
IEEE IC Test Workshop
Limerick, Ireland, 13 – 14 September 2004

BUILT-IN TEST ENGINE FOR MEMORY TEST

Paul McEvoy
Department of Electronic Engineering

National University of Ireland Maynooth, Co. Kildare.
Phone: (01) 708-6384, email: pmcevoy@eeng.may.ie

Ronan Farrell
Department of Electronic Engineering

National University of Ireland Maynooth, Co. Kildare.
Phone: (01) 708-6197, email: rfarrell@eeng.may.ie

Abstract - In this paper we will present an on-chip
method for testing high performance memory
devices, that occupies minimal area and retains full
flexibility. This is achieved through microcode test
instructions and the associated on-chip state
machine. In addition, the proposed methodology
will enable at-speed testing of memory devices. The
relevancy of this work is placed in context with an
introduction to memory testing and the techniques
and algorithms generally used today.

Keywords BIST, memory, at-speed, DFT

I. INTRODUCTION

Semiconductor memories are considered one of the
most important aspects of modern microelectronics.
Memory stores data and instructions used in almost
all modern technology such as computers,
telecommunications and consumer electronics.
Memory is either volatile; loses data when power is
removed or non-volatile; stores data indefinitely.
Volatile memory can be SRAM or DRAM which
stores data using a flip-flop and a capacitor
respectively. ROM, EPROM, EEPROM and flash
memory are examples of non-volatile memory
where the data can be permanent or
reprogrammable, depending on the fabrication
technology used [1]. Testing nanometre integrated
circuits (ICs) is expensive and can account for
almost half the cost of memory chips [2]. As the
transistor count on devices follows Moore's law,
memory devices develop increasing storage
capabilities. Manufacturing advances mean that
decreasing silicon feature size enables designers to
fit more memory cells per chip. With the decrease in
memory cell size, however, there is an increase in
sensitivity to defects. Smaller geometric features,
reduced internal voltage levels, and the use of new
physical processing techniques such as copper
interconnect and low-K dielectrics are causing the
number of resistive type defects to increase. New
methods to test devices and maintain low defects per
million (DPM) are required.

II. TEST METHODS AND ALGORITHMS

Digital devices are tested with an external tester that
provides all the control pins and address lines to
apply test patterns. As devices have become more
complex and at-speed testing emerges as a vital
requirement, new methods such as design-for-test
(DFT) and on-chip test architecture are seen as
necessary approaches to maintain quality levels
while still keeping test overheads low.

One of the most common techniques for on-chip
memory test is built-in self-test (BIST). BIST
removes the need for many of the functions on
automatic test equipment (ATE) such as high-speed
external pins and off-chip memory storage thus can
decrease test costs and time. A BIST core will input
test patterns to the device under test (DUT), read the
data back, compare it to expected responses and
register a pass or fail on a given test. These test
patterns can be generated deterministically or
randomly [3]. Test patterns generated can detect not
only modelled defects, but also non-modelled
timing defects. Deterministic algorithms are usually
adopted for BIST due to their simplicity. The BIST
can also include diagnosis and repair capabilities
depending on the design requirements.

Embedded memory on Systems On-Chip (SOCs)
can create significant test issues due to its
integration and proximity to logical cores. It is
predicted that in Application-Specific Integrated
Circuits (ASICs) embedded memory will occupy
94% of die area [4]. In this case a suitable BIST
architecture is vital to production yield. The
combination of a flexible memory BIST engine that
allows custom variations to the test algorithms, with
enhanced at-speed application provides the basis for
ensuring high-quality testing. This is increasingly
important considering the trend toward designs with
more memory than logic.

Although BIST can provide increased test coverage
in less time there are design issues that must be
considered. Its implementation also adds area
overhead as the consumed silicon can not be used
for functional purposes. BIST may also compromise

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by MURAL - Maynooth University Research Archive Library

https://core.ac.uk/display/297009072?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE IC Test Workshop
Limerick, Ireland, 13 – 14 September 2004

flexibility in application as it will generally be
design specific - any changes would require global
SOC alteration. It may also require extra pins to
interface with an external tester adding further
complexity. As with any logic added to ASIC the
BIST will have to be tested itself. Scan based
methods are normally used to ensure tester
correctness. Despite this, for medium to large
memories it has been shown that BIST can provide
significant cost benefits when applied [2], (see
figure 1).

Figure 1: Cost benefit for memory BIST on
embedded memory.

III. FAULTS AND DEFECTS FOR
MEMORY

A defect is a difference between a manufactured
product and its design. Defects in memory arrays
are generally due to shorts and opens in memory
cells, address decoder and read/write logic.

There are two types of defect; global and local.
• Global defects

Can be caused by too thick gate oxide, or too
thin polysilicon, mask misalignments and
process variations. They can affect many chips
on a wafer and are the main cause of dynamic
faults such as delay and timing faults.

• Local defects
These (also called spot defects) are caused by
extra, missing or inappropriate material, such as
dust particles. A spot defect will only affect a
single chip and causes a functional fault.

A fault model is an attempt to give a representation
to the possible manufacturing and design defects
that can occur. Below are some of the most common
fault models for RAM. [5]

• A stuck-at fault (SAF) occurs when the value of
a cell or line is always 0 (a stuck-at-0 fault) or
always 1 (a stuck-at-1 fault).

• A stuck-open fault (SOF) occurs when the cell
can not be accessed due to a broken word line. A
read to this cell will produce the previously read
value.

• If a cell has a transition fault (TF), then it fails to
transit from 0 to 1 (a ↑/0 TF) or from 1 to 0 (a
↓/1 TF).

• A data retention fault (DRF) occurs when a cell
cannot store its contents for a specific amount of
time. In SRAM this is caused by a broken pull-
up resistor.

• An address decoder fault (AF) is a functional
fault in the address decoder that results in one of
four kinds of abnormal behaviour:

1. With a certain address, no cell will be accessed.
2. A certain cell is never accessed.
3. With a certain address, multiple cells are

accessed.
4. A certain cell can be accessed with multiple

addresses.

• A coupling fault (CF) between two cells occurs
when the logic value of a cell is influenced by
the content of, or operation on, another cell.
There are several types of coupling fault.
• An inversion coupling fault (CFin) occurs if

a transition in one cell inverts the logic value
of another.

• There is an idempotent coupling fault (CFid)
if a transition in one cell forces a fixed logic
value into another.

• Finally, there is a state coupling fault (CFst)
if a cell or line is forced to a fixed logic value
only if the coupling cell or line is in a given
state.

Linked faults affect the same cell. In linked CFs,
two or more CFs exist with the same coupled cell.
Linked faults may occur between faults of the same
type or between faults of different type. Test
algorithms must be constructed to prevent faults
from being masked by a linked fault.

Different memory designs may need additional fault
models to cover all possible defects. For DRAM,
fault models may be needed to cover failures caused
by all kinds of leakage and noise. Flash memory has
read, erase and program disturbance faults due to its
design that also need to be covered if tested.

IV. MEMORY TEST ALGORITHMS

An algorithm is a set of operations performed on a
device under test (DUT) to determine functionality.
Numerous algorithms exist that target specific faults
such as zero-one, checkerboard, GALPAT and
walking 1/0s [1]. However, many of these test
patterns have limited fault coverage or have
considerable complexity limiting their use in
modern testing.

One family of tests that has proven to be particularly
effective in test time and complexity is the March
algorithm [6]. A March test consists of a sequence
of March elements. A March element consists of a

IEEE IC Test Workshop
Limerick, Ireland, 13 – 14 September 2004

sequence of operations applied to each cell in the
memory, before proceeding to the next cell. An
operation can consist of writing a 0 into a cell (w0),
writing a 1 into a cell (w1), reading a cell with an
expected value 0 (r0) and reading a cell with an
expected value 1 (r1). After all operations of a
March element have been completed they are
applied to the next cell. The address of the next cell
is given by the address order either ascending or
descending. An ascending order moves from
address 0 to n-1 denoted by ↑ and a descending
order, from address n-1 down to 0 denoted by ↓.
When the order is irrelevant ↕ is used. In an
ascending order any address sequence may be used
as long as the descending order uses the exact
inverse sequence. There are a range of March
algorithms that exist that test for a wide number of
faults. For instance, to test for a stuck-at fault (SAF)
the algorithm must contain a sequence that verifies
that a 0 and a 1 can be read from every cell.
MATS+ is an example of a simple March test.

↕(w0) ↑(r0,w1) ↓(r1,w0) (1)

It will detect all AFs and SAFs as a 0 and 1 are read
and written from each cell.

Common to all memory BIST implementations is
an address generator, a test pattern generator and
BIST control logic. The BIST controller can be
implemented by either hard-wired logic or
microcode. The most common type of hard-wired
memory BIST consists of a finite state machine
(FSM) performing three basic operations: writing
patterns to the memory, reading them back and
comparing them to the expected results.

It has been shown that the most costly feature to
implement when using BIST is the storage space
required for the algorithms and instructions. One
common approach is to use an on-chip ROM to
store the instruction set [7]. The area overhead is
significant, however, and removing this factor could
reduce cost considerably. Assuming the logic area
overhead is negligible the silicon area for memory
BIST, AMB is calculated by

AMB=1
log2Ma

Ma

×1.33 (2)

where Ma is the memory size used to store the test
instructions. To try to overcome this area issue,
attempts have been made to use microcode
instructions that call on specific March operations
[8]. Although this approach reduces stored memory
overhead, March primitives must still be stored on-
chip and the logic overhead is significant.

V. THE ON-CHIP SOLUTION

The proposed solution is to store the memory
algorithms off-chip, loading them into a register file
inside the BIST engine temporarily. The test is then
run at-speed until the algorithm is completed. For
each read operation the comparator checks the
output data with the expected values and notifies the
automatic test equipment (ATE) of any failure.
When an algorithm has been completed another is
passed in and the process is repeated.
The architecture consists of a small register
containing the algorithm being used (see figure 2).
A simple shift register is used to store the pattern
data and pass it to the address decoder that converts
the code into control signals, data and address calls
to the memory. The decoder also includes an
instruction counter, tracking operation progress, and
an input from the comparator to detect faults that
occur and their location. The order in which the
memory is accessed is given by the algorithm, and
is tracked by the decoder which controls the address
generator accessing the column and row address
lines. A multiplexer is used to switch between
system and BIST control. When the memory is
instructed to perform a read operation it is verified
using the comparator and control is sent to the
decoder to register any deviation from expected
data.

Figure 2: Proposed BIST architecture.

Required register storage must be determined when
converting the algorithm to a bit pattern. To
minimise the size of the register we propose using a
short microcode to instruct the decoder on the
required operations and control signals.

IEEE IC Test Workshop
Limerick, Ireland, 13 – 14 September 2004

There are four possible operations when testing
memory data; read-zero (r0), read-one (r1), write-
zero (w0) and write-one (w1). When accessing the
cells sequentially there is also an addressing order;
incremental or decremental. A microcode example,
the MATS+ algorithm is given in (1). Each
operation is given a code (see table 1) and a
complete code string is constructed.

operation code

r0 00

r1 01

w0 10

w1 11

direction 1

delay 00

delay 1 01

delay 2 10

delay 3 11

EE 1/0

Table 1: Microcode operation assignments

The microcode must produce a set of elements
containing operations. For each element there is an
address order that will not change until the next
element. To implement this a 3-bit header is used
containing the address direction and a 2-bit delay
assignment. The delay allows up to three clock
cycles after the element is completed to check for
data retention faults (DRFs). Following the header,
the r/w operation is given and the 6th bit indicates
the end-of-element signal (EE). If the element is
complete, EE will be high and new header is given.
If further operations are remaining EE is low,
another operation is supplied and an EE check is
made again. Operations are provided until the
element is complete. The EE bit is included to
minimise the the storage required for each code, as
the address order and delay are only required once
for each element.

Figure 3: March algorithm microcode MATS+
microcode register contents.

Each algorithm will require a different number of
bits to code, and obviously more complex patterns
need more storage. The register is such that it can
hold the longest algorithm that will be used and
possibly longer, depending on whether future
patterns will be included or previous ones are
supplemented to. From the above example the
MATS+ algorithm requires a total of 24 bits to code
completely. Equation (3) is used to determine the
number of bits needed where ne is the number of
elements and no is the number of operations. An
example is shown illustrating a few of the most
common March tests (table 2).

3(ne + no) (3)

The instruction decoder consists of a finite state
machine (FSM) that enters a specific state based on
the input from the microcode register. The decoder
increments or decrements the address counter and
controls specific instructions to the memory array
such as read, write, hold and test end. Using an FSM
minimises logic overhead and simplifies design.

Algorithm bits required

MATS+ 24

March C- 48

March B 63

March G 90

Table 2: March algorithm bit requirements

VI. COMPARISON WITH EXISTING
SOLUTIONS

The proposed BIST architecture provides a number
of advantages over existing approaches. One main
benefit of the design is that it can be applied to any
type of memory architecture with minimal design
alteration. A different memory design will merely
require different test patterns that can be changed
externally. Using the proposed microcode, memory
test algorithms can be highly compacted, reducing
storage requirements (table 2). By allowing for the
largest possible tests, a suitably sized register could
facilitate very complex and thorough test patterns.
This method significantly reduces the memory
required on-chip compared to previous methods [7]
[8], while also adding increased flexibility to alter
algorithms when necessary. This flexibility is
critical in modern designs since advances in
technology and design demand higher performance
tests to maintain quality.

Another significant advantage is the ability to test
the memory chip at its functional speed. This is
critical to detecting faults that will only occur

IEEE IC Test Workshop
Limerick, Ireland, 13 – 14 September 2004

during operation such as data retention faults
(DRFs). Current ATEs may only function at a
fraction of the device operating speeds; high speed
RDRAM may run at 800MHz while the ATE may
be limited to 100MHz.

At-speed testing can also result in lower test times
as data can be compared on-chip avoiding the need
to pass all the processed information to the ATE. In
addition, it is possible to take advantage of the
parallel internal structure of memories to run
concurrent tests on different memory banks.

The reduction in requirements from ATEs will
demand less capital expenditure and upgrade costs
involved in testing each type of memory device. It
may be possible to support complete evaluation with
a basic desktop setup; memory storage, data scan
outputs and a pass/fail input.

A major concern with any BIST implementation is
the requirement for extra silicon area. This area adds
to the cost of the device, as this represents parts of
memory and logic that are not added to the chip for
functional purposes. However, using the proposed
approach, memory overhead is minimal. The logic
area requirement should also be negligible as only a
short finite state machine and comparator are used.

Further investigation will be needed when testing
flash memory. Not only is the architecture quite
different but the operating speeds are much lower
than RAM. A typical program operation on flash
memory may take a long time (typically 100µs),
with block erase taking even longer. In this case, the
benefits of testing on-chip for speed-related gains
are minimal.

VII. CONCLUSIONS

In this paper, we have proposed a method to test
memory on-chip using microcode-based test
algorithms. This approach applies patterns from an
external tester that are stored into a register in the
BIST engine. We have outlined the importance of
testing devices at-speed with minimal area
overhead. The BIST design allows at-speed testing
with the added flexibility for the design to be used
in a range of different memory types such as
SRAM, DRAM and ROM.

ACKNOWLEDGEMENTS

The authors would like to thank Pat Brady and
Desmond FitzGerald at Intel Ireland for their help in
the design and test technology involved.

REFERENCES

[1] A.J. van de Goor, Testing Semiconductor
Memories: Theory and Practice. Chichester,
England: John Wiley and Sons, 1991.

[2] Juin-Ming Lu, Cheng-Wen Wu, Cost and
benefit models for logic and memory BIST Design,
Automation and Test in Europe Conference and
Exhibition 2000. Proceedings, 27-30 March 2000

[3] Sying-Jyan Wang, Chen-Jung Wei, Efficient
built-in self-test algorithm for memory, Test
Symposium, 2000. (ATS 2000). Proceedings of the
Ninth Asian, 4-6 Dec. 2000 Pages:66-70

[4] Venkatesh, R. Kumar, S. Philip, J. Shukla, A
fault modeling technique to test memory BIST
algorithms. Memory Technology, Design and
Testing, 2002. (MTDT 2002).

[5] A.J. van de Goor, Using March tests to test
SRAMs. Design & Test of Computers, IEEE,
Volume: 10, Issue: 1 ,March 1993 Pages: 8-14

[6] M. Marinescu. Simple and efficient algorithms
for functional RAM testing. In Proc. Int. Test Conf
pages 572-576, 1982.

[7] Dreibelbis, J. Barth, J. Kalter, H. Kho, R.
Processor-based built-in self-test for embedded
DRAM. Solid-State Circuits, IEEE Journal of,
Volume: 33 ,Issue: 11, Nov. 1998

[8] Dongkyu Youn, Taehyung Kim, Sungju Park; A
microcode-based memory BIST implementing
modified March algorithm. Test Symposium, 2001.
Proceedings. 10th Asian, 19-21 Nov. 2001

