is heavily influenced by the lateral dyits via lateral acceleration, as shall be clear in the
next subsection.
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2.2 Roll plane model

We use the 2-state roll plane model described here for thinneaestimation of CG height as well as the param-
eters of the suspension syst&ne based on the multiple model switching method. This is the Estpnodel that
captures the roll dynamics of the car and it is free from ttiect$ of uncertainties originating from unknown tire
stiffness parameters, which in turn makes it suitable fergstimation task.

Assuming all vehicle mass is sprung, effective linear tesjaxerted by the suspension system about the roll
center are defined as follows

Tspring =k o, (6)
Taamper=C (bv (7)
wherek, c denote the linear spring stiffness and damping coefficiesjsactively. Using these one can then apply a

torque balance in the roll plane of the vehicle in terms ofgiffiective suspension torques (see Fig. 2 for the notation
of the roll plane model), and obtain the following relatibips

Jeeq®+ €O+ ko = mh(a,cosp + gsing). (8)
Note that for simplicity, it is assumed that, relative to greund, the sprung mass rolls about a fixed horizontal roll
axis which is along the centerline of the body and at grouvel lén the last equatiody,, denotes the equivalent roll
moment of inertia derived using the parallel axis theoremmethanics taking into account the CG height variation
as described below

For smallg, we can approximate nonlinear terms in equation (&c@p ~ 1, sing ~ @ and represent this equation
as in the following state space form

’ 0 1
|:§0:| = k—mgh c |- |:CP} +
o] T |G i | e

Note that at steady state one can calculate the CG heiglg asimgle model using the relationship

0
‘mh ] ay. (20)

xeq

h= L’ (11)
m(gp + ay)

given that the roll angle, and the lateral accelerati@y measurements as well as an accurate knowledge of the

spring stiffnessk are available. While former can be measured using suita&eassk is unknown and needs to

be calculated depending on the specific maneuver and loadimdjtion, and is effected by various other factors.

As will be explained in Section 3, using the multiple modeltsiving method we neither need the exact knowledge

of the suspension parameters, nor steady state type @éxcitatget an accurate estimation of the CG height. As a

final remark note that although (10) is linear in the statealdeis, again observe that it is nonlinear with respect to

unknown parameter variations kfc andh.

2.3 Single track model with roll degree of freedom

While we utilize the previous two models for the estimatiask of the unknown vehicle parameters, we employ
the linear bicycle model with roll degree of freedom desedlithere, to generate the reference vehicle behavior.
The model is the simplest model with coupled lateral and nghlagnics, which assumes thate, 8 are small and

all vehicle mass is sprung. We can write the equations ofandbr the single track model with the extended roll
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Figure 2. Linear bicycle model with roll degree of freedom.

degree of freedom as follows

_ 0 %q p_heq 1 __hc h(mgh-k Cv g
my Jxx Mg Jxx Tk Jxxx mv Jxx
Y \Ilﬂ —J Kv 0 0 W Fo) 12
X _ @ hf)Z * ¢ mghk X+ ﬁ ) ( )
Jxx Vxdxx Jxx Ixx Ixx
0 0 1 0 0

wherex = [B 1] (p (p]T is the state vector. Representative state responses oftlsel to a step steering input
are shown in Fig. 3 below, where the steering magnitude wasv@@ a steering ratio of 1 : 18, and the vehicle
velocity during the simulation wag = 30m/s.

—— [ [rad] H
—o— dy/dt [rad/s]
—&— dg/dt [rad/s]
—v— @[rad]

States

time [sec]

Figure 3. State responses of the single track model with egtee of freedom to a step steering input£€ 30m/s, & = f—go.

2.4 Sensors and vehicle parameters

In this subsection we describe the configuration of sensndssammarize the list of the assumptions on the known
and estimated vehicle parameters.
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2.5.1 Sensors: In this paper we assume the availability of lateral accélemaa,, yaw rate (J, velocity vy

and the steering angl® measurements which are available as part of the standasdrseacks found in modern
cars that are commonly utilized for lateral and yaw dynam@strol implementations such as the ESP (Electronic
Stability Program) [22], [24]. Moreover, a measurement or atimetion of the vehicle roll angle is required
for the implementation in this paper, which can be obtaidedugh spring displacement sensors (displacement
transducers) found in vehicles with active suspensioresyssuch as the ABC (Active Body Control).

Comment: The analysis given in this paper does not necessarily requ@eaise of particular type of sensor
to obtain the roll angle information: gyroscopic roll ransors, or any other suitable set of sensors can be utilized
for computing the roll angle.

2.5.2 Parameters: We assume that vehicle massis known, which can be estimated as part of the braking
system (see for example [10]), yet this is outside scope isf gaper. Furthermor€,,Cy,ly,k,c and h are all
assumed banknown parameters of the vehicle and are estimated through thépheuttodel switching algorithm.
We further assume that these parameters vary within cectased interval, € 4, Ch € éh, lv € A, c€ €,

ke 7 andh e s7, and these intervals can be found via accurate numericallaiibns as well as field tests.
The number of models necessary to estimate these paramatgesrto the size of the interval and the accuracy
demand on the estimation, as shall be explained in the folpsection.

Comment: It is possible to extend the estimation scheme describedennext section to include the un-
known and time-varying vehicle mass. However, as there lsgenative and dependable methods for estimating
the vehicle mass [10], as well as for the ease of exposititheomethod described here, we omitted this parameter
in the following discussion.

3 \Vehicle parameter identification through multiple models& switching

While the conventional approach to parameter estimatidaa amploy a well-established linear least square type
identification technique, such methods are susceptibleskodbidentifiability due to feedback [25], [26] as is the
case for the estimation problem described here. Also, tileatimodels introduced in Section 2 are nonlinear in the
unknown vehicle parameters further complicating the fdation of the estimation problem using the traditional
approaches. Although linear regression techniques tipicanverge quickly, they require measurement signals
that are persistently exciting [25], [27]. For our problenstwould mean to impose some specific maneuver re-
quirements on the driver input such that all the modes oftation are covered and a dependable estimation of
the unknown parameters could be made. Such a demand on teeidput would not only be unrealistic but also
unreliable. Thus there is a need for a different approachtfemparameter identification task, which imposes no
restriction on the driver input, has fast convergence ratelsrequires minimum additional output information (sen-
sors). Here we introduce a multiple model switching aldwnif 7] to identify unknown vehicle parameters rapidly
in real-time. The method achieves this, in part, as a restitteofact that the model space representing the parameter
uncertainty is bounded, and includes only the feasiblematars of the vehicle. This restricts infeasible estima-
tions in cases when sensor signal are not persistentlyeelk@nd where the standard estimation methods such the
recursive linear least squares are destined to fail. Ajhone have no theoretical proof that the multiple model
estimation algorithm is more immune to persistence of akioih issues, our numerical analysis shows that this is
the case, at least as compared to the standard recursivedease algorithm. An extensive theoretical analysis of
this is a future research direction for this work.

A natural approach here would be to setup the multiple esitimanodels using (12), which in this setup would
imply that there is no modelling error. However in this cabe, resulting parameter space would be too complex
to handle. Instead we take a modular approach of decouglagehicle dynamics into subsystems by assuming a
weak relationship from the roll dynamics onto the latenakHhe following two subsections we present our method-
ology and give numerical simulation results correspondinthe decoupled identification algorithms, which are
then compared to recursive least squares based estimations
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3.1 Online identification of longitudinal CG location and tire 8ffness parameters

The multiple model switching identification algorithm to estite longitudinal CG locatioh, and tire stiffness
parameter€,, C,, makes use of the lateral dynamics model given in (4). The ndelksumes that each unknown pa-
rameter belongs to a closed interval such @at %, Cy, € %h, andly, € %4, These intervals are divided into certain
number of grid points and they can be represented.as {C,,,Cy,,Cy,.-.,Cv,}, ¢h = {Chy,Ch,y,Chgs - +,Chiy }
and%, = {ly;,lv,, v, - - ., ly, } with dimensionsp, g andr respectively.

Comment: There is a trade-off between the choice of the number of gridtpon the parameter space and
the numerical complexity, which is a design consideratiepehding on the accuracy demand from the estimation
and the available computational resources for the specifici@m under consideration.

With these in mind we fornm = p x q x r different models corresponding to the cross combinatidnlengrid
points in the parameter space. Utilizing (4), the equataimsotion corresponding to each model can be represented

as
|:BI:| N [ E\& m_\& Ki ] . [ﬁ] + (évn)\i,)ivi 57 (13)
i 1., Ty ! Y

wherei = 1,2,...,n denotes the model number. We assume that all models havéngbconditions such that
Bi(0) =0, andy;(0) =0, fori = 1,2,...,n. Furthermore, each model is driven by the same inpugsdvy as
depicted in Fig. 4, measurements of which are assumed to bpdoby suitable set of sensors. In order to select

‘ .
Q’ —
y

4% Model-1 ) e

| Model-2 e

— Model-3 e

Figure 4. Multiple Model System Identification Algorithm.

the model with the correct parametrization we look at théediince between the model and the plant outputs. The
identification errorg corresponding!” model is defined as

€ = Yplant — (YmodeDis (14)

wherey denotes the model or the plant output. In this implemematibthe algorithm the output to be utilized
isy = [ay, ], and it is further assumed that the measurement of thesevaitatde for the vehicle. Thus we can
represent the identification error for ti&@ model as follows

_|ayt)—ait)|
e.(t)_[&’](t)wi(t)], i=12...,n (15)

Note here thaay(t) and(t) are the respective plant lateral acceleration and yaw tafgibmeasurements obtained
from the sensors, whilgi(t) is obtained from the second state of iHesingle track model given in (13), and
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correspondingy,(t) is calculated using the following function of the states\arg instant

Q)i
s (16)

ayi = Wi +B) = —%Bi +mi\i&llli +

By utilizing the identification errors it is possible to switand choose a model that has the minimum distance to
the plant outputs. Although control design is outside tlops®f the current paper, using a model that has the closest
outputs to those of the plant is likely to yield the best femkbperformance. In other words a small identification
error leads to a small tracking error [6], which, in the sepfssdaptive control, is based on the principle of certainty
equivalence from tuning to switching [28]. Control desigipiementation of the algorithm shall be explored in our
future work.

Based on empirical observations, the choice of the switchidex should include both instantaneous and steady-
state measures in order to reliably determine the ideniificabodels representing the plant at all instants. While
there exist many such indices, we utilize the cost funcfiororresponding to thé" identification error as given
below, which is inspired by the quadratic cost optimizatechniques and was originally suggested by Narendra et
al. in [4-6] as a switching scheme

30 =alla®l+8 [ ¢ Ija(idr )

In this cost functioro > 0, andf > 0 are free design parameters controlling the relative vigigiven to transient
and steady state measures respectively, whetead) is the forgetting factor. As will be demonstrated in the
sequel, switching based on (17) with nonzero combinatidrs 8 gives better results then using just the transient
measures, e.di(t) = &(t)?, or the steady-state measures, 8.4) = [; ||&(7)||dT alone. This is illustrated in Fig.

5, where a comparison of the switching rule based on tranées- 1, 3 = 0), steady-statea(= 0,3 = 1) and
combined ¢ = 0.2, 3 = 0.8) output error dynamics is presented during the estimatighe longitudinal position

of CG, where the true value of the reference vehicle2ml It is obvious from the figure that the switching based
on just the transient measures causes an undesirablertitatighile switching based only on the steady state
measures has slower response in the estimations. For thésddtthe simulation see the following subsection on
numerical analysis. Note that it is possible to use otheg tyfcost functions depending on the specific estimation

1.6 T T T T T T T

15§

14)

\

1.3F

1.2

- ~ T"| l|' rll!l

:!"

ii .-f :‘.!- A
TR TR

al JA

Estimated CG position, | [m]

== 0=1,3=0
0.9F G:O'B:l N

1=0.2,3=0.8
0.8 I I I I I I I I I

0 2 4 6 8 10 12 14 16 18 20

Figure 5. Comparison of switching based on transient, ststatg and combined output error dynamics during the estimafitongitudinal CG position.

requirements from the problem at hand. Here we selected tieihwith the least cumulative identification error
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Table 2. Reference Model Parameters

parameter  value unit

m 1300  [kg|

g 981  [m/<)

Vix 30 [m/s]
Opeak 30- & [ded

Jix 400 [kg-m?]
N 1200 kg- n?]

ly 1.2 m|

Ih 1.3 m|

L 25 m|

h 0.7 m|

c 5000  [kg-m?/g

k 36000 [kg-m?/s?
C 60000  [N/rad]
Ch 90000  [N/rad]

according to (17) using
i*=arg minN Ji(1). (18)
|: t AR

Within the parameter space describeddyysh, and.%,, selected moder and the corresponding model parameters
C;,C;, andly have the minimum cumulative distance to the parametersegblémt.

Comment: As a rule of thumb based on our numerical experimentatiomgsimg 09 < 3 <1and O< a < 0.1 for
this problem gave the best estimation results in conjunatith the multiple model switched estimation algorithm.
Also, the forgetting factoA becomes important if the plant undergoes rapid switchethiass not the case when
CG position variation is considered, we get 0 in the following discussion.

Numerical analysis: In the following figures we present the estimation results tfeg algorithm based on
simulated sensor signals generated by the vehicle modgl Th2 model parameters used are given in Table 2.
The maneuver was conducted at E8h, and as seen in Fig. 6 the maneuver tested was an obstaclameeid
maneuver commonly known as the elk-test, with a peak magmitd 30 at the steering wheel (the steering ratio
is 1/18 between the tires and the steering wheel). The modeksmnsisted of 140 models in total. The uniformly
distributed parameter space were selected,as [500008000Q with intervals of 10000%}, = [6000Q 100000
with intervals of 10000 corresponding to the range of tiffre&iss parameters, ang, = [1, 1.6] with intervals of

0.1 corresponding to the space of possible longitudinal CGtipas. For this numerical example the free design
parameters for the cost function were setras 0.05 andf3 = 1, while the forgetting factoh was chosen to be O.

0.03

0.02 -

0.011

3 [rad]

-0.01

-0.02

-0.03

0 2 4 6 8 10 12 14 16 18 20
t [sec]

Figure 6. Steering input.

In Fig. 7 the corresponding simulated sensor data and sdleuéel outputs are compared. The discontinuous
jumps in the model outputs are the result of the switching/beh the models. In Fig. 8 the longitudinal CG position
estimation is presented, where switching is more obvidus.dbserved that based on the simulated measurement
data, the multiple model switching algorithm successfall{imated the longitudinal CG location to b&r, pre-
cisely matching the reference model. Similarly in Fig. 9 thiénestions for the front and rear tire stiffnesses with
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exact model match are presented. The algorithm successfstitmated the front tire stiffness, as 60000 and
rear tire stiffnes€y, as 90000, which are the exact parameters of the referencelnfiadally in Fig. 10 reference
model sideslip angl§ is compared with respect to that of the selected model whickwvs good agreement. For
all practical means, the estimation result presented Baxéhin sufficient tolerances for use in automotive control
applications, particularly for adaptive lateral dynanmgiostrol problem.

ay selected model

- - ay sensor

— dy/dt selected model [
= = =dy/dt sensor

dy/dt [rad/s]
o

. . . . . . . . .
0 2 4 6 8 10 12 14 16 18 20
t [sec]

Figure 7. Sensor and the selected model output comparisohedongitudinal CG position estimation.

g
)

v

=
»

=
N

[N

Estimated CG Position, | [m]

o
©

i i i i i i i i i i
2 4 6 8 10 12 14 16 18 20
t [sec]
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Comment: A theoretical issue related to switching between the idieation models based on the cost function
(17) of the identification errors is due to fact that it is difficto guarantee one-to-one correspondence between
the distance (or error) in the output space and the distantieei parameter space at every instant. This can be
demonstrated by defining a normalized parameter error gmneting to the!" identification model as follows

&

i

(Iv)i

IV,p

)+

Qi
Cup

)+ (e

(G
Ch.p

2
) , i=12,....n,

(19)

wherelyp,Cyp, andCy, p, denote the real parameters of the vehicle that we are tigirggtimate. Note that for
a given identification model, the normalized parameter edefined above is constant. At a given time instant
t, the relationship betweegi and J;(t) can be shown by comparing their variations across the maueles(i.e.,



12 S. Solmaz et al.

[N/rad]

C estimate

v
N
i

i i i i i i i i i
0 2 4 6 8 10 12 14 16 18 20

Ch estimate [N/rad]
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Figure 10. Comparison of the sideslip angBefor the vehicle and the selected models during the maneuver.

models corresponding to all combinations of the paramget&hss is given in Fig. 11 at an instant shortly after
the initiation of the maneuvet = 5.25seqg for the 140 models used in the numerical simulation, and ¢iselt
clearly demonstrates the problem with the non-corresparelbetween output and parameter spaces at this instant,
where transient dynamics are dominant. In Fig. 12 howevertithe history of the normalized parameter error
corresponding to the selected model at each instant dummgdtimation is shown, where it is observed that the
parameter error goes to zero. This can be attributed to théhfacas the steady-state dynamics start to dominate,
the cost functions;(t) corresponding models with large parameter errors grow nfaster than those with small
parameter errors, yielding the desired estimation re$althe best of the authors’ knowledge, determination of a

cost function of the output errors that has a one-to-oneespaondence in the parameter space at every instant, is
still an open question in this framework.

3.2 Online identification of CG height and suspension system aareters

In this subsection we present the multiple model switchilygprthm to estimate CG height along with the
linear suspension parametdgsc based on the roll-plane model (10). Similarly, we assume ¢aah unknown
parameter belongs to a closed interval such thatZ, k € ¢, andc € €. These intervals are divided into
sufficient number of grid points and they can be represented’as {hy,hy, hs,... . hp}, # = {ki, ko, ks, ..., Kq},
and% = {c1,Cp,C3,...,C } with dimensionsp,q andr respectively. We then form = p x q x r different models
corresponding to the cross combinations of the grid pomthé parameter space. Utilizing (10) the equations of
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the normalized parameter errgrfor the numerical example.
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motion corresponding to each model can be represented as

’ 0 1 0
[(n]: _k-mgh g [2]4— mh | ay, (20)

Jxeqi Jxeqi Jxeqi

wherei = 1,2,...,n denotes the model number. We assume that all models havénaeabconditions such that
@(0) =0, and@(0) =0, fori =1,2,...,n. Similar to what is shown in Fig. 4, every model is driven by thens
input ay, which is measured. According to (14) we again calculatetifieation errorse, however this time the
plant and model outputs to compare are the roll angles, ksv®l

et)=0t)—q@t), i=12....n (21)

Note that one can also include the roll rgteneasurement if available, in the output vector. Howeverjtfluence
of @ on the estimation results for the CG height was relativedygnificant as compared to the roll angdethus
was omitted here. This is also in accordance with our assompfino additional sensors to the available ones.

Now one can compute cost functions (17) corresponding th @entification error. Switching among the
models based on (18) yields the one with the minimum cunwuaadientification error and the selectkedc* and
h* represent the plant in the parameter space describedl 0y and.”# respectively.

Numerical analysis:Here we present the CG height estimation results for the latenl measurement data
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described in the previous subsection. The model space tethsi5240 models in total. The uniformly distributed
parameter space were selected’#s= [300004000Q with intervals of 2000%” = [400Q 6000 with intervals of
500 corresponding to the parameter space for suspensiamptars, andZ’ = [0.5,0.85 with intervals of 005
corresponding to the range of possible CG heights. For tinisemical example the free design parameters for the
cost function were set as = 0.01 andf3 = 1, while the forgetting factok was chosen to be 0.

In Fig. 13 sensor and the switched model outputs are compadnedeas in Fig. 14 the CG height estimation
results are shown. Based on the results, we again obsetvw@éraultiple model switching algorithm successfully
estimated the CG height to be Oud, precisely matching the reference vehicle data. Finally ig. A5 the
corresponding estimations of the suspension parametegrasented. The linear torsional spring stiffnkesgas
estimated as 36000 exactly matching that of the referenaieleemodel, while the roll damping coefficieatvas
estimated to be 6000 with a 20% estimation error.

Comment: The 20% estimation error in the damping coefficient can bebated to the specific expression
chosen for the model identification erra@ét) given in (21), which is based on the roll angle measuremdatgea
As apparent from the expression for roll dynamics as desdriy (8), the damping coefficientrelates to the roll
rate of the vehicle. Since we do not consider the roll ratevedton error in (21), this results in some expected
estimation offset irc.

@ selected model
- = = @sensor

— dq/dt selected model
-0.41| = = = dg/dt sensor

5 10 15 20
t [sec]

Figure 13. Sensor and the selected model output comparistimef@G height estimation.
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Figure 14. CG height estimation with exact match.

Despite the estimation offset in the roll damping coefficigme suggested algorithm was successful in providing
a fast and accurate estimation of the CG height, which is thim rmoncern in this discussion. Therefore, for all
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practical means, the method described here is suitabled®riru active automotive handling control systems,
particularly in rollover mitigation control applications

Comment: For the CG height estimation algorithm, the road bank anglad superelevation) was not con-

sidered. When a measurement or an estimation of this pasantefprovided, (where there is vast number
of literature on this topic), the analysis presented in #@stion can be extended and applied without much
modification.

Comment: In the numerical simulations presented in this and the prsvisubsection, the parameter sets
by, 6n, L, X ¢, representing the uncertainty in the system were constiwsieh that the grid points include
the unknown plant parameters of the reference model. Whepdhameter sets do not contain the exact model
parametrization then the method can only guarantee thataleeted model outputs match the sensor measure-
ments, yet the selected model may not necessarily havedkestldistance in the parameter space to the plant. It
is however possible to include a vast amount of grid pointestwmlve this issue, which may be computationally
difficult to implement in automotive applications. Alterivally, parameter adaptation rules or redistribution of the
parameter space can be implemented to provide the exact mattsh, which we shall investigate as a continuation
of this work. For automotive applications it is reasonablatilize a uniform parametrization as described in the
preceding sections as the loading conditions are usuatyicted and can be represented with a small number of
parameter sets.

3.3 Estimation of CG position using recursive least squares

In order to compare the quality of estimations describethéngreceding subsections thus far, we now introduce a
conventional method for estimating the CG position basegkoursive linear least squares method. Although there
exists other, perhaps more suitable methods, we choserthisioce it is easier to implement. We first define the
estimation method for a generic scalar system given by

y(t) =&T ()0 +£(t), (22)

wherey(t) is the measurement corrupted by noisg) is the measurement errd@,= [01,65,...,64]" is the un-
known parameter vector, arfd= [&1, &>, ...,&\]" is the known regression vector. Using this system and deguoti
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é(t) as the estimation of the unknown parameter ve6tat timet, we can give the recursive least squares method
as follows

K(t) =Pt —1)&M[1+Et)PE-1EX)]
P(t) = [l —k(H)&(t)TP(t—1) (23)
0(t) = 6(t—1) +k(t)ly(t) - ()T B(t 1)),

whereP(t) is error the covariance matrix, andt) is the gain vector. Initial value for the covariance matsx i
selected aB(0) = al, wherel is the identity matrix andr is a large scalar constant. Notice that the estimafiah

is calculated based on the previous estimafién- 1) and the current measurements only. For a detailed denivatio
of these equations see [26].

We give the implementation of CG height estimation basedh@rhethod and making use of (8). In this im-
plementation we assumed availability of the measurements,d,p as well asay, where simulated sensor signals
are generated by the single track model with roll degreessfdom given in (12). We first denote the measurement
vector as follows

meas__

ay

As our reference model (12) is linear in the states as a restiie small angles assumption, for consistency, we
can also express the measurement veaf6f°using the same assumption as follows

= ayCosp+ gsing. (24)

= ay+g¢. (25)
Making use of (25) therefore, one can express the roll dyosu@) as
1 .
y(t) _ agqeaS: ﬁ][‘]xeq(p_'— Co+ k(P] (26)

Notice here that there is a nonlinear coupling between tresorement variablgt) and the state variablgsandg,
which is likely to induce errors in the estimations as thedirity assumption of the least squares do not hold. For this
type of coupled estimation problems more complicated imséntal-variable type methods are employed [25]. For
demonstration purposes however we proceed with the re@euesist squares method to present the shortcomings
of this method as compared to ours. Keeping these in mind,untbdr denote the regression and the unknown
parameter vectors respectively as follows

- - T
E=[oo0], (27)
0=[6.66]", (28)
wheref, = mh , 6= =, and6z = h. One can now use the recursive formulas (23) to coméuttat minimizes

the square of the cumulative measurement error. Based astimated parameteés the CG height can then be
calculated from the roots of the polynomial below

mH — mB;h+ Jy = 0. (29)

As there are two roots of this polynomial, it is uncertain g¥hone is closer to the real unknown parameter. In order
to be conservative we always selected the larger root indhgpatations. The estimation result using this algorithm
and employing the reference vehicle data introduced in teéeguling section is given in Fig. 16 as compared to the
multiple model based estimation. As it is apparent from therégeven though least squares method utilized a vast
amount of sensory information (some of which are unmeaseinaging the standard vehicle sensor equipment),
the corresponding estimation has an undesirable biassndrnivergence rate is slower than the multi-model based
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estimation. This clearly demonstrates the efficacy of ounegion technigque over the traditional least squares
approach for this specific problem. There are, however morhistigated, and perhaps more suitable recursive
estimation methods such as the instrumental-variableiqiced or the least squares algorithm with multiple

resetting as described in [10]. More extensive comparidahese alternative methods with the multiple model

switching algorithm will be conducted in a future extensajrthe current paper.

Comment: One of the advantages of the multiple model based estimati@n the recursive least squares

method is due to the fact that the former limits the possibteo$ solutions of the estimation problem by using a

finite number of models and performs, basically, hypothesirig. This inherently eliminates infeasible solutions.
However, in recursive least squares method it is possibggetaiumerical problems due to dynamics that are not
stimulated persistently (for an example of this, see [20}iSrd.2).
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Figure 16. CG height estimation based on recursive leastesjn@ethod as compared to the multiple model switching approach.

4 Preliminary evaluation of the CG position estimation algeithm with off-line sensor measurements

In this section we present the results of preliminary testglacted with sensor measurement data obtained from
an industrial partner without disclosing the type and makihe test vehicle. The mass and inertia properties of
the vehicle were specified as= 306Xg, J,, = 489kg/n?, andJy = 1174g/n?. The velocity and steering angle
corresponding to the measurement are shown in Fig. 17. ljgetitant to note here that no feedback control systems
were active during the measurements.

For the estimation of the longitudinal CG position, the pagter space consisted 180 models with the grid
points selected a&;, = [1.3,1.4,1.4251.45,1.4751.5,1.525 1.55,1.6], Cv= 1000 80,100,120 140, and%}, =
1000-[120,140, 160, 180,200. For this numerical example the free design parameterdéocost function were
set asa = 0.01 andf = 0.99, while the forgetting factok was chosen to be 0. Comparison of the measured lateral
acceleration and yaw rate of the vehicle to that of the migltipodel algorithm is shown in Fig. 18. Note here that
there is a noticeable bias in the yaw rate measurement. £pameing unknown parameter estimates$,p€, and
Cy are shown in Fig. 19.

The results of the estimation of CG height using multiple qjkne models using the measurement data
are shown in Fig. 20 and Fig. 21. In this estimation, the modealcspconsisted of 275 models in total
with parameter grid points set a¥” = 1000- [190,195200,205210 , ¥ = 100- [30,40,50,60,70 and
2 = [0.55,0.6,0.65,0.6750.7,0.725/0.75,0.775,0.8,0.825,0.85]. For this numerical example the free design
parameters for the cost function were sebas 0.01 andf = 0.99, while the forgetting factoh was chosen to
be 0. In this measurement data, the roll angle was obtaimad $pring displacement sensors, which measure the
vertical travel of the suspensions. Despite the signific#fisebin roll angle measurement as noticeable from Fig.
20, the estimation results were successful.
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Figure 17. Velocity and steering angle inputs.
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Figure 18. Comparison of the estimated and measured latelkaaiion and yaw rate.

Comment: It is important to note here that the specific problem at hanéhieut the estimation of un-
known vehicle parameters in real-time rather than the obmtf specific vehicle states. Therefore, the abrupt
switching between models and the corresponding “chagétirehavior in the estimations during the transient
phase of the maneuvers is acceptable.

5 An application example: load condition estimator

In this section we introduce a problem related to rollovesvention for implementing our estimation technique.
The problem originates from a particular robust rolloverteadlfer design in an SUV class vehicle such that when
the vehicle is empty excluding the weight of driver, theradasrisk of un-tripped rollover. In this case, a possible
intervention of the controller results in a loss of perfono@ and must be avoided. In what follows, we give a
version of the multiple model & switching algorithm to eséite whether the load condition of the vehicle is above
the threshold weight. The threshold weight here is defined &ydtal weight of the empty vehicle and the driver.

For this problem we employed the roll plane model (10) anthkrrassumed the availability of the set of the roll

angle @), and the lateral acceleratioayf sensors. We also assumed that we know the parameters oéfieev
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Figure 20. Roll angle measurement compared to the corresppndittiple model output.

corresponding to the threshold loading condition.

For the multiple model switching algorithm we set the knowassm, CG heighth, damping coefficient, and
roll moment of inertialy, corresponding to the threshold loading condition to be #raesin every model, where
the models are parameterized with different spring stiffes. We assumed that spring stiffness belongs to a closed
interval such thak € .#", where the interval is divided into grid points such that?” = {ki,kp,ks,...,kn}. In
other words we hava different models corresponding to the differdetalues. The equations of motion for the
models with zero initial conditions can be expressed wih).(2Vhile each model is driven by the same inpyt
the corresponding identification erragsare calculated according to (21). Given this setup, one oampate cost
functions (17) corresponding to each identification errat savitching among the models based on (18) yields the
one with the minimum cumulative identification error. The stddk* represents the plant in the parameter space
2, and if it is different than that of the vehicle with threstidbad condition then we can conclude that there is
more load on the vehicle than the threshold value.

Numerical Analysis:In our simulations we chose the parameters given in Table 2poesent the threshold
loading of the vehicle. We also used the same obstacle avmédamaneuver introduced in the preceding section,
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Figure 21. Estimations of CG height and the suspension paeasnet

Table 3. Loading Scenarios

| Case|| Weight [kg] | CG height [m]| Threshold Loading?

1 1300 0.70 yes
2 1350 0.70 no
3 1400 0.70 no
4 1450 0.70 no
5 1500 0.70 no
6 1300 0.75 no
7 1300 0.80 no
8 1300 0.85 no
9 1300 0.90 no

at the speed of 10&n/h and with a steering profile as shown in Fig. 6. We tested 9 diftdmading scenarios as
described in Table 3, where the first case corresponds torshibld loading condition. The model space consisted
of 11 models in total, where the uniformly distributed paeten space was chosen .z = [300004000Q with
intervals of 1000. Based on the described algorithm, ondyfitst case was recognized as the threshold loading
condition, and the recognition took less then 1.5 secortdslie maneuver in all the cases.

Based on the results, we conclude that this version of thépteimodel & switching algorithm can successfully
be used to rapidly recognize a specific loading condition efvhicle based on the dynamics of the car alone, and
utilizing only a small number of models.

6 Conclusions and discussions

In this paper we have presented a realtime parameter estimagorithm using a multiple model switching ap-

proach incorporating simple linear models. Based on thelsition results, we demonstrated the accuracy of the
suggested technique as compared to the traditional leaatesjidentification approach, which shows significant
benefits. We also presented preliminary tests of the algontith off-line measurement data taken from an undis-
closed test vehicle, and results were promising. The reslhii&ed that the algorithm can also work in cases where
the signals are corrupted by noise and bias. Moreover, e dondition estimator example demonstrated that a
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simple version of the suggested algorithm can easily bgiated into current rollover or lateral dynamics con-
trollers to enhance their performance.

Although the use of linear models in this analysis may be &sirictive for representing vehicle behavior,
especially during extreme maneuvers, the method producedptable performance in the majority of the
numerical tests. Exploration of more sophisticated and rateunonlinear models, which are valid both in linear
and nonlinear regions of operating regime, in conjunctiath ihe multiple model approach shall be a future
direction for research. In the follow-up of this work we dredso compare our estimation technique with nonlinear
methods such as instrumental-variable type estimatondljodsses its potential, as these methods are more suited
to the nonlinear parameter estimation task described sghper, unlike the recursive least squares algorithm.
In addition, we shall look into adaptive versions of the nplét model algorithm to deal with the cases when
the parameter sets do not include the exact vehicle paramstens. One important observation in our analysis
was that the multiple model algorithm employing only fixed ralsdrequired too many models to produce the
desired estimation accuracy and performance (as appaoentiumerical simulations where we had 140 models
for lateral dynamics and 240 models for roll dynamics). Thamgnmodels can cause a significant computational
overhead for the current on-board computers used in cagder to remedy this problem, adaptive model space
distribution techniques can be used, which employ only allsmanber of models initially and are updated
and re-parameterized in fixed time intervals: this we shafll@k in our future work. Another direction for
research shall look into integration of the algorithm witlhedt rollover prevention as well as lateral dynamics
controllers and compare their feedback performance toahalternative robust control approaches. We also aim
for implementing the algorithm in a real vehicle and do estemtests to asses the real-time performance as well
as to determine the robustness of the algorithm to sensertaiaties and/or other real life complications.

Comment: In the context of rollover mitigation control design, the Q@ight is an important parameter.
We can demonstrate this by defining a non-dimensional paeairkiedwn as the load transfer ratiol(R), which is
obtained by a torque balance in the roll plane of the vehiadehgiven in Fig. 2. Based on this model R can
be defined simply as follows

Load on Right Tires-Load on Left Tires

LTR= Total Load on All Tires

(30)

It is evident that this parameter varies in the inteffval, 1], and during straight driving for a perfectly symmetric
caritis 0. The extremum is reached in the case of a wheelffifif@ne side of the vehicle, in which case it becomes
1 or—1. Therefore, a direct measurement or an estimation of thampeter can be used as a rollover warning, or as
a switch for a rollover controller. Indeddr Rappeared previously in literature in a number of rollovesvention
controller designs, most notably in [15] and [19], for as#sg the rollover threat. A steady state approximation of
LTRin terms of lateral acceleratiay and the CG height, as described in [15], is given below

2ay h
LTR~ o T (31)

From this approximation the dependencd @R, thus the rollover threat to the vehicle parametgygy andh/T

is apparent. Note th% can be measured wherdas an unknown vehicle parameter. As apparent from (31), CG
heightis a prominent factor affecting rollover tendencgothicle, yet itisiot measurable Therefore any rollover
mitigation controller can greatly benefit from the estimatif this specific parameter by tuning of the control
parameters based on the estimated CG height. This in turnigrificantly improve the lateral and the cornering
performance of the vehicle in extreme driving situationthaiit sacrificing its safety and handling capability. In
the follow up of the current paper, we shall report a successilization of LT R parameter for rollover mitigation
controller design, which incorporates the CG positionneation method described in this paper.
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