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Abstract

Digital Watermarking is an ever increasing and important discipline, especially in
the modern electronically-driven world. Watermarking aims to embed a piece of
information into digital documents which their owner can use to prove that the
document is theirs, at a later stage. In this paper, performance analysis of water-
marking schemes is performed on white noise sequences and chaotic sequences for
the purpose of watermark generation. Pseudorandom sequences are compared with
chaotic sequences generated from the chaotic skew tent map. In particular, analysis
is performed on highpass signals generated from both these watermark generation
schemes, along with analysis on lowpass watermarks and white noise watermarks.
This analysis focuses on the watermarked images after they have been subjected
to common image distortion attacks. It is shown that signals generated from high-
pass chaotic signals have superior performance than highpass noise signals, in the
presence of such attacks. It is also shown that watermarks generated from lowpass
chaotic signals have superior performance over the other signal types analysed.

1 Introduction

In recent years the design of robust techniques for the protection of mul-
timedia documents has become an important necessity. Steganography and
cryptography aimed at providing a certain degree of security while more re-
cently digital watermarking has been proposed. For a review of the early wa-
termarking schemes and the main requirements of a watermarking scheme,
the reader may consult [1].
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Digital Watermarking has been proposed in recent years as a robust technique
for copyright protection and content verification of multimedia data. The ma-
jority of watermarking schemes proposed to date use watermarks generated
from pseudorandom number sequences [2–4]. Pseudorandom sequences have
an advantage in that they can be easily generated and recreated as a single
seed will reproduce the same sequence of numbers each time the generating
function is iterated. Chaotic functions have to a lesser extent been used to
generate watermark sequences [5–7]. Similarly to the pseudorandom number
sequence, a single seed (along with an initial value) will always reproduce the
same sequence of numbers, when the chaotic function being used is iterated.
The performance of these chaotic watermark sequences are compared with the
more conventional pseudorandom watermark sequences.

2 Generation of Watermark Signals

The majority of watermark generation schemes proposed to date use a
pseudorandom number generator to create a watermark sequence which is
embedded in the cover work. These sequences can be accurately modelled as
independent, identically distributed (IID) random variables obeying a uni-
form distribution [8]. In this case we will deal with zero-mean, pseudorandom
sequences distributed in the interval [−1, 1], that have white noise-like prop-
erties, that is, a signal with a flat frequency spectrum with equal power in all
bands. Highpass signals created by colouring white noise are generated and
used in this study by passing the generated white noise through an appropriate
highpass linear filtering system.

A chaotic function is a function which is sensitive to initial conditions, is
unpredictable, indecomposable and yet contains regularity [9]. The motivation
for using a chaotic function to generate a watermark is that a single variable, α,
seeding the chaotic function, will always result in the same output (mapping)
when certain constraints or initial conditions are placed on the mapping. The
use of chaotic functions for the generation of watermarks has been previously
proposed, for example, the Bernoulli Map [10,11], Skew Tent Map [6,12,10]
and also Logistic Map [13–15]. The skew tent map and Bernoulli maps are
well behaved and understood, unlike the logistic map, where particular care
must be taken in the selection of a seed for the function [16].

In this study the skew tent map was selected, as it is a well-behaved chaotic
function which has been extensively studied [5,17], but any other well-behaved
chaotic function may be used. The skew tent map is a piecewise linear Markov



map which may be expressed as [17]:
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where

τ : [0, 1] → [0, 1]

A trajectory t[k] of the dynamical system is obtained by iterating this map
i.e.

t[k] = τ(t[k − 1]) = τ k(t[0])

The sequences starting point t[0] (map’s initial condition) is considered to be
the watermark key. The generated sequences t[k] may be transformed to 2-D
sequences (watermark image) using a Peano scanning technique. Peano scan-
ning is preferable to the more conventional Raster scanning technique in that
it preserves local image neighbourhoods and can produce many variations of
scanning within the same image [7,18,19]. Sample 2-D watermarks generated
using the skew tent map are shown in Fig. 1, where the skew tent map was
seeded with t[0] = 0.001 and with α = 0.1 (Fig. 1a) and with t[0] = 0.001
and with α = 0.9 (Fig. 1b). The difference in the density variations in the
watermark pixels in both cases can be observed. Tefas et al. [17] showed that
by varying the parameter α, sequences with desirable properties may be gen-
erated, in particular either highpass (α < 0.5), or lowpass (α > 0.5) ones.
When α = 0.5, the symmetric tent map is produced and sequences generated
in this case possess a white spectrum.

Fig. 1. Sample of 2-D skew tent map signals generated when a) t[0] = 0.001 and
α = 0.1, b) t[0] = 0.001 and α = 0.9.

The chaotic signals used in this paper were generated by the recursive iteration
of the skew tent map, seeded with t[0] = 0.001 and having α = 0.1 for highpass
chaotic signals, and t[0] = 0.001 and having α = 0.8 for lowpass chaotic



signals. The generated watermark signals were embedded in the cover image
as described in Section 3.

In applications where no severe distortions are expected, eg. in captioning/indexing
applications, highpass spectrum skew tent watermarks can be used since they
guarantee superior performance [17]. Watermark signals generated by the it-
erating of a chaotic function have an advantage over signals generated by
colouring white noise in that these signals are much easier to create and recre-
ate. Rather than having to seed a white noise generator and then apply a filter
to the resultant signal to generate coloured noise, a single seed can determine
the properties of the generated sequence from the chaotic function. This study
also serves to show that there are more advantages than this for using chaotic
signals over the commonplace white noise signals, in watermark generation.
In particular the advantages in using highpass chaotic signals over highpass
coloured noise signals is presented.

3 Watermark Embedding and Watermark Detection

In this study watermark embedding is performed in the Wavelet Domain
using a technique proposed by Barni et al [4]. This is a popular technique in
watermarking and has proven successful under certain watermark attacks [20–
22]. The image to be watermarked is first decomposed through the Discrete
Wavelet Transform (DWT) in four levels: Iθ

l is the subband at resolution level
l = 0, 1, 2, 3 with orientation θ ∈ 0, 1, 2, 3 (see Fig. 2a). The watermark is em-
bedded in the three detail bands at level 0, as these bands offer a satisfactory
level of robustness and also provides a low level of visibility in the resulting wa-
termarked image [4]. The watermarked image Ĩ is the result of the embedding
of the watermark into the subbands by modifying them according to:

Ĩθ
0 (i, j) = Iθ

0 (i, j) + γwθ(i, j)xθ(i, j) (2)

where γ is the embedding factor which controls the watermark strength, I
is the original image, x is the watermark to be embedded and wθ(i, j) is a
weighting factor. For the watermark to be embedded in the cover image the
maximum, but still imperceptible, level of the weighing function wθ(i, j) needs
to be determined based on how the eye perceives changes in an image. Barni
et al. [4] propose the following considerations:

• The eye is less sensitive to noise in the high resolution bands and in those
bands having orientation of 45o (i.e., θ = 1 bands shown in Fig. 2).

• The eye is less sensitive to noise in those areas of the image where brightness
is high or low.



• The eye is less sensitive to noise in highly textured areas of the image.

The effective application of the weighing function in the embedding scheme
can be seen in Fig. 2b where the difference between the original image (the
well-known ‘Lena’ image) and the corresponding watermarked image is shown
amplified by a factor of 10. It can be observed that the watermark is pre-
dominantly hidden in the highly textured areas of the image, making it very
difficult for an attacker to remove the watermark without severely distorting
the image.

Fig. 2. a) Four level Wavelet Decomposition Scheme [4], b) Difference between
original ‘Lena’ image and watermarked image amplified ten times.

Watermark Detection is also performed in the Wavelet Domain and is ac-
complished without referring to the original cover image [4]. The correlation
between the DWT coefficients of the possibly watermarked image and the
watermark sequence is computed using:

ρ =
1

3MN

2∑

θ=0

M−1∑

i=0

N−1∑

j=0

Ĩθ
0 (i, j)xθ(i, j) (3)

where M ×N is the image size, Ĩ is the possibly watermarked image and x is
the watermark sequence. The computed correlation value ρ is then compared
to a chosen threshold to determine the presence or absence of a watermark.
For watermarking applications we can not be sure if a watermark is present
in the image, therefore, the Neyman-Pearson criterion is normally used to
determine the threshold: instead of minimizing the overall error probability,
the probability of missing the watermark is minimized, to a given probability
of false alarm, Pf . When presented with an image I ′ and a watermark signal



w, there are three possibilities:

Case A: image I ′ is not watermarked (w is not present);
Case B: image I ′ is watermarked but not with w (w is not detected);
Case C: image I ′ is watermarked with w (w is detected);

The value of the threshold is given by [4,15]:

Tρ = 3.97
√

2σ2
ρB

(4)

where σ2
ρB

is the variance in relation to a missed detection, i.e. the variance of
ρ in Case B.

4 Experimental Approach

The described watermark embedding and detection schemes have been ap-
plied to four cover images (“Lena”, “Peppers”, “Airplane” and “Madonna”
shown in Fig. 3). These images were subjected to a four-level wavelet de-
composition and subsequently watermarked. The watermarks used were those
generated from white noise signals, highpass noise signals, lowpass chaotic
signals and highpass chaotic signals.

The presence or absence of a watermark signal within a particular possibly
watermarked (PWM) cover image is determined by supplying the watermark
detector with the PWM and the watermark. The presence or absence of this
watermark within the image is determined based on the correlation and thresh-
old values presented in Section 3. If the correlation value is greater than the
threshold, the detector determines that the watermark is present in the image,
otherwise, it determines that the watermark is not present.

Fig. 4a shows detection results when the detector was supplied with two hun-
dred highpass watermark signals generated by colouring white noise signals.
The watermarked image present at the detector had been watermarked with a
watermark seeded with a value of 132. It can be seen that the highest value of
the correlation response (and the only one greater than the threshold) occurs
when the watermark presented at the detector was seeded with a value of 132
and, hence, one can say that the watermark under test is present in the image.

Fig. 4b shows the case where the detector was supplied with two hundred wa-
termark signals generated by iterating the skew tent map function, with values
of α from 0 to 1. The presented image was watermarked with a watermark
seeded with a value of 0.8. It can be seen that the watermark supplied with



Fig. 3. Original images (from top left to bottom right) a) “Lena”, b) “Peppers”, c)
“Airplane”, and d) “Madonna”.

the seed 0.8 was correctly detected in the presented image as it was the only
value to have a correlation over the calculated threshold.

Fig. 4. Correlation Response from Watermark Detector supplied with a) two hun-
dred watermarks generated from colouring white noise signals and, b) two hundred
watermarks generated from skew tent maps.

The watermarks generated either from the chaotic function or from colouring
white noise were then subjected to attacks. In the case of the chaotic sequences
both a highpass signal (generated when t[0] = 0.001 and α = 0.1) and a low-
pass signal (generated when t[0] = 0.001 and α = 0.8) were analysed. In the
case of the white noise signals, a normal white noise signal along with a high-
pass signal generated by colouring the white noise signal were analysed. White
noise signals are commonly used in watermark generation and are created as



pseudorandom number sequences [4,23,24].

5 Results and Discussion

In order to compare the performance of the particular watermark types used
the watermarked images were subjected to attacks. The attacks performed
on these watermarked images were JPEG compression, noise addition (signal
processing attack) and image dropping (geometric attack) [25]. The results of
these attacks can be seen in Table 1. Each of the watermarked images were
subjected to a range of JPEG compressions ranging from compression ratios of
2 : 1 to 20 : 1, using Paint Shop Pro. The ability or inability of the watermark
detector to detect the embedded watermark was recorded and the maximum
level of compression at which the detector correctly identified the watermark
was also recorded.

Noise addition refers to the addition of a noise signal to a cover image. The
signal-to-noise ratio (SNR) is a widely used computation which represents a
measure of image quality in the presence of noise, and may be computed by:

SNR = 20 log10

∑
(n,m)

I(n,m)2∑
(n,m)

(I(n,m)−I′(n,m))2
[dB] (5)

where I(n,m) is the original image and I ′(n,m) is the noisy image. The higher
the value of the SNR the lower the level of noise in an image. The SNR is
measured in decibels [dB]. Each of the watermarked images were subjected to
a range of noise levels, with the noise value present within the image increasing
until the watermark could no longer be detected. The maximum value of the
noise present (SNR) in the image, at which the watermark could be detected,
was computed and recorded. In this study, the noise type which was added to
the images was Poisson noise [13].

Image cropping refers to the process of removing (blacking out) a certain
number of pixels of an image. In this paper image cropping is used to remove
pixels in an image from the bottom right corner of the image inwards. The aim
of this attack is to remove or crop enough of the image so that the watermark
is removed as well, in other words, that enough of the watermark is removed
so that watermark detection fails. The results obtained for image cropping
will vary, depending on the corner one wishes to crop from. For example, if
one looks at the “Madonna” cover image, one can see that most of the detail
in the picture is located in the bottom right of the image. Therefore, if one
performed an image cropping from the top left corner, superior values for
watermark detection would occur with higher levels of image cropping.



Table 1 contains the breakdown limits of the three attacks performed on the
watermarked images, i.e. the severity of each attack that destroys the water-
mark. In the case of JPEG Compression it was found that highpass chaotic
signals performed better than highpass noise signals. For example, in the case
of “Lena”, correct watermark detection occurred up to a compression ratio
of 15 : 1 for highpass chaotic signals as opposed to 7 : 1 for the highpass
noise signals. This result can also be observed for each of the cover images
used, where the highpass chaotic signals performed better than highpass noise
signals when subjected to JPEG compression. Lowpass signals were found to
have increased robustness to JPEG compression. This is what is expected as
lowpass watermarks have increased robustness with respect to image distor-
tions that have lowpass characteristics (filtering, nonlinear filtering such as
median filtering, lossy compression etc.) [26].

In the case of noise addition, it was observed that, in general, highpass chaotic signals
performed better than highpass coloured noise signals. For example, in the case of
“Peppers” correct detection of the watermark occurred with a noisy watermarked
image with a SNR up to 20.01dB created by using highpass chaotic watermarks in
comparison to 21.24dB for highpass coloured noise signals. In the case of the other
two signals used, superior performance was achieved by the lowpass chaotic signals
over the white noise signals. In general, this result was shown for each of the cover
images used in this study.

In general, highpass chaotic signals were also found to be more robust to image
cropping than highpass coloured noise signals. For example, in the case of “Lena”,
correct detection was found for the image cropped up to 49% of its width (W) and
49% of its height (H) when watermarked with a highpass chaotic signal. In the case
of a highpass noise correct signal detection was only observed up to a level of 36%
W and 36% H. Similar results were observed for each of the cover images used in
this study.

In every watermarking system there is a tradeoff between the probability of false
alarm and the probability of false rejection. As the threshold increases, the false
alarm probability decreases and the false rejection probability increases. It is only by
analyzing both of these measures at the same time that the system performance can
be determined. The plot of the probability of false alarm (normally along the x-axis)
versus the probability of false rejection is called the receiver operating characteristic
(ROC) curve of the corresponding watermarking system [27]. This plot conveys
all the necessary system performance information. Fig. 5 shows an example of a
ROC curve generated in the case of a JPEG compression ratio of 10 : 1 for the
“Lena” image. The superior performance of the lowpass chaotic watermarks can be
observed for this case, corresponding with the results shown in Table 1. It may also
be observed that highpass noise watermark signals, generated from the colouring of
white noise, have the worst performance of the four signal types.

Fig. 6 shows a ROC curve in the case of image cropping for the “Peppers” image.
In this case the image image and height was cropped by 20%. The highpass white



Table 1
Results of the attacks on the four cover images shown in Fig. 3, where the watermark
signals used were Highpass Noise (HPN) signals, Highpass Chaotic signals (HPC),
Lowpass Chaotic signals (LPC) and White Noise signals (WN). The underlined
results denote the best overall performance for the HPN, HPC, LPC and WN signals.
Results with ∗∗ denote the best performance from the HPN and HPC signals.

JPEG Compression Noise Addition (SNR) Image Cropping

HPN

-Lena 7 : 1 22.70dB 36% W, 36% H

-Peppers 9 : 1 21.24dB 31% W, 31% H

-Airplane 5 : 1 24.25dB 14% W, 14% H

-Madonna 5 : 1 23.98dB∗∗ 28% W, 28% H

HPC

-Lena 15 : 1∗∗ 22.30dB∗∗ 49% W, 49% H∗∗

-Peppers 13 : 1∗∗ 20.01dB∗∗ 42% W, 42% H∗∗

-Airplane 7 : 1∗∗ 23.23dB∗∗ 16% W, 16% H∗∗

-Madonna 6 : 1∗∗ 24.36dB 29% W, 29% H∗∗

LPC

-Lena 9 : 1 21.15dB 28% W, 28% H

-Peppers 14 : 1 24.44dB 36% W, 36% H

-Airplane 8 : 1 22.20dB 24% W, 24% H

-Madonna 9 : 1 20.94dB 23% W, 23% H

WN

-Lena 11 : 1 20.72dB 36% W, 36% H

-Peppers 9 : 1 28.83dB 34% W, 34% H

-Airplane 6 : 1 22.71dB 23% W, 23% H

-Madonna 8 : 1 21.82dB 29% W, 29% H

watermarks have the worst performance under this attack where the other three
watermarks have similar performance at this level of the attack.Fig. 7 shows a
ROC curve for the case where noise, presented in Section 5, resulting in an SNR of
21.9dB, has been added to the “Lena” image. The noise added resulted in an SNR of
21.9dB. It can be seen that the watermarks created from lowpass chaotic sequences
have superior performance over the other three watermark types. In summary, we



Fig. 5. ROC curve for watermarking schemes based on highpass chaotic, lowpass
chaotic, white noise and highpass white noise signals, after JPEG compression ratio
of 10 : 1, using “Lena” image.

Fig. 6. ROC curve for watermarking schemes based on highpass chaotic, lowpass
chaotic, white noise and highpass white noise signals, after image cropping of 20%,
using “Peppers” image.

recommend the use of lowpass chaotic watermarks for use in watermark generation
and we have shown them to provide improved robustness to common watermarking
attacks over white noise watermarks. The latter have the worst performance of the
studied watermark types in the presence of the attacks studied.



Fig. 7. ROC curve for watermarking schemes based on highpass chaotic, lowpass
chaotic, white noise and highpass white noise signals, after Noise addition resulting
in an SNR = 21.9dB, using “Lena” image.

6 Conclusion

In this paper watermarks signals generated as white noise, coloured highpass
noise, lowpass chaotic signals and highpass chaotic signals were generated and em-
bedded into four cover images. The presence of a watermark was determined in
these possibly watermarked images after they were subjected to different common
watermarking attacks. The robustness of each signal to these attacks was deter-
mined and it was observed that the highpass chaotic watermarks perform steadily
better than the highpass noise signals in the presence of the attacks discussed. It
was also observed that lowpass chaotic signals have the best overall performance for
the attacks discussed, with these signals performing best in six out of twelve experi-
ments. Highpass chaotic signals perform next best with best results in five out of the
twelve experiments. It can be observed that chaotic signals perform better than the
corresponding noise signals in the presence of the attacks presented. Chaotic signals
offer an alternative to the more frequently used white noise signals, as they can
be easily generated and their properties easily controlled. These chaotic sequences
have been shown to have superior robustness than the widely used pseudorandom
sequences in watermarking applications.
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