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Abstract

In this paper we extend the classical Lefschetz version of the Kalman-
Yacubovich-Popov (KYP) lemma to the case of matrices with general reg-
ular inertia. We then use this result to derive an easily verifiable spectral
condition for a pair of matrices with the same regular inertia to have a com-
mon Lyapunov solution (CLS), extending a recent result on CLS existence
for pairs of Hurwitz matrices.

1 Introduction

Classical Lyapunov theory provides a strong method for checking the asymptotic
stability of linear time-invariant (LTI) systems of the form ẋ = Ax, A∈Rn×n with-
out explicitly calculating the eigenvalues of A [1, 2]. The result is that, the zero
state of ẋ = Ax is asymptotically stable if and only if the solution of the Lyapunov
equation

AT P+PA =−Q, (1)
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is a symmetric positive definite matrix P for all Q = QT > 0. Here, the matrix
P = PT > 0 is called a Lyapunov solution for A. Also, the asymptotic stability of
ẋ = Ax implies that all the eigenvalues of A have strictly negative real parts, where
such matrices are said to be Hurwitz .

In recent years many publications [3, 4, 5, 6, 7, 8, 9] have appeared that deal with
the existence of common quadratic Lyapunov functions (CQLFs) for families of
stable LTI dynamical systems. In an earlier publication, CQLF existence problem
has been investigated in conjunction with the stability of LTI systems with uncer-
tain parameters in [10]. Formally, for the case of a pair of systems, the CQLF
existence problem amounts to determining necessary and sufficient conditions for
the existence of a positive definite symmetric matrix P = PT > 0, P ∈ Rn×n that
simultaneously satisfies the matrix inequalities

AT
1 P+PA1 < 0 , AT

2 P+PA2 < 0 (2)

where all eigenvalues of the given matrices A1,A2 ∈ Rn×n lie in the open left half
of the complex plane, that is A1,A2 are Hurwitz. When there exists a P = PT > 0
satisfying the above inequalities, then the scalar function V (x) = xT Px is said to
be a common quadratic Lyapunov function (CQLF) for the dynamical systems
ΣAi : ẋ = Aix i ∈ {1,2}, and the matrix P is a common Lyapunov solution (CLS)
for the Lyapunov inequalities (2). In a slight abuse of notation, we shall often refer
to such a P as a CLS for the matrices A1,A2. The existence of CQLFs is of con-
siderable importance in a number of engineering problems [11] and consequently
the CQLF existence problem has assumed a pivotal role in research on stability
theory.

It is generally accepted that determining the existence of a CQLF for a finite set of
LTI systems is very difficult to solve analytically. However, in certain situations
as in the case of switching between two LTI systems, elegant conditions for the
existence of a CQLF may be obtained when restrictions are placed on the matrices
A1 and A2. Recently, one such result was obtained for the case where A1 and A2
are Hurwitz and rank(A1−A2) = 1; in this case a CQLF exists for ΣA1 and ΣA2 if
and only if the matrix product A1A2 does not have any real negative eigenvalues.
Furthermore, it has been shown recently in [3] that this result can be seen as a
time-domain version of the Kalman-Yacubovich-Popov (KYP) lemma which was
introduced by Kalman in [12].

Our primary aim in this paper is to extend this result on CLS existence to the
case where the matrices A1 and A2 are no longer Hurwitz, but rather have regular
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inertia [2]. Note that the general problem of CLS existence for matrices with
regular inertia has been considered by various authors before [13, 5, 6, 8, 14],
and, in particular, results linking CLS existence to the inertia of so-called convex
invertible cones of matrices have been established for the cases of Hermitian and
triangular matrices in Rn×n and for matrix pairs in R2×2. In this paper, we shall
extend the KYP lemma from classical stability theory to matrices with regular
inertia and show that, in analogy with the classical case of Hurwitz matrices [15],
this extension leads to elegant conditions for CLS existence for matrices with
regular inertia also.

The main contribution of this paper is the derivation of a simple algebraic condi-
tion that is equivalent to CLS existence for a significant class of pairs of matrices
in companion form and with the same regular inertia, as stated in the following
Theorem (Theorem 3.2 in Section 3.2).

Theorem: Let A, A−ghT be two matrices inRn×n in companion form and with the
same regular inertia, In(A) = In(A−ghT ) = (n+,n−,0), where g,h are vectors in
Rn. Further, assume that for any pair of eigenvalues, λi,λ j, of A, Re(λi +λ j) 6= 0.
Then, the following statements are equivalent:

(i) There exists a symmetric matrix P = PT in Rn×n with In(P) = In(−A) =
In(−(A−ghT )), and positive definite matrices Q1 > 0, Q2 > 0 such that

AT P+PA =−Q1

(A−ghT )T P+P(A−ghT ) =−Q2.

(ii) The matrix rays

σγ [0,∞)(A,A−ghT ) = {A+ γ(A−ghT ) : γ ∈ [0,∞)}

and
σγ[0,∞)(A

−1,A−ghT ) = {A−1 + γ(A−ghT ) : γ ∈ [0,∞)}
have constant regular inertia.

(iii) The matrix A(A−ghT ) has no real negative eigenvalues.

(iv) 1+Re{hT ( jωIn−A)−1g}> 0, ∀ω ∈ R.
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2 Mathematical Preliminaries

2.1 Definitions and technical lemmas

In this section we present a number of basic definitions and results that are needed
in our later derivations.

Throughout this paper R and C denote the fields of real and complex numbers
respectively. We denote n-dimensional real Euclidean space by Rn and the space
of n× n matrices with real entries by Rn×n. Also, we adopt the convention that
vectors in Rn are assumed to be column vectors. For a vector x in Rn, xi denotes
the ith component of x and for A in Rn×n, we denote the entry in the (i, j) position
by ai j. In denotes the n×n identity matrix and j is used throughout to denote the
complex number satisfying j2 =−1.

Companion matrices:

We say that a matrix A ∈ Rn×n is in companion form [16, 17] if

A =




0 1 0 . . . 0
0 0 1 . . . 0
...
0 0 0 . . . 1
−a0 −a1 −a2 . . . −an−1




, (3)

where a0, . . . ,an−1 are real numbers. It is straightforward to verify that if A is in
the form (3), then the characteristic polynomial of A is

det(zIn−A) = zn +an−1zn−1 + · · ·+a1z+a0.

Matrix Inertia:

The inertia of a matrix A ∈ Rn×n is the ordered triple

In(A) = (i+(A), i−(A), i0(A)) (4)

where i+(A), i−(A), i0(A) are the number of eigenvalues of A in the open right half
plane, the open left half plane, and on the imaginary axis, respectively. We say
that A has regular inertia if i0(A) = 0.
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The Matrix Ray σγ[0,∞)[A1,A2]:

Later in the paper, we shall refer to the matrix ray σγ[0,∞)[A1,A2]. Formally, this
is the parameterized family of matrices of the form

σγ[0,∞)[A1,A2] = {A1 + γA2 : γ ∈ [0,∞)}. (5)

We shall say that σγ[0,∞)[A1,A2] is non-singular if A1 + γA2 is non-singular for all
γ ≥ 0; otherwise it is said to be singular. It is trivial to show that singularity of the
matrix ray σγ [0,∞)[A1,A2] is equivalent to the matrix product A−1

1 A2 having a nega-
tive real eigenvalue if A1 and A2 are non-singular. Also, we say that σγ[0,∞)[A1,A2]
has constant inertia if there are fixed non-negative integers n+,n−,n0 such that
In(A1 + γA2) = (n+,n−,n0) for all γ ≥ 0.

Technical lemmas:

We next record some basic technical facts that shall be used in proving the princi-
pal results of this paper.

Lemma 2.1 Suppose that A ∈ Rn×n and is nonsingular. Then

det(ω2In +A2) > 0, (6)

for all ω ∈ R.

Proof: As the matrix A has real entries and is nonsingular, it follows that for any
ω ∈ R,

det(ω2In +A2) = |det( jωIn +A)|2 > 0. (7)

¤

Lemma 2.2 [12] Let A∈Rn×n and A−ghT ∈Rn×n be in companion form, where
h,g ∈ Rn with g = [0, ...0,1]T . Then we can write

1+Re{hT ( jωIn−A)−1g}= 1−hT A(ω2In +A2)−1g

The next lemma records the simple fact that any symmetric matrix P which sat-
isfies the Lyapunov inequality for a given matrix A also satisfies the Lyapunov
inequality for its inverse, A−1.
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Lemma 2.3 [5] Let A ∈ Rn×n have regular inertia. Then for any symmetric P =
PT in Rn×n with In(P) = In(−A),

AT P+PA < 0 (8)

if and only if

(A−1)T P+P(A−1) < 0.

Proof: This follows immediately from the observation that

(A−1)T P+PA−1 = (A−1)T (AT P+PA)A−1. (9)

Also it is evident from the proof that the lemma is valid for all nonsingular A. ¤

Lemma 2.4 [18] Let A,A−ghT be Hurwitz matrices in Rn×n, where g,hT ∈ Rn.
Then for any complex number s,

1+hT (sI−A)−1g =
det(sI− (A−ghT ))

det(sI−A)
. (10)

2.2 The Circle Criterion and Common Lyapunov solutions

One of the most fundamental results on the stability of dynamical systems in the
engineering literature is the Circle Criterion. The relevance of the Circle Criterion
[15] in our present context stems from the fact that it provides a necessary and
sufficient condition for two fixed Hurwitz matrices in companion form to have a
common Lyapunov solution. Formally, if A, A−ghT are two Hurwitz matrices in
Rn×n in companion form, where h,g are vectors in Rn, then they have a CLS if
and only if the rational function

1+hT (zI−A)−1g (11)

is strictly positive real (SPR), meaning that

1+Re{hT ( jωI−A)−1g}> 0 (12)

for all ω in R. Moreover, it follows from Meyer’s extension of the KYP Lemma
[19] that the condition (12) is sufficient for CQLF existence for Hurwitz matri-
ces A, A− ghT , differing by rank one, but not necessarily in companion form.
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Recently in [3, 20], it has been established that the frequency domain condition
(12) is equivalent to a simple condition on the eigenvalues of the matrix product
A(A− ghT ). This equivalence was first demonstrated in [3] for matrices in com-
panion form and then extended to the case of a general pair of Hurwitz matrices
A1, A2 with rank(A2−A1) = 1 in [20]. We state the most general form of the result
here.

Theorem 2.1 Let A, A−ghT be Hurwitz matrices in Rn×n, where g,h ∈Rn. Then

1+Re{hT ( jωI−A)−1g}> 0 for all ω ∈ R

if and only if the matrix product A(A−ghT ) has no negative real eigenvalues.

Proof: Without loss of generality, we may assume that ghT is in one of the fol-
lowing Jordan canonical forms

(i)




c 0 . . . 0
0 . . . . . . 0
...
0 . . . . . . 0


 ,

(ii)




0 . . . . . . 0
1 . . . . . . 0
...
0 . . . . . . 0


 . (13)

As A and A− ghT are both Hurwitz, their determinants will have the same sign,
so it follows that the product A(A− ghT ) has no negative real eigenvalues if and
only if, for all λ > 0

det(λ I +(A−ghT )A) = det(λ I +A2−ghT A) > 0

If ghT is in Jordan form then it follows that the expressions

det(λ I +A2−ghT A)

and

Re{det(λ I +A2−ghT A−
√

λ jghT )},
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are identical. Thus, writing λ = ω2 we have that for all real ω

Re{det(ω2I +A2−ghT A− jωghT )}> 0. (14)

It now follows, after a short calculation (see [3],[21]) that for all ω ∈ R

Re{det( jωI− (A−ghT ))
det( jωI−A)

}> 0. (15)

Making use of Lemma 2.4 It follows that for all real ω

1+Re{hT ( jωI−A)−1g}> 0

as claimed. ¤

Combining the result of Theorem 2.1 with Meyer’s extension of the KYP Lemma
[19], yields the following spectral condition for CLS existence for Hurwitz matri-
ces differing by rank one.

Theorem 2.2 [20] Let A, A− ghT be two Hurwitz matrices in Rn×n where g,h
are vectors in Rn. A necessary and sufficient condition for the existence of a
common Lyapunov solution for the matrices A, A−ghT is that the matrix product
A(A−ghT ) does not have any negative real eigenvalues.

The principal contribution of the present paper is to extend Theorem 2.2 to the
case of pairs of matrices with the same regular inertia. First of all, we recall
some fundamental facts on the existence of solutions to the Lyapunov inequality
for a single matrix with regular inertia. The first part of Theorem 2.3 below is
usually referred to as the General Inertia Theorem [2], while the second part
follows from general results on the existence of solutions to the Sylvester equation
AX +XB = C (For instance, see Theorem 4.4.6 in [2]). While the General Inertia
Theorem has been established for matrices with complex entries, we state it here
for real matrices as we only consider the CLS existence problem for real matrices
in this paper.

Theorem 2.3 General Inertia Theorem [2]
Let A∈Rn×n be given. Then there exists a symmetric matrix P = PT in Rn×n such
that

AT P+PA < 0 (16)
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if and only if A has regular inertia. In this case, In(P) = In(−A).

Furthermore, if λi +λ j 6= 0 for all eigenvalues λi, λ j of A, then for every Q = QT <
0 in Rn×n, there is a unique P = PT with In(P) = In(−A) and AT P+PA = Q < 0.

3 Main results

The two main contributions of this paper are described in the current section.
First of all, in Theorem 3.1 we extend the classical Lefschetz [22] version of the
Kalman-Yacubovich-Popov (KYP) lemma to the case of matrices with regular
inertia and in companion form. Historically, the KYP lemma has played a key
role in stability theory and has led to a number of important results on Lyapunov
function existence for dynamical systems including the Circle Criterion [15] and
the Popov Criterion [23, 24]. We shall see below that the extension of the KYP
lemma to the case of matrices with regular inertia also has implications for the ex-
istence of common Lyapunov solutions in this more general context. In particular,
in Theorem 3.2 we derive a simple algebraic condition that is equivalent to CLS
existence for a significant class of pairs of matrices in companion form, and with
the same regular inertia.

3.1 The KYP Lemma for matrices with regular inertia

The classical KYP lemma considered the existence of constrained solutions to the
Lyapunov inequality for Hurwitz matrices. More formally, the following question,
which we shall address below for matrices with regular inertia, was considered.

Given, A∈ Rn×n Hurwitz, a real constant τ > 0, and a positive definite matrix
D = DT > 0, determine conditions for the existence of a vector q ∈ Rn, a real
number ε > 0 and a positive definite matrix P = PT > 0 ∈ Rn×n such that

AT P+PA = −qqT − εD (17)
Pg−h =

√
τq. (18)

Before we proceed, we prove the following technical lemma which shall be needed
later in this subsection.
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Lemma 3.1 Let A ∈Rn×n to be a nonsingular matrix such that for all pairs λi,λ j
of eigenvalues of A, Re(λi +λ j) 6= 0. Further suppose that g,h are column vectors
in Rn such that for any h, the matrices A ,and A− ghT can simultaneously be
transformed to companion forms using similarity transformations. Then

Re{hT ( jωIn−A)−1g}= 0 for all ω ∈ R (19)

implies that h = 0.

Proof: Without loss of generality, we can assume that A is in companion form
and that g = (0, . . . ,1)T . We shall argue by contradiction. Assume now that (19)
holds and that h = (h0, . . . ,hn−1)T is non-zero, and consider the rational function
R(z) = hT (zIn−A)−1g. Then we can write

R(z) =
h0 +h1z+ · · ·+hn−1zn−1

det(zIn−A)
, (20)

and moreover, under our assumptions the following facts must hold:

(i) R(z) is not uniformly zero;

(ii) R(z) has at least one pole and any such pole must be an eigenvalue of A;

(iii) R(z) takes strictly imaginary values on the imaginary axis.

From (iii), it follows that the function R1(z) = jR( jz) takes real values for real z,
and hence that R1 is a real rational function. Thus, the poles of R1 must be real,
or else occur in complex conjugate pairs. Moreover, if λ is any pole of R1, then
jλ is a pole of the original function R. From this it follows that R must either
have a pole on the imaginary axis or else that there are two poles, λi, λ j of R with
Re(λi +λ j) = 0. Remembering that any pole of R must be an eigenvalue of A, this
is a contradiction. Thus h must be zero as claimed. ¤

Comments:

(i) The proof given above is based on an argument presented in Chapter 8 of
[22], where it was shown that for a Hurwitz matrix A ∈ Rn×n in companion
form, and g = (0, . . . ,1)T ,

Re{hT ( jωIn−A)−1g}= 0 for all ω ∈ R
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implies that h = 0. This is not in general true for a companion matrix A with
regular inertia as can be seen from the simple example

A =
(

0 1
4 0

)
,g = h = (0,1)T .

Clearly, the additional assumption made in Lemma 3.1 , that Re(λi +λ j) is
non-zero, is automatically satisfied if A is Hurwitz.

(ii) The assumption, that Re(λi +λ j) is non-zero, for all eigenvalues λi, λ j of A
is satisfied generically. More precisely, given any A ∈ Rn×n in companion
form with regular inertia which does not satisfy the assumption, and ε > 0,
there exists a matrix A′ ∈ Rn×n in companion form with the same inertia as
A such that ‖A−A′‖< ε and Re(λi +λ j) is non-zero for all eigenvalues λi,
λ j of A′. (Here ‖.‖ can be any matrix norm on Rn×n.)

(iii) It is important to note that if Re(λi + λ j) is non-zero for all eigenvalues
λi, λ j of A, then it follows from the last part of Theorem 2.3 that for any
negative definite matrix Q = QT < 0 in Rn×n, there is a unique symmetric
P = PT with In(P) = In(−A) such that AT P+PA = Q < 0. We shall make
use of this fact in the proof of Theorem 3.1 below.

We are now in a position to state the principal result of this subsection which is an
extension of the classical KYP lemma to the case of matrices with regular inertia.

Theorem 3.1 Let A ∈Rn×n be a companion matrix with regular inertia such that
Re(λi +λ j) 6= 0 for all λi,λ j ∈σ(A), and let g,h∈Rn be vectors such that A−ghT

is also in companion form. Moreover, let D = DT > 0 in Rn×n and τ > 0 in R be
given. Then the following two statements are equivalent:

(i) There exists a symmetric matrix P = PT in Rn×n with In(P) = In(−A), a
vector q ∈ Rn and a scalar ε > 0 such that

AT P+PA =−qqT − εD (21)
Pg−h =

√
τq. (22)

(ii) τ +2Re{hT ( jωIn−A)−1g}> 0 for all ω ∈ R.

11



Proof: For convenience, throughout the proof we shall use the notation A jω to
denote ( jωIn−A) and m jω shall denote the complex vector-valued function A−1

jω g.
It is then straightforward to check that for any P = PT in Rn×n,

A∗jωP+PA jω =−(AT P+PA), (23)

Moreover, multiplying the left and right hand sides of (23) by gT (A−1
jω )∗ and A−1

jω g
respectively, we see that

gT Pm jω +m∗
jωPg =−m∗

jω(AT P+PA)m jω . (24)

(i) ⇒ (ii):

Suppose that the equations (21), and (22) hold. It follows immediately from (21)
and (24) that

m∗
jωPg+gT Pm jω = m∗

jωqqT m jω + εm∗
jωDm jω . (25)

In (25) we can replace the Pg term using (22) and arrange to get

m∗
jωh+hT m jω +

√
τ(m∗

jωq+qT m jω) = m∗
jωqqT m jω + εm∗

jωDm jω

or equivalently,

2Re{hT m jω}= m∗
jωqqT m jω −2

√
τRe{qT m jω}+ εm∗

jωDm jω . (26)

It now follows that

2Re{hT m jω}= |qT m jω −
√

τ|2− τ + εm∗
jωDm jω , (27)

and hence, as D is positive definite and A has regular inertia,

τ +2Re{hT m jω}> 0 (28)

for all ω ∈ R.
(ii) ⇒ (i):

Without loss of generality, we can assume that A is in companion form, and g =
(0,0, . . . ,1)T . In this case, it can be verified by direct calculation [12, 16] that for
any vector f = ( f0, . . . , fn−1)T in Rn,

f T (zIn−A)−1g =
f0 + f1z+ . . .+ fn−1zn−1

det(zIn−A)
, (29)
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for z ∈ C.

For convenience, we shall use κ(ω) and π(ω) to denote

κ(ω) = 2Re{hT m jω}, π(ω) = m∗
jωDm jω , (30)

for ω ∈ R. Then:

(i) τ +κ(ω) > 0 for all ω ∈ R, and τ +κ(ω)→ τ as |ω| → ∞;

(ii) π(ω) > 0 for all ω ∈ R and π(ω)→ 0 as |ω| → ∞.

It follows from (i) there exists a positive constant mκ > 0 such that τ +κ(ω) > mκ
for all ω ∈ R. Also, (ii) implies that there is some constant Mπ > 0 such that
π(ω) < Mπ for all ω ∈ R. If we now choose ε > 0 with ε < mκ

Mτ
then it follows

that for all ω ∈ R,

τ +2Re{hT m jω}− εm∗
jωDm jω > 0. (31)

It can be verified by calculation that the left hand side of (31) can be written in the
form:

τ +m∗
jωh+hT m jω − εm∗

jωDm jω

=
η(ω)

det(ω2In +A2)
(32)

where η(.) is a polynomial with the following properties.

(i) η(.) is a polynomial of degree 2n with real coefficients and leading coef-
ficient τ . Thus, any non-real zeroes of η(.) occur as complex conjugate
pairs.

(ii) Only the even coefficients of η are non-zero. Thus, for any zero z0 of η(.),
−z0 is also a zero with the same multiplicity as z0.

(iii) η(ω) > 0 for all ω ∈ R. Thus, for any real zero, ω0, of η(.), ω0 and −ω0
have the same even multiplicity.
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It follows from the above considerations that there exists a polynomial θ(.) of
degree n with real coefficients, and leading coefficient

√
τ , such that

η(ω) = θ( jω)θ(− jω), (33)

for all ω ∈ R. Now, if we define ψ(z) = det(zIn−A), then, as the leading coeffi-
cient of θ is

√
τ ,

√
τ− θ(z)

ψ(z)
=

ν(z)
ψ(z)

(34)

where ν(z) = q0 + q1z + · · ·+ qn−1zn−1 is a polynomial of degree at most n− 1.
Thus, from (29)

ν(z)
ψ(z)

= qT (zIn−A)−1h (35)

where q = (q0, . . . ,qn−1)T .

For this vector q, it follows from Theorem 2.3 that there exists a symmetric matrix
P = PT with In(P) = In(−A) such that

AT P+PA =−qqT − εD. (36)

Moreover, combining (32), (35) and (34), we see that

τ +m∗
jωh+hT m jω − εm∗

jωDm jω = |√τ−qT m jωh|2 (37)

It now follows immediately that

m∗
jωh + hT m jω − εm∗

jωDm jω

= (−m∗
jωq+

√
τ)(−qT m jω +

√
τ)− τ

= m∗
jωqqT m jω −

√
τ(qT m jω +m∗

jωq).

We can now use (24) and (36) to obtain

m∗
jωh+hT m jω − εm∗

jωDm jω = m∗
jωPg+gT Pm jω

− εm∗
jωDm jω −

√
τ(qT m jω +m∗

jωq). (38)

After suitably rearranging the equations above we see that

m∗
jωPg+gT Pm jω − m∗

jωh−hT m jω

− √
τqT m jω −

√
τm∗

jωq = 0 (39)
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and hence,

m∗
jω(Pg−h−√τq)+(Pg−h−√τq)T m jω = 0

⇒ 2Re{(Pg−h−√τq)T m jω}= 0. (40)

As (40) holds for any real value of ω , it now follows from Lemma 3.1 that Pg−
h =

√
τq. This completes the proof of the theorem. ¤

3.2 Common Lyapunov solutions and the KYP Lemma

We shall now show how Theorem 3.1 can be used to obtain simple algebraic
conditions for CLS existence for a significant class of pairs of matrices with the
same regular inertia in Rn×n.

Theorem 3.2 Let A, A−ghT be two matrices inRn×n in companion form and with
the same regular inertia, In(A) = In(A−ghT ) = (n+,n−,0), where g,h are vectors
in Rn. Further, assume that for any pair of eigenvalues, λi,λ j, of A, Re(λi +λ j) 6=
0. Then, the following statements are equivalent:

(i) There exists a symmetric matrix P = PT in Rn×n with In(P) = In(−A) =
In(−(A−ghT )), and positive definite matrices Q1 > 0, Q2 > 0 such that

AT P+PA =−Q1

(A−ghT )T P+P(A−ghT ) =−Q2. (41)

(ii) The matrix rays σγ[0,∞)(A,A−ghT ) and σγ [0,∞)(A−1,A−ghT ) have the same
regular inertia.

(iii) The matrix A(A−ghT ) has no real negative eigenvalues.

(iv) 1+Re{hT ( jωIn−A)−1g}> 0, ∀ω ∈ R.

Proof: (i) ⇒ (ii):
Suppose that there is a symmetric P = PT satisfying (41). From Lemma 2.3 we
know that P also satisfies

((A−ghT )T )−1P+P(A−ghT )−1 < 0 (42)
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Hence for all γ ∈ [0,∞)

(A+ γ(A−ghT ))T P+P(A+ γ(A−ghT )) < 0 (43)
(A+ γ(A−ghT )−1)T P+P(A+ γ(A−ghT )−1) < 0 (44)

It now follows immediately from Theorem 2.3 that (ii) is true.

(ii) ⇒ (iii):
Assume that (ii) is true. Then, A−1 +γ(A−ghT ) has regular inertia for all γ > 0. In
particular, A−1 + γ(A−ghT ) is non-singular for all γ > 0. It follows immediately
that the matrix product A(A−ghT ) has no negative real eigenvalues.

(iii) ⇒ (iv):
Assume that A(A−ghT ) has no real negative eigenvalues. As A, A−ghT have the
same regular inertia, it follows that

det(ω2In +(A−ghT )A) > 0 (45)

for all ω ∈ R. This implies that

det(ω2In +(A−ghT )A) > 0
⇒ det(Inω2 +A2−ghT A) > 0

and hence

det(ω2In +A2)det(In− (ω2In +A2)−1ghT A) > 0.

In this last relation we know that det(ω2In + A2) > 0 from Lemma 2.1. Thus we
can conclude that

det(In− (ω2In +A2)−1ghT A) > 0 (46)

for all ω ∈ R. Now making use of the identity det(In − AB) = det(Im − BA),
(where A ∈ Rn×m and B ∈ Rm×n) we can express the last inequality as follows;

det(1−hT A(ω2In +A2)−1g) > 0. (47)

Notice that the argument in the last relation is a scalar, and hence that

1−hT A(ω2In +A2)−1g = T (ω2) > 0. (48)
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Now comparing this last equation with the result of Lemma 2.2, we see that

T (ω2) = 1+Re{hT ( jωIn−A)−1g}> 0 (49)

which proves (iv).

(iv) ⇒ (i):
Finally, assume that (iv) is true. Choose some positive definite D = DT > 0 in
Rn×n. Then it follows from Theorem 3.1 (with τ = 2) that there exists a symmetric
P = PT with In(P) = In(−A) and a vector q such that

AT P+PA =−qqT − εD (50)
Pg−h =

√
2q. (51)

It can be verified by direct computation that this P is a common Lyapunov solution
for A, A−ghT . This completes the proof of the theorem. ¤

Comments:

(i) Note that, in the language of [6], the above result establishes that for any
pair of matrices A,A− ghT in Rn×n satisfying the hypotheses of the theo-
rem, CLS existence is equivalent to the convex invertible cone generated by
A,A−ghT having constant regular inertia.

(ii) It is sufficient that either one of A, or A−ghT satisfy the spectral assumption
that Re(λi +λ j) 6= 0 for any pair of eigenvalues λi,λ j of the matrix.

4 Further results on common Lyapunov solutions
for matrices with regular inertia

In this section, we shall show that the principal result of [4] on CLS existence for
pairs of Hurwitz matrices extends naturally to the more general case of matrices
with the same regular inertia. Note that in [20] this result was shown to provide
a unifying framework for two of the most significant classes for which conditions
for CLS existence are known; namely the class of Hurwitz matrices in R2×2 and
the class of Hurwitz matrices in Rn×n in companion form.
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The main result established in [4] was concerned with a pair of Hurwitz matrices
A1, A2 in Rn×n with no common Lyapunov solution, but for which there exists
some common solution P = PT ≥ 0 to the weak Lyapunov inequalities

AT
i P+PAi = −Qi ≤ 0 (52)

where Qi has rank n− 1 for i = 1,2. It was shown that in these circumstances at
least one of the matrix products A1A2, A1A−1

2 must have a negative real eigenvalue.
Equivalently, one of the matrix rays σγ[0,∞)[A

−1
1 ,A2], σγ [0,∞)[A1,A2] is singular. In

the later paper [20], it was shown how this fact can be used to derive necessary
and sufficient conditions for common Lyapunov solution existence for pairs of
Hurwitz matrices in R2×2 as well as for pairs of Hurwitz matrices in companion
form in Rn×n. Thus, the above fact connects the known conditions for common
Lyapunov solution existence for 2×2 matrices and the classical SISO Circle Cri-
terion for matrices in companion form. In Theorem 4.1, we show that this same
fact holds when we relax the assumption that the matrices are Hurwitz and only
require that they have the same regular inertia. First of all, we recall the following
preliminary result from [4] which is needed for the proof of the theorem.

Lemma 4.1 Let x,y,u,v be non-zero vectors in Rn. Suppose that there is some
k > 0 such that for all symmetric matrices P ∈ Sym(n,R)

xT Py =−kuT Pv.

Then either
x = αu for some real scalar α, and y =−(

k
α

)v

or
x = βv for some real scalar β and y =−(

k
β

)u.

Theorem 4.1 Let A1, A2 be two matrices in Rn×n with the same regular inertia.
Suppose that A1 and A2 have no strong common Lyapunov solution and, further-
more, that there exists some symmetric P = PT in Rn×n such that

AT
i P+PAi =−Qi ≤ 0 for i = 1,2 (53)

where rank(Q1) = rank(Q2) = n− 1. Then at least one of the matrix products
A1A−1

2 , A1A2 has a negative real eigenvalue and, equivalently, at least one of the
matrix rays σγ[0,∞)[A1,A2], σγ[0,∞)[A

−1
1 ,A2] is singular.
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Proof: As Q1 and Q2 have rank n− 1, there are unique vectors x1,x2 in Rn such
that xT

i xi = 1, Qixi = 0 for i = 1,2. There are two major steps involved in the proof
of this result.

Step 1:

We shall show by contradiction that, under the hypotheses of the theorem, there
cannot exist any symmetric H in Rn×n such that xT

i HAixi < 0 for i = 1,2.

Now, suppose that there is some H = HT in Rn×n with xT
1 HA1x1 < 0, xT

2 HA2x2 <
0. For i = 1,2, let Ωi denote the cone

Ωi = {x ∈ Rn : xT x = 1,xT HAix≥ 0}.
We shall now show that there exists a positive constant C1 > 0 such that AT

1 (P +
δH)+(P+δH)A1 < 0 provided 0 < δ < C1. If Ω1 is empty, then any positive C1
will have this property. Henceforth we shall assume that Ω1 is non-empty.

Note that the set Ω1 is closed and bounded and hence compact. Moreover, x1 or
any scalar multiple of x1 is not in Ω1 and hence xT PA1x < 0 for all x ∈Ω1. Let M1
denote the maximum value of xT PA1x on Ω1 and m1 denote the maximum value
of xT HA1x on Ω1. Then M1 < 0 and if we set C1 = |M1|/(m1 + 1) it follows by
considering the cases x ∈Ω1, x /∈Ω1 separately that for all vectors x of Euclidean
norm 1,

xT ((P+δH)A1)x < 0,

and hence AT
1 (P+δH)+(P+δH)A1 < 0 provided 0 < δ < C1.

An identical argument can be used to show that there exists some constant C2 > 0
such that AT

2 (P+δH)+(P+δH)A2 < 0 provided 0 < δ < C2. Now choose any
δ with 0 < δ < min{C1,C2} and it follows that

AT
i (P+δH)+(P+δH)Ai < 0

for i = 1,2. The General Inertia Theorem 2.3 now implies that In(P) = In(−A1) =
In(−A2) and that P is a common Lyapunov solution for A1, A2 contradicting the
assumptions of the theorem.

Step 2:

As there is no symmetric H in Rn×n with xT
1 HA1x1 < 0, xT

2 HA2x2 < 0, it follows
that the null spaces of the two linear functionals (defined on the space of symmet-
ric matrices in Rn×n) H → xT

1 HA1x1, H → xT
2 HA2x2 coincide, and that there must
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be some constant k > 0 such that

xT
1 HA1x1 =−kxT

2 HA2x2 (54)

for all H = HT in Rn×n.

Now Lemma 4.1 implies that either x1 = αx2 with A1x1 = −( k
α )A2x2 for some

real α , or x1 = βA2x2 and A1x1 = −( k
β )x2 for some real β . Consider the former

situation to begin with. Then we have

A1(αx2) = −(
k
α

)A2x2

=⇒ (A1 +(
k

α2 )A2)x2 = 0

and thus the matrix ray σγ[0,∞)[A1,A2] is singular and the matrix A1A−1
2 has a nega-

tive real eigenvalue. A similar argument shows that in the latter case, σγ [0,∞)[A1,A−1
2 ]

is singular and the matrix product A1A2 has a negative real eigenvalue. This com-
pletes the proof of Theorem 4.1. ¤

5 Concluding remarks

In this paper we derived a verifiable spectral condition for common Lyapunov
solution (CLS) existence for pairs of matrices in Rn×n in companion form with
the same regular inertia; thereby extending a recent result for pairs of Hurwitz
matrices in [3]. We have also shown that the principal result of [4] extends directly
to the regular inertia case.
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