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Abstract— In this paper we present some preliminary results
on the quadratic stability of switched systems with uncertain
parameters. We show that the quadratic stability of a class
of switched uncertain systems may be readily verified using
simple algebraic conditions. Examples are presented to demon-
strate the efficacy of our techniques.

I. INTRODUCTION

Recent years have witnessed great interest in the math-
ematics, computer science, and control engineering com-
munities in the analysis and design of hybrid dynamic
systems. Roughly speaking, hybrid systems are systems
whose behaviour is described mathematically using a mix-
ture of classical differential/difference equations and logic
based switching. Examples of such systems are pervasive
in engineering practice and can be readily found in the
aircraft, automotive and communications industries. Despite
the recent interest in these systems, their behaviour is not
yet completely understood. Given the pervasive nature of
such systems, in particular in safety critical applications,
understanding their stability properties is one of the most
pressing issues that needs to be addressed.

In this paper we consider the most widely studied hybrid
dynamical system; namely hybrid systems constructed by
switching between a set of linear vector fields. The problem
of determining the stability properties of such systems is of
great importance in many fields of applied and theoretical
research: see [1], [2] and the references therein for an
overview of some of the historical work carried out in
the mathematics, control engineering and computer science
communities. One method of establishing the exponential
stability of a dynamical system Σ : ẋ(t) = A(t)x(t)
(where x(t) ∈ R

n, A(t) ∈ R
n×n, A(t) ∈ {A1, ..., Am})

is to show that for some positive definite matrix P the
quadratic Lyapunov function x(t)T Px(t) is decreasing in
time; namely that AT

i P +PAi < 0 for all 1 ≤ i ≤ m. When
such a function exists, then the associated LTI systems

ΣAi
: ẋ(t) = Aix(t) 1 ≤ i ≤ m

are said to have a common quadratic Lyapunov function
(CQLF). Recently, motivated by the stability of switched
systems [3], and robust control problems [4], the problem
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of determining compact conditions for the existence of a
CQLF for a finite number of LTI systems has assumed a
position of great theoretical importance in the mathematics
and engineering communities; see [5], [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20], [21], [22], [23], [24], [25] for some of the most
important historical and recent work in this area as well
as the recent paper [25] for the most complete solution to
this problem to-date. Notwithstanding the progress that has
been made on the general CQLF existence problem, the
problem of determining whether or not a set of LTI systems
subject to interval uncertainty has a CQLF has received
relatively little attention, despite its obvious considerable
practical importance. Our objective in this paper is to study
this problem for a restricted class of switching systems
subject to interval uncertainty; namely the class of switching
systems given by ẋ = A(t)x, A(t) ∈ {A,A−ghT }, where
g, h ∈ R

n, and the system matrices A,A− ghT are subject
to interval uncertainty of the form aij ≤ aij ≤ aij .

II. PRELIMINARY RESULTS

Throughout this note R and C denote the fields of real and
complex numbers respectively. We denote n-dimensional
real Euclidean space by R

n and the space of n × n
matrices with real entries by R

n×n. For a vector x in R
n,

xi denotes the ith component of x and for A in R
n×n,

we denote the entry in the (i, j) position by aij . In this
section, we introduce a number of concepts and preliminary
mathematical results that shall be needed in the remainder
of the paper.

CQLF existence for systems differing by rank one:

To begin with, we recall a number of results concerned with
the problem of CQLF existence for pairs of fixed coefficient
LTI systems whose system matrices differ by rank one.

The classical single-input single-output (SISO) Circle Cri-
terion [26] gave a necessary and sufficient condition for
two fixed coefficient LTI systems with system matrices in
companion form to have a CQLF. Formally, if A, A− ghT

are two Hurwitz matrices in R
n×n in companion form, then

the LTI systems ΣA, ΣA−ghT have a CQLF if and only if
the rational function

1 + hT (sI − A)−1g (1)

is strictly positive real (SPR), meaning that

1 + Re{hT (jωI − A)−1g} > 0 (2)
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for all ω in R. Moreover, it follows from Meyer’s extension
of the KYP Lemma [27] that the condition (2) is also
sufficient for CQLF existence for two LTI systems ΣA,
ΣA−ghT where A, A− ghT are Hurwitz matrices differing
by rank one, but not necessarily in companion form. Re-
cently in [7], [22], it has been established that the frequency
domain condition (2) is equivalent to a simple condition on
the eigenvalues of the matrix product A(A − ghT ). This
equivalence was first demonstrated in [7] for matrices in
companion form and then extended to the case of a general
pair of Hurwitz matrices A1, A2 with rank(A2 − A1) = 1
in [22].

Theorem 2.1: Let A, A − ghT be Hurwitz matrices in
R

n×n, where g, h ∈ R
n. Then

1 + Re{hT (jωI − A)−1g} > 0 for all ω ∈ R

if and only if the matrix product A(A−ghT ) has no negative
real eigenvalues.

For completeness, the proof of this result is included in
the appendix. Also, note that in the paper [28], a number
of implications of the above equivalence for multiplier-type
stability results were described.

Combining the result of Theorem 2.1 with Meyer’s exten-
sion of the KYP Lemma [27], yields the following time-
domain condition for CQLF existence for systems with
system matrices differing by rank one.

Theorem 2.2: [22] Let A, A−ghT be two Hurwitz matrices
in R

n×n where g, h are vectors in R
n. A necessary and

sufficient condition for the existence of a common quadratic
Lyapunov function for the LTI systems, ΣA, and ΣA−ghT

is that the matrix product A(A − ghT ) does not have any
negative real eigenvalues.

In the remainder of this paper, our primary concern shall be
with illustrating how Theorem 2.2 may be used to obtain
results on CQLF existence for pairs of LTI systems with
interval uncertainty in the entries of their system matrices.

Kharitonov’s theorem and rational transfer functions:

In the next section, we shall derive two closely related
results on CQLF existence for systems ΣA, ΣA−ghT whose
coefficients are subject to interval uncertainty. The first of
these is based on a result derived in [29] that extended
Kharitonov’s Theorem on the stability of interval polyno-
mials to the case of proper rational functions. In order to
fix our notation, consider the family of interval polynomials
P given by

p(s) = p0 + p1s + · · · + pnsn, (3)

where p
i
≤ pi ≤ pi for 1 ≤ i ≤ n. Then Kharitonov’s

Theorem states that in order to check that the roots of
all polynomials in the family P are in the open left half
of the complex plane it suffices to check this for the four

Kharitonov polynomials

kP
1 (s) = p

0
+ p

1
s + p2s

2 + p3s
3 + · · · (4)

kP
2 (s) = p

0
+ p1s + p2s

2 + p
3
s3 + p

4
s4 (5)

kP
3 (s) = p0 + p

1
s + p

2
s2 + p3s

3 + p4s
4 + · · · (6)

kP
4 (s) = p0 + p1s + p

2
s2 + p

3
s3 + · · · (7)

In the paper [29], this result was extended in the following
way. Let P , Q be two families of interval polynomials given
by

P = {p0 + p1s + · · · + pnsn :

p
i
≤ pi ≤ pi, for 1 ≤ i ≤ n}

Q = {q0 + q1s + · · · + qmsm :

q
i
≤ qi ≤ qi, for 1 ≤ i ≤ m}, (8)

where n ≤ m. Then consider the family P/Q of proper
rational functions of the form

p(s)

q(s)
(9)

where the polynomials p and q belong to P and Q re-
spectively. We shall make use of the following result from
[29] about the strict positive realness of all of the rational
functions in P/Q in the next section.

Theorem 2.3: Every transfer function in the family P/Q
is strictly positive real if and only if the following eight
transfer functions are strictly positive real.

kP
2 (s)

kQ
1 (s)

,
kP
3 (s)

kQ
1 (s)

,
kP
1 (s)

kQ
2 (s)

,
kP
4 (s)

kQ
2 (s)

,

kP
1 (s)

kQ
3 (s)

,
kP
4 (s)

kQ
3 (s)

,
kP
2 (s)

kQ
4 (s)

,
kP
3 (s)

kQ
4 (s)

, (10)

where kP
i , kQ

i , 1 ≤ i ≤ 4, are the Kharitonov polynomials
corresponding to the interval polynomial families P and Q
respectively.

Positivity of multi-variable polynomials:

Finally for this section, we present the following theorem
from [30] on the positivity of multi-variable polynomials.
Later, we shall combine this result with Theorem 2.2
to obtain necessary and sufficient conditions for CQLF
existence for certain classes of systems subject to interval
uncertainty. Theorem 2.4 below provides necessary and
sufficient conditions for a polynomial p(x) of n-variables
(defined for x ∈ R

n) to be positive for all x in a region Dn

of the form

{x ∈ R
n : xi ≤ xi ≤ xi}, (11)

where the end-points xi, xi, may be finite or infinite.

Theorem 2.4: [30] Let p(x) be a real-coefficient polyno-
mial of n-variables, and Dn be a region in R

n of the form
(11). Then p(x) > 0 for all x ∈ Dn if and only if:



(i) the polynomials obtained by setting the value of one
of the variables xi to one of the end-points xi or xi are
all positive for the permitted values of the remaining
variables x1, . . . , xi−1, xi+1, . . . , xn;

(ii) there is no x ∈ Dn satisfying the n equations

p(x) = 0
∂p

∂xi

(x) = 0 for 1 ≤ i ≤ n − 1. (12)

III. MAIN RESULTS

A. CQLF existence for interval matrices in companion form

In this subsection, we derive a result on CQLF existence for
a pair of interval matrix families in companion form. More
formally, consider the matrix families A, B consisting of
matrices of the form

A =















0 1 0 . . . 0
0 0 1 . . . 0
...
0 0 0 . . . 1
−a0 −a1 −a2 . . . −an−1















,

B =















0 1 0 . . . 0
0 0 1 . . . 0
...
0 0 0 . . . 1
−b0 −b1 −b2 . . . −bn−1















, (13)

where ai ≤ ai ≤ ai, bi ≤ bi ≤ bi for 0 ≤ i ≤ n − 1. In
Theorem 3.1 below, we consider the following problem.

Determine necessary and sufficient conditions for
any pair of LTI systems ΣA, ΣB with A ∈ A,
B ∈ B to have a CQLF.

In the context of this problem, the following brief points
should be noted.

(i) In order for the LTI systems ΣA, ΣB to have a
CQLF, it is necessary that the systems are both stable,
or equivalently that their system matrices, A, B are
Hurwitz. As our concern here is with the question of
CQLF existence for pairs ΣA, ΣB with A ∈ A, B ∈ B,
we shall assume that all of the matrices belonging to
the families A, B are Hurwitz.

(ii) The problem of determining whether or not a family of
interval matrices consists entirely of Hurwitz matrices
has itself been the subject of a considerable amount of
research, and several results have been published pro-
viding methods for testing such families for stability
[31], [32], [33]. Note also that in the case of interval
matrices in companion form, Kharitonov’s Theorem
can be used to test for stability.

For notational convenience, we shall denote the compan-
ion matrix whose last row is (−a0,−a1, . . . ,−an−1) by

C(a0, . . . , an−1). Then for the interval matrix family A,
we can construct the four matrices

A1 = C(a0, a1, a2, a3, . . .)

A2 = C(a0, a1, a2, a3, a4, . . .)

A3 = C(a0, a1, a2, a3, a4, . . .)

A4 = C(a0, a1, a2, a3, . . .), (14)

in analogy with the Kharitonov polynomials given by (4).
The matrices B1, B2, B3, B4 are defined in the same
manner for the family B. We are now ready to state the
main result of this subsection.

Theorem 3.1: Consider the interval matrix families A, B
given by (13), and assume that all the matrices belonging
to A, B are Hurwitz. Then for every pair of LTI systems
of the form ΣA, ΣB with A ∈ A, B ∈ B to have a CQLF,
it is necessary and sufficient that none of the eight matrix
products

A1B2, A1B3, A2B1, A2B4,

A3B1, A3B4, A4B2, A4B3,

has a negative real eigenvalue.

Proof: Let A = C(a0, . . . , an−1), B = C(b0, . . . , bn−1)
be two matrices in the families A and B respectively, and
write B = A − ghT where g = (0, 0, . . . , 1)T , and h =
(b0−a0, . . . , bn−1−an−1)

T . Then it follows from the Circle
Criterion that the LTI systems ΣA, ΣB have a CQLF if and
only if the rational function

1 + hT (sI − A)−1g

is strictly positive real.

It can be verified by direct computation that

1 + hT (sI − A)−1g = b(s)/a(s) (15)

where the polynomials a(s), b(s) are given by

a(s) = a0 + a1s + · · · an−1s
n−1 + sn

b(s) = b0 + b1s + · · · bn−1s
n−1 + sn. (16)

It now follows that every pair of LTI systems ΣA, ΣB with
A ∈ A, B ∈ B will have a CQLF if and only if all of the
rational functions b(s)/a(s) are strictly positive real where
a(s) and b(s) belong to the interval polynomial families

a(s) = a0 + a1s + · · · an−1s
n−1 + sn

with ai ≤ ai ≤ ai for 0 ≤ i ≤ n − 1

and

b(s) = b0 + b1s + · · · bn−1s
n−1 + sn

with bi ≤ bi ≤ bi for 0 ≤ i ≤ n − 1.

respectively. By a slight abuse of notation, we shall use the
notation A, B to denote these polynomial families also.



Now, Theorem 2.3 establishes that all of the rational func-
tions in B/A are strictly positive real if and only if the
functions

kB
2 (s)

kA
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,
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,
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4 (s)

,
kB
3 (s)
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4 (s)

,

are strictly positive real. The result now follows from
Theorem 2.1.

Remarks:

The above result provides simple conditions that are nec-
essary and sufficient for CQLF existence for a pair of LTI
systems in companion form subject to interval uncertainty.
In fact, it is only necessary to calculate the eigenvalues of
eight matrices and check that none are real and negative. On
the other hand, testing via the strict positive real condition
on the transfer functions requires checking that the functions
are positive for infinitely many values of ω.

B. CQLF existence for general pairs of interval matrices
differing by rank one

We shall next consider a problem that is closely related
to that dealt with in Theorem 3.1 above. Let A be a real
interval matrix family in R

n×n of the form

A = {A ∈ R
n×n : aij ≤ aij ≤ aij for 1 ≤ i, j ≤ n}, (17)

and let g, h be two fixed vectors in R
n. Theorem 3.2 below

is concerned with the following question.

Determine necessary and sufficient conditions for
any pair of LTI systems ΣA, ΣA−ghT where A ∈
A to have a CQLF.

It is important to note that in this situation, the interval
uncertainty is in the matrix A, while the difference ghT is
fixed. In the previous subsection, we considered two sys-
tems in companion form, each of which was independently
subject to interval uncertainty.

As in the previous subsection, we shall assume that all of
the matrices A, A − ghT for A ∈ A are Hurwitz. Also, in
the statement of the next theorem, the notation A1 is used
to denote the set of all matrices belonging to A where one
entry aij is set equal to one of the interval endpoints aij

or aij .

Theorem 3.2: Let A be a real interval matrix family of the
form (17) and let g, h be two fixed vectors in R

n such
that all matrices A, A − ghT for A ∈ A are Hurwitz. Let
f(s, aij) be the polynomial in n2 + 1 variables given by

f(s, aij) = det(sI − A(A − ghT )).

Then the systems ΣA, ΣA−ghT have a CQLF for each A
in A if and only if:

(i) there is no solution to the set of simultaneous equations

f(s, aij) = 0

∂f

∂aij

(s, aij) = 0 (18)

in the range −∞ < s < 0, aij ≤ aij ≤ aij ;
(ii) for each A in the reduced family A1, there is a CQLF

for the systems ΣA, ΣA−ghT .

Proof: First of all, Theorem 2.2 establishes that for fixed
Hurwitz matrices A, A − ghT , the systems ΣA, ΣA−ghT

have a CQLF if and only if the matrix product A(A−ghT )
has no negative real eigenvalues. Thus, ΣA, ΣA−ghT will
have a CQLF for any A in A if and only if A(A−ghT ) has
no negative real eigenvalues for all A in A. Equivalently,
the polynomial f(s, aij) must have the same sign for all
s < 0 and all aij with aij ≤ aij ≤ aij . In fact, for n
even (odd) we must have f(s, aij) > 0 (f(s, aij) < 0) for
all s < 0, and aij ≤ aij ≤ aij . We shall prove the result
for the case when n is even. The proof for odd n proceeds
identically.

It follows from Theorem 2.4 that f(s, aij) > 0 for all s < 0,
and aij ≤ aij ≤ aij if and only if:

(i) there is no solution to the set of equations (18) within
the range −∞ < s < 0, aij ≤ aij ≤ aij ;

(ii) all of the polynomials obtained by fixing the value of
one of the variables akl to one of the endpoints akl

or akl are positive within the allowed ranges for the
remaining variables.

Condition (i) above is obviously equivalent to condition
(i) in the statement of the theorem while condition (ii) is
equivalent to requiring that for all matrices A belonging to
the family A1, the product A(A − ghT ) has no negative
real eigenvalues, or equivalently by Theorem 2.2 that the
systems ΣA, ΣA−ghT have a CQLF. This completes the
proof.

Remarks:

(i) Condition (ii) of Theorem 3.2 replaces the original
problem with a finite number of CQLF existence prob-
lems for interval matrix families. However, the number
of uncertain parameters in each of these problems has
been reduced by one, as one of the entries aij is
fixed in each case. Repeatedly applying the theorem to
these reduced problems will eventually lead to a finite
number of fixed coefficient CQLF existence problems,
each of which can be solved using Theorem 2.2.

(ii) Condition (i) involves n2 + 1 polynomial equations
in the n2 + 1 variables s, aij , 1 ≤ i, j ≤ n. While
this condition is difficult to check in general, for some
classes of system it may be possible to verify that it
is automatically satisfied, thus reducing the problem of
CQLF existence under interval uncertainty to a number



of fixed coefficient CQLF existence problems. We shall
next give an example where this is indeed the case.

Corollary 3.1: Let A be an interval matrix family in com-
panion form in R

2×2 consisting of matrices of the form

A =

(

0 1
−a1 −a2

)

(19)

where ai ≤ ai ≤ ai for i = 1, 2, and let g = (0, 1)T and
h = (h1, h2)

T be fixed. Moreover, assume that for every
A ∈ A, A and A − ghT are both Hurwitz. Then, for every
A ∈ A, the LTI systems ΣA, ΣA−ghT have a CQLF if and
only if ΣAi

, ΣAi−ghT have a CQLF for 1 ≤ i ≤ 4, where
A1, . . . , A4 are the four fixed coefficient matrices obtained
by setting ai equal to ai or ai for i = 1, 2.

Proof: From Theorem 3.2, it is enough to show that there
can be no solution to the equations (18) in the range ai ≤
ai ≤ ai, −∞ < s < 0. By assumption, all matrices A,
A − ghT for A ∈ A are Hurwitz. It follows from this that
for each A belonging to A, ai > 0 and ai + hi > 0 for
i = 1, 2.

Now the polynomial f(s, aij) = det(sI − A(A − ghT )) is
given by

f(s, aij) = s2 + s(2a1 + h1 − a2(a2 + h2)) + a1(a1 + h1).

Thus, in the current situation, condition (18) requires that

f(s, a1, a2) = 0
∂f

∂a1

= 2s + 2a1 + h1 = 0

∂f

∂a2

= −s(2a2 + h2) = 0. (20)

But as a2 > 0 and a2 + h2 > 0, the only possible solution
to the third equation in (20) under the hypotheses of the
corollary is s = 0. The result now follows immediately.

IV. APPLICATION

In this section we present a numerical example to illustrate
the use of Theorem 3.1. Consider the two interval families
of companion matrices, A, B (corresponding to the rational
transfer function families in [29]), in R

3×3 given by

A = {C(a0, a1, a2) : a0 ∈ [1, 2], a1 ∈ [5, 6], a2 ∈ [3, 4]},
B = {C(b0, b1, b2) : b0 ∈ [1, 1], b1 ∈ [1, 2], b2 ∈ [3, 4]},
where, as before, we use the notation C(a0, a1, a2)
to denote the companion matrix whose last row is
(−a0,−a1,−a2). Then, both A and B consist of Hurwitz
matrices and the corresponding Kharitonov family of com-
panion matrices defined by (14) are as follows

A1 = C(1, 5, 4), A2 = C(1, 6, 4)

A3 = C(2, 5, 3), A4 = C(2, 6, 3)

B1 = C(1, 1, 4), B2 = C(1, 2, 4)

B3 = C(1, 1, 3), B4 = C(1, 2, 3)

Now one can compute the eight matrix products of Theorem
3.1 and check the corresponding eigenvalues. The calculated
eigenvalues of the matrix products are presented in the
figure below.
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As can be seen from the plot none of the matrix products
have negative real eigenvalues. Theorem 3.1 therefore guar-
antees the existence of a CQLF for any pair of LTI systems
ΣA, ΣB where A ∈ A, B ∈ B.

V. CONCLUDING REMARKS

In this paper, we have considered the stability question
for switched linear systems subject to interval uncertainty.
In particular, we have presented two results on common
quadratic Lyapunov function existence for pairs of LTI sys-
tems with interval uncertainty in the entries of their system
matrices. These results provide verifiable conditions for
CQLF existence for interval matrix families in companion
form. A numerical example has been presented to illustrate
how the results of the paper can be used in practice.
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APPENDIX

Proof of Theorem 2.1:

Without loss of generality, we may assume that ghT is in
one the Jordan canonical forms

(i)











c 0 . . . 0
0 . . . . . . 0
...
0 . . . . . . 0











,

(ii)











0 . . . . . . 0
1 . . . . . . 0
...
0 . . . . . . 0











. (21)

As A and A−ghT are both Hurwitz, their determinants will
have the same sign, so it follows that the product A(A −
ghT ) has no negative real eigenvalues if and only if, for all
λ > 0

det(λI + (A − ghT )A) = det(λI + A2 − ghT A) > 0

If ghT is in Jordan form then it follows that the expressions

det(λI + A2 − ghT A)

and

Re{det(λI + A2 − ghT A −
√

λjghT )},
are identical. Thus, writing λ = ω2 we have that for all real
ω

Re{det(ω2I + A2 − ghT A − jωghT )} > 0. (22)

It now follows, after a short calculation ([34]) that for all
ω ∈ R

1 + Re{det(jωI − (A − ghT )) − det(jωI − A)

det(jωI − A)
} > 0 (23)

and hence from the identity [35]

det(hT (sI−A)−1g) =
det(sI − (A − ghT )) − det(sI − A)

det(sI − A)

that for it follows that for all real ω

1 + Re{hT (jωI − A)−1g} > 0

as claimed.


