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Abstract

Motivation: In recent years there has been increased interest in producing large and accurate 
phylogenetic trees using statistical approaches. However for a large number of taxa, it is not 
feasible to construct large and accurate trees using only a single processor. A number of 
specialised parallel programs have been produced in an attempt to address the huge 
computational requirements of maximum likelihood. We express a number of concerns about 
the current set of parallel phylogenetic programs which are currently severely limiting the 
widespread availability and use of parallel computing in maximum likelihood based 
phylogenetic analysis.
Results: We have identified the suitability of phylogenetic analysis to large-scale 
heterogeneous distributed computing. We have completed a distributed and fully cross-
platform phylogenetic tree building program called DPRml. It uses an already proven 
maximum likelihood based tree building algorithm and a popular phylogenetic analysis 
library for all its likelihood calculations. It offers one of the most extensive sets of DNA 
substitution models currently available. We are the first, to our knowledge, to report the 
completion of a distributed phylogenetic tree building program that can achieve near linear 
speedup while only using the idle clock cycles of machines. For those in an academic or 
corporate environment with hundreds of idle desktop machines, we have shown how 
distributed computing can deliver a ‘free’ ML supercomputer.
Availability: The software (and user manual) is publicly available under the terms of the 
GNU general public licence from the system webpage at http://www.cs.may.ie/distributed
Contact: tom.naughton@may.ie

1 Introduction

One of the great challenges of molecular biology is the completion of the tree of life (Hillis 
and Lewis, 2000). The massive accumulation of genomic data has led to increased interest in 
the production of large and accurate phylogenetic trees. However the decision problem 
associated with searching for the best tree from a set of taxa is NP-hard (Bodlaender et al., 
1992). Therefore it is not feasible to perform an exhaustive search of the tree space for trees 
of a non-trivial size. Maximum likelihood (ML) evaluation has been widely acknowledged as 
one of the most accurate techniques for reconstructing phylogenies. Felsenstein first brought 
this framework to nucleotide-based phylogenetic inference (Felsenstein, 1981). Numerous 
computer studies (Huelsenbeck and Hillis, 1993; Kuhner and Felsenstein, 1994; Huelsenbeck, 
1995; Rosenberg and Kumar, 2001; Ranwez and Gascuel, 2002) have shown ML programs 
can recover the correct tree from simulated data sets more frequently than other methods. In a 
recent study timing the evolution of the HIV-1 virus (Korber et al., 2002), it was 
demonstrated that ML techniques can be effective in solving important biological problems.

Currently the most successful heuristic approach for building phylogenetic trees is to 
employ a hill-climbing algorithm combined with ML evaluation. Each taxon is added to the 
tree in a stepwise manner and topological rearrangements are subsequently performed on the 
best tree, in an effort to avoid local minima in the search space. The most computationally 
intensive aspect of this approach is that each candidate tree that is generated must have its 
branch lengths optimised and likelihood calculated. Some of the most popular tree building 
programs (Felsenstein, 1989; Rogers and Swofford, 1998) are based on this method. Despite 
considerable improvements in runtimes (Olsen et al., 1994; Guindon and Gascuel, 2003) the 
single factor that is currently limiting the widespread use of ML techniques in phylogenetic 
analysis is the huge computational requirements (Hershkovitz and Leipe, 1998). A number of 
other authors (Stewart et al., 2001; Stamatakis and Ludwig, 2003; Schmidt et al., 2002) have 
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concluded that the major limitation with each of these programs is that they are limited to 
operating on a single processor, which means that it is not feasible to build large phylogenetic 
trees using these programs.

In an effort to construct large and accurate phylogenetic trees while still keeping 
overall processing times reasonable, a number of researchers have developed parallel ML 
programs that utilise the stepwise insertion approach (Stewart et al., 2001; Stamatakis and 
Ludwig, 2003). One of these programs (Stamatakis and Ludwig, 2003) also employs some 
simple distance based heuristics to try to reduce the number of generated trees. These 
programs have been successful in speeding up phylogenetic computations but the overriding 
problem with these programs is that specialised parallel hardware and software is often 
required. For most researchers, this can make these programs either prohibitively expensive 
or simply too complicated to set up. Furthermore these programs are often implemented in a 
platform specific language which imposes a restrictive limit on the numbers and types of 
machines that can be used in a parallel computation. It should also be noted that some of these 
earlier parallel programs only allowed the user to choose from a very limited number of DNA 
substitution models, which often leads to a poor model fit resulting in sub optimal trees. 
Therefore, in our opinion, the three most essential requirements of any generally usable 
parallel tree building program must be that the program should not require any sort of 
specialised or expensive parallel hardware or software, should only require the most basic 
technical abilities to set up and use, and should allow the user to choose from an extensive list 
of molecular evolution models. Currently there is no parallel phylogenetic tree building 
program that fulfils all of these requirements.

We have identified the suitability of phylogenetic analysis to large-scale 
heterogeneous distributed computing and have developed a fully cross-platform distributed 
application, DPRml, which we believe to be one of the most general and powerful likelihood-
based phylogenetic tree building programs currently available. DPRml is, to our knowledge, 
the first distributed phylogenetic tree building program to satisfy each of the three 
requirements outlined above. The generality of our program is demonstrated by the fact that 
DPRml, written in Java, can run on virtually any architecture and operating system 
simultaneously while only using the spare clock cycles of donor machines. No specialised 
computer hardware is required, and no expense is incurred if idle computing resources are 
harnessed. This would not be as straightforward for a distributed application written in a 
native language because the application would have to be compiled for each particular 
architecture and operating system. We have demonstrated the ease of use and platform 
heterogeneity of DPRml with experiments that utilise the spare computing resources of 
several different architectures and operating systems simultaneously. The user has a very 
straightforward configuration file with which to tailor the computation and can choose from 
one of the most extensive ranges of DNA substitution models currently available. Our 
performance analysis demonstrates how effective DPRml can be for speeding up the process 
of constructing large phylogenetic trees. DPRml implements an already proven tree building 
algorithm (Stewart et al., 2001; Olsen et al., 1994) and uses the popular Phylogenetic 
Analysis Library (PAL) v1.4 (Drummond and Strimmer, 2001) for all its likelihood 
calculations.

DPRml is just one application of large-scale distributed computing. Our intention with 
this paper is to highlight the general applicability of this computing paradigm to certain 
bioinformatics computations. By a detailed presentation of this specific example we wish to 
highlight the hallmarks of the paradigm which are ease-of-use, flexibility, affordability, and 
efficiency.
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2 Distributed Computing and Phylogenetic Analysis

In recent years, the area of distributed computing has emerged as a viable alternative to 
specialised parallel computing. By harnessing the spare clock cycles of idle machines (Buyya, 
1999), it is possible to emulate the computing power offered by a specialised parallel machine 
at a fraction of the cost. Several successful systems have been developed on this basis, e.g. 
Seti@Home (Korpela et al., 2001), Folding@Home (Larson et al., 2003), Condor (Thain et 
al., 2003), and Models@Home (Kreiger and Vriend, 2002). The type of applications that are 
generally considered to be suited to distributed computing have the capability to fully exploit 
"coarse-grained parallelism," meaning that it should be possible to partition the application 
into independent tasks or processes that can be computed concurrently. Typically these types 
of problems must display a high “compute-to-data” ratio to make it worthwhile sending the 
data over a network rather than computing locally.

The process of constructing large phylogenetic trees using ML analysis generates 
thousands of candidate trees that must have their branch lengths optimised and likelihood 
calculated. These two processes can be done completely independently for each tree and the 
set of trees generated at each stage can be represented, stored, and transferred compactly 
using only a few KBytes. Therefore the small size of the data involved coupled with the long 
computation times of ML analysis make this problem ideal for a large scale distributed 
computing implementation.

2.1 DPRml Algorithm
We have taken the hill-climbing algorithm used by parallel fastDNAml (Stewart et al., 2001)
and have implemented a platform independent, distributed, and much more generalised 
version of the program. The algorithm implemented by DPRml is outlined in Fig. 1. The
parameters m and v are contained in the parameter file. Step 1 of the algorithm is a localised 
version of the overall algorithm outlined in steps 2-7. A single donor machine builds an initial 
tree for m minutes (default value is 30 minutes) as it is more efficient to build this initial tree 
on a single donor machine than to distribute this part of the computation. At each stage of the 
algorithm, the set of generated trees is split into equal size groups and issued to clients on a 
first come, first served basis. The inputs to the application are a MODELTEST (Posada and 
Crandall, 1998) output file, a FASTA sequence file (DNA or RNA), and an input parameter 
file. The outputs of the program are a Nexus format tree file, a Newick format tree file, a PAL 
tree object file, a human readable tree (text file), and the likelihood of the final tree. We have 
provided a remote interface to the system that makes it possible to monitor the progress of the 
application in real-time as it builds the phylogenetic tree. The program supports all of the 
DNA substitution models that MODELTEST v3.06 provides. The input parameter file lets the 
user set various runtime options for the computation such as the maximum number of vertices 
that rearrangements can span, whether to keep a copy of the best tree from every stage or just 
the best tree from the previous stage, whether to add the taxa in a randomly generated order or 
input order, and whether to optimise the branch lengths of every tree that is generated or just 
optimise the final tree. If there was a catastrophic event (e.g. a system wide power failure), it 
is possible for the program to continue building the tree from where it left off. Log files make 
it possible to fully examine and track the entire tree building process.

2.2 Implementation
DPRml is implemented entirely in Java, meaning that the program is completely platform and 
network independent. DPRml is just one of the applications that can run on our general 
purpose distributed computing platform, loosely based on the design of the Java Distributed 
Computing Library (JDCL) (Fritsche et al., 2001; Keane et al., 2003). In our deployment of 
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DPRml, we have our client software running in a number of computing laboratories, 
consisting of approximately 200 desktop PC’s of various modest specifications (Pentium II’s 
up to Pentium IV’s running assorted versions of Windows and Linux OSs). To minimise 
disruption to users, we run the client as a low priority background service that only uses the 
idle clock cycles of the machines. To illustrate the portability of our system, we have also 
installed our client on every node of an IBM Linux cluster (32 Dual PIII 1 GHz nodes with 
between 256-768 MB memory per node) with the desktops and cluster nodes connecting to a 
single server.

3 Performance Analysis

A number of standard measures have emerged in parallel computing for measuring the 
performance of parallel programs. Running time measures the amount of time from when a 
parallel program is started to when the program produces the final result of the computation. 
Speedup s is the ratio between the running times using one processor and multiple processors. 
It measures the performance improvement gained through parallelisation and is calculated 
from

)(/)1()( nttns = , (1)

where t(1) is the running time of the program using a single processor, and t(n) is the running 
time of the program using n processors. The maximum theoretical speedup occurs when there 
is an n times speedup achieved using n processors. The ideal speedup curve is rarely achieved 
because parallelism entails a certain amount of communication and management overhead. It 
should also be noted that the maximum speedup achievable depends greatly on the degree of 
parallelism in a particular algorithm (Amdahl, 1967). Scalability is the ability to maintain 
performance levels as the workload increases by incrementally adding more system capacity 
(adding more processors and/or computations running simultaneously).

We performed a full set of performance tests using the dataset that was used to 
benchmark parallel fastDNAml (Stewart et al., 2001). This dataset consists of three individual 
sets of taxa consisting of 50 taxa, 101 taxa, and 150 taxa that are 1858 (50 and 101 taxa) and 
1269 (150 taxa) nucleotide positions in length. In our tests, we used the HKY (Hasegawa et 
al., 1985) DNA substitution model with the same three Ts/Tv ratio parameters as were used 
by parallel fastDNAml. We examined several trees constructed by DPRml using this dataset 
and found that there were only minor differences due to the differing randomisation of the 
taxa addition order. Several of the trees produced are available from the system webpage. For 
all of our performance tests, we ran a version of the program that adds the taxa to the tree in 
the same order each time (so that the scaling behaviour of the program could be clearly 
understood) and the program was configured to optimise the branch lengths of every tree 
generated. The maximum number of vertices that rearrangements could cross was set to five.

We compared the single-processor performance of DPRml and fastDNAml (Olsen et 
al., 1994) using the three datasets. The results of these tests are shown in Table 1. Although 
DPRml performs on average 7 times slower than fastDNAml, DPRml’s performance 
reduction is overcome its greater cross-platform compatibility.

3.1 Single Problem Speedup Analysis
To analyse the speedup that can be gained by running DPRml, we ran a single instance of 
DPRml on the distributed system with differing numbers of clients and noted the total running 
time in each case. For these particular tests, the set of clients consisted of two university 
computing laboratories with a total of 60 desktop PC’s (each machine was a Pentium IV 2.4 
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GHz with 512 Mbytes of memory running either Windows 2000 or Redhat Linux 7.0). Our 
server resided on a Pentium III 600 MHz with 256 Mbytes of memory running Debian Linux 
with a 10 Mbit/s connection to the laboratories. We had our client installed as a low priority 
background service and the PC's were in use, and were being rebooted between operating 
systems during teaching hours. The graphs show the corresponding mean running time 
decrease (Fig. 2) and speedup gained (Fig. 3) over two runs for each point on the graphs. The 
main factor limiting the scalability of the program is the synchronisation barrier created by 
the staged nature of the algorithm. If any of the donor machines are unexpectedly switched 
off, DPRml must wait for the distributed system to detect this and redistribute the data to 
another donor machine before it can proceed to the next stage of the algorithm. Figure 3 
shows that DPRml scales extremely well, with the speedup increasing with an increase in 
dataset size. This is consistent with the findings of a special purpose parallel phylogenetic 
program (Stewart et al., 2001). For this particular dataset, it is expected that the speedup gains 
should plateau at approximately 150 processors because at this point the number of 
processors would equal the number of trees being generated at many of the stages. This would 
also be the case for any other parallel tree building program.

3.2 Multiple Problem Efficiency Analysis
One way to maintain consistently high efficiency (utilisation of donor machines) in the 
distributed system is to run several DPRml computations simultaneously. Ideally, each 
computation would be at a different stage in the tree building algorithm and therefore should 
result in consistently higher overall efficiency. Multiple DPRml computations can be 
submitted to the server, which allows users to always make optimal use of the available donor 
machines. We wanted to investigate fully how to optimise the efficiency of the distributed 
system by running differing numbers of DPRml computations simultaneously. We were also 
interested in the extent to which an increasing number of DPRml computations running 
simultaneously would affect the rate at which the phylogenetic trees are built. To investigate 
these two related issues, we used one of the datasets that was used to test parallel fastDNAml 
(Stewart et al., 2001), consisting of 101 taxa (1858 nucleotides per taxa), and we ran varying 
numbers of DPRml computations on the system while keeping the number of donor machines 
fixed. The set of clients consisted of a university computing laboratory with a total of 40 
desktop PC’s (each machine was a Pentium III 600 MHz with 128 Mbytes of memory 
running Windows NT). By examining the distributed system log files, we completed a graph 
(see Fig. 4) showing the efficiency of the system over a period of 24 hours for each set of 
problems. We also noted the average size of the trees built (see Table 2) at the end of each 24 
hour period.

Figure 4 shows that efficiency is greatly increased when the number of tree building 
computations running simultaneously in the system is increased. Table 2 is quite interesting 
as it shows that by increasing the number of tree building computations from one to six only 
reduced the average tree size by 31%. For this particular dataset and set of donor machines, 
six tree building computations is sufficient to get almost 100% efficiency from the system. To 
further investigate the effect on speedup of running multiple DPRml computations in the 
distributed system, we completed a speedup graph (see Fig. 5) based on the running time of 
six simultaneous DPRml computations. For this test, we used one of the datasets that was 
used to test parallel fastDNAml (Stewart et al., 2001), consisting of 50 taxa (1858 nucleotides 
per taxa), and ran six simultaneous computations with varying numbers of clients. As 
expected, Fig. 5 demonstrates that DPRml achieves near linear speedup when speedup is 
measured with multiple DPRml computations running simultaneously.

The above results fit well with the expected usage of the program. As the algorithm 
outlined in section 2 is heuristic, it is possible to become trapped in a local optimum, rather 
than a global one. Typically a researcher would repeat the entire tree building process with 
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several different randomisations of the taxa addition order and then compare the best of the 
resulting trees to determine a consensus tree (Jermiin et al., 1997). As has been noted by 
parallel computing authors (Amdahl, 1967), it is quite rare and difficult for a parallel or 
distributed system to achieve 100% efficiency. We are the first, to our knowledge, to report 
the completion of a distributed phylogenetic tree building program that can achieve near 
linear speedup and almost 100% system efficiency while only using the idle clock cycles of 
standard desktop machines.

4 Discussion
DPRml is an easy-to-use practical application that can harness the idle computing resources 
of any research institute to construct large phylogenetic trees using ML. The real significance 
of DPRml lies in the fact that it gives a researcher, who may not have access to (or the 
technical skills necessary to access) a dedicated parallel machine, the ability to build large 
and accurate phylogenetic trees. Unlike other parallel phylogenetic programs, no specialist 
parallel computing knowledge is required to set up and run DPRml. The program offers an 
extensive list of DNA substitution models that allows users to pick the substitution model that 
better reflect their dataset. We have shown how effective DPRml can be for speeding up 
phylogenetic computations by performing a full performance analysis. The final outputs of 
the program are in standard formats that allow the user to perform further manipulation and 
analysis of results using other phylogenetic packages.

This first release of DPRml uses PAL v1.4 (Drummond and Strimmer, 2001) for all of 
its optimisation and likelihood calculations. As new features and algorithmic improvements 
appear in later versions of PAL (Goode et al., 2004), we will release updated versions of 
DPRml on our webpage to take advantage of the improvements. In future versions of DPRml 
we plan to focus our investigations on algorithmic improvements and plan to add features 
such as bootstrap analysis and supertree construction. On the wider issue of the large-scale 
distributed computing paradigm, we have highlighted the principal advantages of the 
paradigm, which are ease-of-use, flexibility, affordability, and efficiency.
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Figure Captions

Figure 1. Tree building algorithm implemented by DPRml

Figure 2. Decrease in computation time with an increase in the number of processors over 
each of the three datasets (50, 101, and 150 taxa). The average over two runs for each dataset 
is shown

Figure 3. Speedup achieved over each of the three datasets (50, 101, and 150 taxa). The 
average over two runs for each dataset is shown. Linear speedup is the theoretical maximum 
for parallel algorithms

Figure 4. Efficiency of the system over a period of 24 hours for varying numbers of DPRml 
computations running in the system

Figure 5. Speedup achieved over 50 taxa dataset with 6 problems running simultaneously. 
Linear speedup is the theoretical maximum for parallel algorithms
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50 Taxa 101 Taxa 150 Taxa
DPRml 1386 57373 123484

FastDNAml 240 8726 14685

Table 1. Runtime comparison of DPRml and FastDNAml for the three datasets (50, 101 and 
150 taxa). All times are in minutes.

# Problems 1 2 4 6
Tree Size 72 58 54 49

Table 2. Average tree size after 24 hours for varying numbers of DPRml problems running 
simultaneously in the distributed system


