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Abstract— In this paper we present the global attractivity properties
of a class of discrete-time switching systems of the formx(k+1) = Aix(k),
Ai ∈ A , {A1, ...,Am}, where each constituent matricesAi ∈ R

n×n are
Schur stable. We assume that a set of non-singular matricesTi j ∈ R

n×n

exist such that the matricesTi j AiT
−1
i j and Ti j A j T

−1
i j for i, j ∈ {1, ...,m}

are upper triangular. We show that for a special subset of such switching
systems the origin is globally attractive, and it is possible to prove
this without requiring the existence of a common quadratic Lyapunov
function (CQLF).

I. I NTRODUCTION

It is known that the existence of a common quadratic Lyapunov
function (CQLF) is sufficient to guarantee the exponential stability
of the discrete time switching system

x(k+1) = Aix(k), Ai ∈ A , (1)

whereA , {A1, ....,Am} with Schur stable constituent matricesAi ∈
R

n×n for i ∈{1, ...,m}, and x(k)∈R
n. A sufficient condition for the

existence of a CQLF,V(x) = xTPx, P= PT > 0, P∈R
n×n for (1)

is that a non-singular transformationT exists such thatTAiT−1 is
upper triangular for alli ∈{1, ...,m} [4]. This result was first derived
in [1] for continuous time switched systems, and further discussed
in [2] and [3]. Unfortunately, from a practical viewpoint, the
requirement of simultaneous triangularizability imposes unrealistic
conditions on the matrices inA . Relaxation of this requirement
for continuous time switching systems has been analyzed in [5],
[6], [7] extensively, where they did not specifically require the
existence of a CQLF for the switched Hurwitz stable systems. It was
assumed, amongst other conditions, that any pair of matrices inA

are pairwise triangularizable. In general pairwise triangularizability
is not sufficient for the existence of a CQLF for the switched
systems, yet it was shown using a non-Lyapunov approach in [5]
that the origin of a special subclass of pairwise triangularizable
switching continuous-time systems is globally attractive. In this
paper we investigate the discrete-time analog of these results.

A traditional approach to relate continuous-time linear time
invariant (LTI) Hurwitz stability results to discrete-time LTI Schur
stability counterparts require the use of bilinear transform. However
as reported in a recent paper [8], it is not straightforward to
use the bilinear transform to relate continuous-time and discrete-
time switching systems. It therefore follows that the stability of a
special subclass of pairwise triangularizable switching discrete-time
systems do not necessarily follow from continuous-time systems
with this property, and that the stability of this system class must
be investigated using a ‘first principles approach’.

II. M AIN RESULT

We first give the formal definition of pairwise triangularizability
which we will refer in the rest of the paper.
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Definition (Pairwise Triangularizability): Let a switching system
described by (1) be given. Suppose that a number of non-singular
matrices Ti j exist, such that for each pair of matrices{Ai ,A j}
in A , where i, j ∈ {1, ...,m} and i 6= j, the pair of matrices
{Ti j AiT

−1
i j ,Ti j A jT

−1
i j } are upper triangular. Then every distinct pair

of matrices{Ai ,A j} in A are called pairwise triangularizable.
While the ultimate objective of the work is to determine the

global attractivity and stability of the origin of (1) (where any two
Ai matrices can be simultaneously triangularized), for the purpose
of this paper we consider simpler systems where, amongst other
conditions, theAi matrices inA are diagonalizable, and where any
two of theAi matrices have at leastn−1 real linearly independent
eigenvectors in common. In this case, the origin of the switching
system is globally attractive as verified in the following theorem.

Theorem 2.1:Let V = {v1, . . . ,vn+1} be a set of real vectors,
where eachvi ∈ R

n for i = {1,2, ...,n+1}. Suppose anyn vectors
in V are linearly independent. For eachi ∈ {1,2, . . . ,n+ 1}, we
constructMi ∈ R

n×n matrices as follows

Mi =

{

[v1, ...,vi−1,vi , ...,vn] f or i = 1
[v1, ...,vn+1,vi , ...,vn] f or 2≤ i ≤ n+1

(2)

i.e., Mi is obtained by replacing the(i −1)th column in M1 with
the vectorvn+1. Suppose we also havep different diagonal matrices
D1,D2, . . . ,Dp in R

n×n with all diagonal entries in the right half
of the unit circle, i.e., for every diagonal entryλh, j of Dh, we can
write

0 < λh, j < 1, for 1≤ h≤ p, 1≤ j ≤ n. (3)

We now define the matricesAh,i ∈ R
n×n as follows

Ah,i = MiDhM−1
i , (4)

and let A be the set of allAh,i for h ∈ {1,2, ..., p} and i ∈
{1,2, ...,n+1}. Then for the switching system (1) with the setA

defined as above, the origin is globally attractive.
Comment 2.1:The following facts can be deduced for the setA

defined in Theorem 2.1:

(i) Every matrix inA is Schur stable and diagonalizable.
(ii) Any matrix pair inA share at least(n−1) linearly independent

common real eigenvectors.
(iii) Every matrix pair inA can simultaneously be triangularized.

(See [4] for the proof of this.)

Proof of Theorem 2.1:The line of proof is similar to the continuous
time version given in [5] (see the proof of Theorem 3.1 in [5]), and
here we only present an outline of the main ideas of the proof.

Step 1 :We replace eachn×n matrix M j by an(n+1)×(n+1)
matrix M̄ j . We then replace eachn× n matrix Ah,i in A by an
(n+1)× (n+1) matrix Āh,i . The matricesĀh,i ∈ ¯A , {Āh,i : Ah,i ∈
A } are chosen such that there is at least one common eigenvector
τ = (1,0,0, . . . ,0) for all the matrices in ¯A , and also such that the
properties of the solutions of the dynamic system

x̄(k+1) = Ā(k)x̄(k), Ā(k) ∈ ¯A , (5)

will ultimately imply the global attractivity of the origin of the
system (1), wherex = (x1, ...,xn) and x̄ = (xn+1,x1, ...,xn).
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Step 2 :For a givenj ∈{1,2, . . . ,n+1} we consider then+1 lin-
early independent columns of̄M j . These form ann+1 dimensional
coordinate system which includesτ as one of the axes. We consider
the projection of the state ¯x(k) ontoτ as the dynamics of the system
(5) evolve. This projection is given by the first component of the
vector

g j (k) = M̄−1
j x̄(k), (6)

and is denoted by[g j ]1(k).
Step 3 : We then show that limk→∞ |[g j ]1(k) − [gi ]1(k)| =

0, ∀ i, j ∈ {1, ...,n + 1}. From this fact we can deduce that
limk→∞(x1, . . . ,xn) = 0. This is sufficient to demonstrate the global
attractivity of the origin of the system (1).

Comment 2.2:We can not simply replace Hurwitz stable ma-
trices for the continuous-time case in Theorem 3.1 of [5] with
Schur stable matrices and arrive at the same conclusions of global
attractivity of the origin. In the discrete-time case we need the
condition given in equation (3) on the eigenvalues ofDh for 1≤ h≤
p. Because otherwise, we do not get the global asymptotic stability
of the origin. This is demonstrated in the following example.

Example 2.1:Let the setV = {v1,v2,v3,v4} be given as

v1 =
[

1 0 0
]T

, v2 =
[

0 1 0
]T

,

v3 =
[

0 0 1
]T

, v4 =
[

1 1 1
]T

.

Further assume thatMi ∈ R
3×3 matrices are constructed as follows

M1 =
[

v1 v2 v3
]

, M2 =
[

v4 v2 v3
]

,

M3 =
[

v1 v4 v3
]

, M4 =
[

v1 v2 v4
]

.

Moreover select a 3×3 diagonal Schur stable matrixD as follows

D =





0.9 0 0
0 0.8 0
0 0 −0.6



 .

Now consider the following Schur stable LTI systems

ΣAi : x(k+1) = Aix(k), Ai ∈ R
3×3

, (7)

whereAi matrices are constructed from

Ai = MiDM−1
i , i = 1, ..,4. (8)

It is sufficient to show that there exists a switching sequence
betweenAi ’s such that the resulting system has eigenvalues outside
the unit circle. We simply consider the incremental switching
sequenceA1 → A2 → A3 → A4; then the dynamics of the system
evolve according to the matrix product

A = A1A2A3A4. (9)

Since the eigenvalues ofA are{1.1899,0.1058,0.2766}, then with
one eigenvalue outside the unit circle, this switching sequence is
unstable. It is also interesting to note that ifD is chosen such
that all of the eigenvalues are on the right half of the unit circle,
i.e., D = diag{0.9,0.8,0.6}, then theA matrix corresponding to the
switching sequence (9) has eigenvalues{0.5861,0.1517,0.3917}
and is stable by Theorem 2.1.

III. C ONCLUDING REMARKS

In this paper we have shown that the global attractivity results
for a class of discrete-time switching systems is not necessarily
equivalent to continuous time systems with this property. Hence, in
cases when the existence of a CQLF is unknown for the switched
set of LTI systems, qualitative statements concerning the system
stability for the continuous-time as well as discrete-time systems

must be validated separately using non-CQLF techniques. One such
technique is presented in this paper; namely, a technique which
proves global attractivity by embedding the original (n-dimensional)
state space in a higher (n+1) dimensional state space. Finally, we
note that our motivation for this study was to solve an automotive
control stabilization problem that is related to vehicle rollover, and
which involves switching. Future work will report the (successful)
application of the results in this paper to this problem.
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