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Abstract -  In this paper we will present an on-chip
method  for  testing  high  performance  memory
devices, that occupies minimal area and retains full
flexibility. This is achieved through microcode test
instructions  and  the  associated  on-chip  state
machine.  In  addition,  the  proposed  methodology
will enable at-speed testing of memory devices. The
relevancy of this work is placed in context with an
introduction to memory testing and the techniques
and algorithms generally used today.
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I. INTRODUCTION

Semiconductor memories are considered one of the
most important aspects of modern microelectronics.
Memory stores data and instructions used in almost
all  modern  technology  such  as  computers,
telecommunications  and  consumer  electronics.
Memory is either volatile; loses data when power is
removed  or  non-volatile;  stores  data  indefinitely.
Volatile  memory can be  SRAM or  DRAM which
stores  data  using  a  flip-flop  and  a  capacitor
respectively.  ROM,  EPROM,  EEPROM and  flash
memory  are  examples  of  non-volatile memory
where  the  data  can  be  permanent  or
reprogrammable,  depending  on  the  fabrication
technology used [1].  Testing  nanometre integrated
circuits  (ICs)  is  expensive  and  can  account  for
almost half  the cost  of  memory  chips [2].  As the
transistor  count  on  devices  follows  Moore's  law,
memory  devices  develop  increasing  storage
capabilities.  Manufacturing  advances  mean  that
decreasing silicon feature size enables designers to
fit more memory cells per chip. With the decrease in
memory cell size, however, there is an increase in
sensitivity  to  defects.  Smaller  geometric  features,
reduced internal voltage levels, and the use of new
physical  processing  techniques  such  as  copper
interconnect and low-K dielectrics are causing the
number  of  resistive  type  defects  to  increase.  New
methods to test devices and maintain low defects per
million (DPM) are required.

II. TEST METHODS AND ALGORITHMS

Digital devices are tested with an external tester that
provides  all  the  control  pins  and  address  lines  to
apply test patterns. As devices have become more
complex  and  at-speed  testing  emerges  as  a  vital
requirement,  new  methods  such  as  design-for-test
(DFT)  and  on-chip  test  architecture  are  seen  as
necessary  approaches  to  maintain  quality  levels
while still keeping test overheads low. 

One  of  the  most  common  techniques  for  on-chip
memory  test  is  built-in  self-test  (BIST).  BIST
removes  the  need  for  many  of  the  functions  on
automatic test equipment (ATE) such as high-speed
external pins and off-chip memory storage thus can
decrease test costs and time. A BIST core will input
test patterns to the device under test (DUT), read the
data  back,  compare  it  to  expected  responses  and
register  a  pass  or  fail  on  a  given  test.  These  test
patterns  can  be  generated  deterministically  or
randomly [3]. Test patterns generated can detect not
only  modelled  defects,  but  also  non-modelled
timing defects. Deterministic algorithms are usually
adopted for BIST due to their simplicity. The BIST
can  also  include  diagnosis  and  repair  capabilities
depending on the design requirements. 

Embedded  memory  on  Systems  On-Chip  (SOCs)
can  create  significant  test  issues  due  to  its
integration  and  proximity  to  logical  cores.  It  is
predicted  that  in  Application-Specific  Integrated
Circuits  (ASICs)  embedded  memory  will  occupy
94% of  die area [4].  In  this  case a  suitable BIST
architecture  is  vital  to  production  yield.  The
combination of a flexible memory BIST engine that
allows custom variations to the test algorithms, with
enhanced at-speed application provides the basis for
ensuring  high-quality  testing.  This  is  increasingly
important considering the trend toward designs with
more memory than logic. 

Although BIST can provide increased test coverage
in  less  time  there  are  design  issues  that  must  be
considered.  Its  implementation  also  adds  area
overhead as the consumed silicon can not be used
for functional purposes. BIST may also compromise

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by MURAL - Maynooth University Research Archive Library

https://core.ac.uk/display/297009072?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


IEEE IC Test Workshop
Limerick, Ireland, 13 – 14 September 2004

flexibility  in  application  as  it  will  generally  be
design specific - any changes would require global
SOC alteration.  It  may  also  require  extra  pins  to
interface  with  an  external  tester  adding  further
complexity.  As with any logic added to ASIC the
BIST  will  have  to  be  tested  itself.  Scan  based
methods  are  normally  used  to  ensure  tester
correctness.  Despite  this,  for  medium  to  large
memories it has been shown that BIST can provide
significant  cost  benefits  when  applied  [2],  (see
figure 1).

Figure 1: Cost benefit for memory BIST on
embedded memory.

III. FAULTS AND DEFECTS FOR
MEMORY

A defect  is  a  difference  between  a  manufactured
product  and  its  design.  Defects  in  memory  arrays
are  generally  due  to  shorts  and  opens  in  memory
cells, address decoder and read/write logic. 

There are two types of defect; global and local.
• Global defects

Can be caused by too thick gate oxide,  or  too
thin  polysilicon,  mask  misalignments  and
process variations. They can affect many chips
on a wafer and are the main cause of dynamic
faults such as delay and timing faults.

• Local defects
These  (also  called  spot  defects)  are  caused  by
extra, missing or inappropriate material, such as
dust  particles.  A spot defect  will  only  affect  a
single chip and causes a functional fault.

A fault model is an attempt to give a  representation
to  the  possible  manufacturing  and  design  defects
that can occur. Below are some of the most common
fault models for RAM. [5]

• A stuck-at fault (SAF) occurs when the value of
a cell or line is always 0 (a stuck-at-0 fault) or
always 1 (a stuck-at-1 fault). 

• A  stuck-open fault  (SOF) occurs when the cell
can not be accessed due to a broken word line. A
read to this cell will produce the previously read
value. 

• If a cell has a transition fault (TF), then it fails to
transit from 0 to 1 (a ↑/0 TF) or from 1 to 0 (a
↓/1 TF). 

• A data retention fault (DRF) occurs when a cell
cannot store its contents for a specific amount of
time. In SRAM this is caused by a broken pull-
up resistor.

• An  address  decoder fault  (AF)  is  a  functional
fault in the address decoder that results in one of
four kinds of abnormal behaviour: 

1. With a certain address, no cell will be accessed. 
2. A certain cell is never accessed.
3. With  a  certain  address,  multiple  cells  are

accessed. 
4. A  certain  cell  can  be  accessed  with  multiple

addresses.

• A coupling fault  (CF)  between two cells occurs
when the logic value of a cell is influenced by
the  content  of,  or  operation  on,  another  cell.
There are several types of coupling fault. 
• An inversion coupling fault  (CFin) occurs if

a transition in one cell inverts the logic value
of another. 

• There is an idempotent coupling fault (CFid)
if a transition in one cell forces a fixed logic
value into another. 

• Finally, there is a state coupling fault (CFst)
if a cell or line is forced to a fixed logic value
only if the coupling cell or line is in a given
state. 

Linked  faults  affect  the  same cell.  In  linked  CFs,
two or more CFs exist with the same coupled cell.
Linked faults may occur between faults of the same
type  or  between  faults  of  different  type.  Test
algorithms  must  be  constructed  to  prevent  faults
from being masked by a linked fault.

Different memory designs may need additional fault
models  to  cover  all  possible  defects.  For  DRAM,
fault models may be needed to cover failures caused
by all kinds of leakage and noise. Flash memory has
read, erase and program disturbance faults due to its
design that also need to be covered if tested.

IV. MEMORY TEST ALGORITHMS

An algorithm is a set of operations performed on a
device under test (DUT) to determine functionality.
Numerous algorithms exist that target specific faults
such  as  zero-one,  checkerboard,  GALPAT  and
walking  1/0s  [1].  However,  many  of  these  test
patterns  have  limited  fault  coverage  or  have
considerable  complexity  limiting  their  use  in
modern testing.

One family of tests that has proven to be particularly
effective in test time and complexity is the March
algorithm [6]. A March test consists of a sequence
of March elements. A March element consists of a
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sequence of  operations applied to each cell  in the
memory,  before  proceeding  to  the  next  cell.  An
operation can consist of writing a 0 into a cell (w0),
writing a 1 into a cell (w1), reading a cell with an
expected  value  0  (r0)  and  reading  a  cell  with  an
expected  value  1  (r1).  After  all  operations  of  a
March  element  have  been  completed  they are
applied to the next cell. The address of the next cell
is  given  by  the  address  order  either  ascending  or
descending.  An  ascending  order  moves  from
address  0  to  n-1  denoted  by  ↑ and  a  descending
order,  from address n-1 down to 0 denoted by  ↓.
When  the  order  is  irrelevant  ↕ is  used.  In  an
ascending order any address sequence may be used
as  long  as  the  descending  order  uses  the  exact
inverse  sequence.  There  are  a  range  of  March
algorithms that exist that test for a wide number of
faults. For instance, to test for a stuck-at fault (SAF)
the algorithm must contain a sequence that verifies
that  a  0  and  a  1  can  be  read  from  every  cell.
MATS+ is an example of a simple March test.

↕(w0) ↑(r0,w1) ↓(r1,w0) (1)

It will detect all AFs and SAFs as a 0 and 1 are read
and written from each cell.

Common to  all  memory  BIST implementations  is
an  address  generator,  a  test  pattern  generator  and
BIST  control logic.  The  BIST  controller  can  be
implemented  by  either  hard-wired logic  or
microcode.  The most common type  of  hard-wired
memory  BIST  consists  of  a  finite  state  machine
(FSM)  performing  three  basic  operations:  writing
patterns  to  the  memory,  reading  them  back  and
comparing them to the expected results.

It  has  been  shown that  the  most  costly  feature  to
implement  when using  BIST is  the  storage  space
required  for  the  algorithms  and  instructions.  One
common  approach  is  to  use  an  on-chip  ROM  to
store  the instruction  set  [7].  The area overhead  is
significant, however, and removing this factor could
reduce cost  considerably.  Assuming the logic area
overhead is negligible the silicon area for memory
BIST, AMB is calculated by

AMB=1
log2Ma

Ma

×1.33 (2)

where Ma is the memory size used to store the test
instructions.  To  try  to  overcome  this  area  issue,
attempts have  been  made  to  use  microcode
instructions that  call  on specific  March operations
[8]. Although this approach reduces stored memory
overhead, March primitives must still be stored on-
chip and the logic overhead is significant.

V. THE ON-CHIP SOLUTION

The  proposed  solution  is  to  store  the  memory
algorithms off-chip, loading them into a register file
inside the BIST engine temporarily. The test is then
run  at-speed until  the algorithm is completed.  For
each  read  operation  the  comparator  checks  the
output data with the expected values and notifies the
automatic  test  equipment  (ATE)  of  any  failure.
When an algorithm has been completed another is
passed in and the process is repeated. 
The  architecture  consists  of  a  small  register
containing the algorithm being used (see figure 2).
A simple shift  register is used to store the pattern
data and pass it to the address decoder that converts
the code into control signals, data and address calls
to  the  memory.  The  decoder  also  includes  an
instruction counter, tracking operation progress, and
an input from the comparator  to detect  faults  that
occur  and  their  location.  The  order  in  which  the
memory is accessed is given by the algorithm, and
is tracked by the decoder which controls the address
generator  accessing  the  column  and  row  address
lines.  A  multiplexer  is  used  to  switch  between
system  and  BIST  control.  When  the  memory  is
instructed to perform a read operation it is verified
using  the  comparator  and  control  is  sent  to  the
decoder  to  register  any  deviation  from  expected
data. 

Figure 2: Proposed BIST architecture.

Required register storage must be determined when
converting  the  algorithm  to  a  bit  pattern.  To
minimise the size of the register we propose using a
short  microcode  to  instruct  the  decoder  on  the
required operations and control signals. 
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There  are  four  possible  operations  when  testing
memory  data;  read-zero (r0),  read-one (r1),  write-
zero (w0) and write-one (w1). When accessing the
cells sequentially there is also an addressing order;
incremental or decremental. A microcode example,
the  MATS+  algorithm  is  given  in  (1).  Each
operation  is  given  a  code  (see  table  1)  and  a
complete code string is constructed. 

operation code

r0 00

r1 01

w0 10

w1 11

direction 1

delay 00

delay 1 01

delay 2 10

delay 3 11

EE 1/0

Table 1: Microcode operation assignments

The  microcode  must  produce  a  set  of  elements
containing operations. For each element there is an
address  order  that  will  not  change  until  the  next
element. To implement this a 3-bit  header  is  used
containing  the  address  direction  and  a  2-bit  delay
assignment.  The  delay  allows  up  to  three  clock
cycles after the element is completed to check for
data retention faults (DRFs). Following the header,
the r/w operation is given and the 6th bit indicates
the  end-of-element  signal  (EE).  If  the  element  is
complete, EE will be high and new header is given.
If  further  operations  are  remaining  EE  is  low,
another  operation  is  supplied  and  an  EE check is
made  again.  Operations  are  provided  until  the
element  is  complete.  The  EE  bit  is  included  to
minimise the the storage required for each code, as
the address order and delay are only required once
for each element. 

Figure 3: March algorithm microcode MATS+
microcode register contents.

Each algorithm will  require a  different  number of
bits to code, and obviously more complex patterns
need more storage. The register is such that it  can
hold  the  longest  algorithm  that  will  be  used  and
possibly  longer,  depending  on  whether  future
patterns  will  be  included  or  previous  ones  are
supplemented  to.  From  the  above  example  the
MATS+ algorithm requires a total of 24 bits to code
completely.  Equation (3)  is  used to  determine  the
number  of  bits  needed where ne is  the number  of
elements  and  no is  the  number  of  operations.  An
example  is  shown  illustrating  a  few  of  the  most
common March tests (table 2). 

3(ne + no) (3)

The  instruction  decoder  consists  of  a  finite  state
machine (FSM) that enters a specific state based on
the input from the microcode register. The decoder
increments  or  decrements  the address  counter  and
controls  specific  instructions  to  the  memory  array
such as read, write, hold and test end. Using an FSM
minimises logic overhead and simplifies design.

Algorithm bits required

MATS+ 24

March C- 48

March B 63

March G 90

Table 2: March algorithm bit requirements

VI. COMPARISON WITH EXISTING
SOLUTIONS

The proposed BIST architecture provides a number
of advantages over  existing  approaches. One main
benefit of the design is that it can be applied to any
type  of  memory  architecture  with  minimal  design
alteration.  A different  memory design will  merely
require  different  test  patterns  that  can be  changed
externally. Using the proposed microcode, memory
test algorithms can be highly compacted, reducing
storage requirements (table 2). By allowing for the
largest possible tests, a suitably sized register could
facilitate very complex and thorough test  patterns.
This  method  significantly  reduces  the  memory
required on-chip compared to previous methods [7]
[8],  while also adding increased flexibility to alter
algorithms  when  necessary.  This  flexibility  is
critical  in  modern  designs  since  advances  in
technology and design demand higher performance
tests to maintain quality. 

Another  significant advantage is the ability to test
the  memory  chip  at  its  functional  speed.  This  is
critical  to  detecting  faults  that  will  only  occur
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during  operation  such  as  data  retention  faults
(DRFs).  Current  ATEs  may  only  function  at  a
fraction of the device operating speeds; high speed
RDRAM may run at 800MHz while the ATE may
be limited to 100MHz. 

At-speed testing can also result in lower test times
as data can be compared on-chip avoiding the need
to pass all the processed information to the ATE. In
addition,  it  is  possible  to  take  advantage  of  the
parallel  internal  structure  of  memories  to  run
concurrent tests on different memory banks. 

The  reduction  in  requirements  from  ATEs  will
demand less capital expenditure and upgrade costs
involved in testing each type of memory device. It
may be possible to support complete evaluation with
a  basic desktop  setup;  memory  storage,  data  scan
outputs and a pass/fail input. 

A major concern with any BIST implementation is
the requirement for extra silicon area. This area adds
to the cost of the device, as this represents parts of
memory and logic that are not added to the chip for
functional  purposes.  However,  using  the  proposed
approach, memory overhead is minimal. The logic
area requirement should also be negligible as only a
short finite state machine and comparator are used. 

Further  investigation  will  be  needed  when  testing
flash  memory.  Not  only  is  the  architecture  quite
different but the operating speeds are much lower
than  RAM. A typical  program  operation  on  flash
memory  may  take  a  long  time  (typically  100µs),
with block erase taking even longer. In this case, the
benefits  of  testing  on-chip  for  speed-related  gains
are minimal.

VII. CONCLUSIONS 

In  this  paper,  we have proposed  a method to test
memory  on-chip  using  microcode-based  test
algorithms. This approach applies patterns from an
external tester that are stored into a register in the
BIST engine.  We have outlined the importance of
testing  devices  at-speed  with  minimal  area
overhead. The BIST design allows at-speed testing
with the added flexibility for the design to be used
in  a  range  of  different  memory  types  such  as
SRAM, DRAM and ROM.
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