
DPRml: Distributed Phylogeny Reconstruction by Maximum
Likelihood

Keane T.M.1, Naughton T.J.1∗, Travers S.A.A2, McInerney J.O.2, McCormack, G.P. 2

1Department of Computer Science, National University of Ireland, Maynooth, Ireland
2Department of Biology, National University of Ireland, Maynooth, Ireland

Email: tom.naughton@may.ie

Keywords: phylogeny reconstruction, phylogenetic analysis, maximum likelihood,
distributed computing, Java

∗ To whom correspondence should be addressed

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by MURAL - Maynooth University Research Archive Library

https://core.ac.uk/display/297009031?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Abstract

Motivation: In recent years there has been increased interest in producing large and accurate
phylogenetic trees using statistical approaches. However for a large number of taxa, it is not
feasible to construct large and accurate trees using only a single processor. A number of
specialised parallel programs have been produced in an attempt to address the huge
computational requirements of maximum likelihood. We express a number of concerns about
the current set of parallel phylogenetic programs which are currently severely limiting the
widespread availability and use of parallel computing in maximum likelihood based
phylogenetic analysis.
Results: We have identified the suitability of phylogenetic analysis to large-scale
heterogeneous distributed computing. We have completed a distributed and fully cross-
platform phylogenetic tree building program called DPRml. It uses an already proven
maximum likelihood based tree building algorithm and a popular phylogenetic analysis
library for all its likelihood calculations. It offers one of the most extensive sets of DNA
substitution models currently available. We are the first, to our knowledge, to report the
completion of a distributed phylogenetic tree building program that can achieve near linear
speedup while only using the idle clock cycles of machines. For those in an academic or
corporate environment with hundreds of idle desktop machines, we have shown how
distributed computing can deliver a ‘free’ ML supercomputer.
Availability: The software (and user manual) is publicly available under the terms of the
GNU general public licence from the system webpage at http://www.cs.may.ie/distributed
Contact: tom.naughton@may.ie

1 Introduction

One of the great challenges of molecular biology is the completion of the tree of life (Hillis
and Lewis, 2000). The massive accumulation of genomic data has led to increased interest in
the production of large and accurate phylogenetic trees. However the decision problem
associated with searching for the best tree from a set of taxa is NP-hard (Bodlaender et al.,
1992). Therefore it is not feasible to perform an exhaustive search of the tree space for trees
of a non-trivial size. Maximum likelihood (ML) evaluation has been widely acknowledged as
one of the most accurate techniques for reconstructing phylogenies. Felsenstein first brought
this framework to nucleotide-based phylogenetic inference (Felsenstein, 1981). Numerous
computer studies (Huelsenbeck and Hillis, 1993; Kuhner and Felsenstein, 1994; Huelsenbeck,
1995; Rosenberg and Kumar, 2001; Ranwez and Gascuel, 2002) have shown ML programs
can recover the correct tree from simulated data sets more frequently than other methods. In a
recent study timing the evolution of the HIV-1 virus (Korber et al., 2002), it was
demonstrated that ML techniques can be effective in solving important biological problems.

Currently the most successful heuristic approach for building phylogenetic trees is to
employ a hill-climbing algorithm combined with ML evaluation. Each taxon is added to the
tree in a stepwise manner and topological rearrangements are subsequently performed on the
best tree, in an effort to avoid local minima in the search space. The most computationally
intensive aspect of this approach is that each candidate tree that is generated must have its
branch lengths optimised and likelihood calculated. Some of the most popular tree building
programs (Felsenstein, 1989; Rogers and Swofford, 1998) are based on this method. Despite
considerable improvements in runtimes (Olsen et al., 1994; Guindon and Gascuel, 2003) the
single factor that is currently limiting the widespread use of ML techniques in phylogenetic
analysis is the huge computational requirements (Hershkovitz and Leipe, 1998). A number of
other authors (Stewart et al., 2001; Stamatakis and Ludwig, 2003; Schmidt et al., 2002) have

3

concluded that the major limitation with each of these programs is that they are limited to
operating on a single processor, which means that it is not feasible to build large phylogenetic
trees using these programs.

In an effort to construct large and accurate phylogenetic trees while still keeping
overall processing times reasonable, a number of researchers have developed parallel ML
programs that utilise the stepwise insertion approach (Stewart et al., 2001; Stamatakis and
Ludwig, 2003). One of these programs (Stamatakis and Ludwig, 2003) also employs some
simple distance based heuristics to try to reduce the number of generated trees. These
programs have been successful in speeding up phylogenetic computations but the overriding
problem with these programs is that specialised parallel hardware and software is often
required. For most researchers, this can make these programs either prohibitively expensive
or simply too complicated to set up. Furthermore these programs are often implemented in a
platform specific language which imposes a restrictive limit on the numbers and types of
machines that can be used in a parallel computation. It should also be noted that some of these
earlier parallel programs only allowed the user to choose from a very limited number of DNA
substitution models, which often leads to a poor model fit resulting in sub optimal trees.
Therefore, in our opinion, the three most essential requirements of any generally usable
parallel tree building program must be that the program should not require any sort of
specialised or expensive parallel hardware or software, should only require the most basic
technical abilities to set up and use, and should allow the user to choose from an extensive list
of molecular evolution models. Currently there is no parallel phylogenetic tree building
program that fulfils all of these requirements.

We have identified the suitability of phylogenetic analysis to large-scale
heterogeneous distributed computing and have developed a fully cross-platform distributed
application, DPRml, which we believe to be one of the most general and powerful likelihood-
based phylogenetic tree building programs currently available. DPRml is, to our knowledge,
the first distributed phylogenetic tree building program to satisfy each of the three
requirements outlined above. The generality of our program is demonstrated by the fact that
DPRml, written in Java, can run on virtually any architecture and operating system
simultaneously while only using the spare clock cycles of donor machines. No specialised
computer hardware is required, and no expense is incurred if idle computing resources are
harnessed. This would not be as straightforward for a distributed application written in a
native language because the application would have to be compiled for each particular
architecture and operating system. We have demonstrated the ease of use and platform
heterogeneity of DPRml with experiments that utilise the spare computing resources of
several different architectures and operating systems simultaneously. The user has a very
straightforward configuration file with which to tailor the computation and can choose from
one of the most extensive ranges of DNA substitution models currently available. Our
performance analysis demonstrates how effective DPRml can be for speeding up the process
of constructing large phylogenetic trees. DPRml implements an already proven tree building
algorithm (Stewart et al., 2001; Olsen et al., 1994) and uses the popular Phylogenetic
Analysis Library (PAL) v1.4 (Drummond and Strimmer, 2001) for all its likelihood
calculations.

DPRml is just one application of large-scale distributed computing. Our intention with
this paper is to highlight the general applicability of this computing paradigm to certain
bioinformatics computations. By a detailed presentation of this specific example we wish to
highlight the hallmarks of the paradigm which are ease-of-use, flexibility, affordability, and
efficiency.

4

2 Distributed Computing and Phylogenetic Analysis

In recent years, the area of distributed computing has emerged as a viable alternative to
specialised parallel computing. By harnessing the spare clock cycles of idle machines (Buyya,
1999), it is possible to emulate the computing power offered by a specialised parallel machine
at a fraction of the cost. Several successful systems have been developed on this basis, e.g.
Seti@Home (Korpela et al., 2001), Folding@Home (Larson et al., 2003), Condor (Thain et
al., 2003), and Models@Home (Kreiger and Vriend, 2002). The type of applications that are
generally considered to be suited to distributed computing have the capability to fully exploit
"coarse-grained parallelism," meaning that it should be possible to partition the application
into independent tasks or processes that can be computed concurrently. Typically these types
of problems must display a high “compute-to-data” ratio to make it worthwhile sending the
data over a network rather than computing locally.

The process of constructing large phylogenetic trees using ML analysis generates
thousands of candidate trees that must have their branch lengths optimised and likelihood
calculated. These two processes can be done completely independently for each tree and the
set of trees generated at each stage can be represented, stored, and transferred compactly
using only a few KBytes. Therefore the small size of the data involved coupled with the long
computation times of ML analysis make this problem ideal for a large scale distributed
computing implementation.

2.1 DPRml Algorithm
We have taken the hill-climbing algorithm used by parallel fastDNAml (Stewart et al., 2001)
and have implemented a platform independent, distributed, and much more generalised
version of the program. The algorithm implemented by DPRml is outlined in Fig. 1. The
parameters m and v are contained in the parameter file. Step 1 of the algorithm is a localised
version of the overall algorithm outlined in steps 2-7. A single donor machine builds an initial
tree for m minutes (default value is 30 minutes) as it is more efficient to build this initial tree
on a single donor machine than to distribute this part of the computation. At each stage of the
algorithm, the set of generated trees is split into equal size groups and issued to clients on a
first come, first served basis. The inputs to the application are a MODELTEST (Posada and
Crandall, 1998) output file, a FASTA sequence file (DNA or RNA), and an input parameter
file. The outputs of the program are a Nexus format tree file, a Newick format tree file, a PAL
tree object file, a human readable tree (text file), and the likelihood of the final tree. We have
provided a remote interface to the system that makes it possible to monitor the progress of the
application in real-time as it builds the phylogenetic tree. The program supports all of the
DNA substitution models that MODELTEST v3.06 provides. The input parameter file lets the
user set various runtime options for the computation such as the maximum number of vertices
that rearrangements can span, whether to keep a copy of the best tree from every stage or just
the best tree from the previous stage, whether to add the taxa in a randomly generated order or
input order, and whether to optimise the branch lengths of every tree that is generated or just
optimise the final tree. If there was a catastrophic event (e.g. a system wide power failure), it
is possible for the program to continue building the tree from where it left off. Log files make
it possible to fully examine and track the entire tree building process.

2.2 Implementation
DPRml is implemented entirely in Java, meaning that the program is completely platform and
network independent. DPRml is just one of the applications that can run on our general
purpose distributed computing platform, loosely based on the design of the Java Distributed
Computing Library (JDCL) (Fritsche et al., 2001; Keane et al., 2003). In our deployment of

5

DPRml, we have our client software running in a number of computing laboratories,
consisting of approximately 200 desktop PC’s of various modest specifications (Pentium II’s
up to Pentium IV’s running assorted versions of Windows and Linux OSs). To minimise
disruption to users, we run the client as a low priority background service that only uses the
idle clock cycles of the machines. To illustrate the portability of our system, we have also
installed our client on every node of an IBM Linux cluster (32 Dual PIII 1 GHz nodes with
between 256-768 MB memory per node) with the desktops and cluster nodes connecting to a
single server.

3 Performance Analysis

A number of standard measures have emerged in parallel computing for measuring the
performance of parallel programs. Running time measures the amount of time from when a
parallel program is started to when the program produces the final result of the computation.
Speedup s is the ratio between the running times using one processor and multiple processors.
It measures the performance improvement gained through parallelisation and is calculated
from

)(/)1()(nttns = , (1)

where t(1) is the running time of the program using a single processor, and t(n) is the running
time of the program using n processors. The maximum theoretical speedup occurs when there
is an n times speedup achieved using n processors. The ideal speedup curve is rarely achieved
because parallelism entails a certain amount of communication and management overhead. It
should also be noted that the maximum speedup achievable depends greatly on the degree of
parallelism in a particular algorithm (Amdahl, 1967). Scalability is the ability to maintain
performance levels as the workload increases by incrementally adding more system capacity
(adding more processors and/or computations running simultaneously).

We performed a full set of performance tests using the dataset that was used to
benchmark parallel fastDNAml (Stewart et al., 2001). This dataset consists of three individual
sets of taxa consisting of 50 taxa, 101 taxa, and 150 taxa that are 1858 (50 and 101 taxa) and
1269 (150 taxa) nucleotide positions in length. In our tests, we used the HKY (Hasegawa et
al., 1985) DNA substitution model with the same three Ts/Tv ratio parameters as were used
by parallel fastDNAml. We examined several trees constructed by DPRml using this dataset
and found that there were only minor differences due to the differing randomisation of the
taxa addition order. Several of the trees produced are available from the system webpage. For
all of our performance tests, we ran a version of the program that adds the taxa to the tree in
the same order each time (so that the scaling behaviour of the program could be clearly
understood) and the program was configured to optimise the branch lengths of every tree
generated. The maximum number of vertices that rearrangements could cross was set to five.

We compared the single-processor performance of DPRml and fastDNAml (Olsen et
al., 1994) using the three datasets. The results of these tests are shown in Table 1. Although
DPRml performs on average 7 times slower than fastDNAml, DPRml’s performance
reduction is overcome its greater cross-platform compatibility.

3.1 Single Problem Speedup Analysis
To analyse the speedup that can be gained by running DPRml, we ran a single instance of
DPRml on the distributed system with differing numbers of clients and noted the total running
time in each case. For these particular tests, the set of clients consisted of two university
computing laboratories with a total of 60 desktop PC’s (each machine was a Pentium IV 2.4

6

GHz with 512 Mbytes of memory running either Windows 2000 or Redhat Linux 7.0). Our
server resided on a Pentium III 600 MHz with 256 Mbytes of memory running Debian Linux
with a 10 Mbit/s connection to the laboratories. We had our client installed as a low priority
background service and the PC's were in use, and were being rebooted between operating
systems during teaching hours. The graphs show the corresponding mean running time
decrease (Fig. 2) and speedup gained (Fig. 3) over two runs for each point on the graphs. The
main factor limiting the scalability of the program is the synchronisation barrier created by
the staged nature of the algorithm. If any of the donor machines are unexpectedly switched
off, DPRml must wait for the distributed system to detect this and redistribute the data to
another donor machine before it can proceed to the next stage of the algorithm. Figure 3
shows that DPRml scales extremely well, with the speedup increasing with an increase in
dataset size. This is consistent with the findings of a special purpose parallel phylogenetic
program (Stewart et al., 2001). For this particular dataset, it is expected that the speedup gains
should plateau at approximately 150 processors because at this point the number of
processors would equal the number of trees being generated at many of the stages. This would
also be the case for any other parallel tree building program.

3.2 Multiple Problem Efficiency Analysis
One way to maintain consistently high efficiency (utilisation of donor machines) in the
distributed system is to run several DPRml computations simultaneously. Ideally, each
computation would be at a different stage in the tree building algorithm and therefore should
result in consistently higher overall efficiency. Multiple DPRml computations can be
submitted to the server, which allows users to always make optimal use of the available donor
machines. We wanted to investigate fully how to optimise the efficiency of the distributed
system by running differing numbers of DPRml computations simultaneously. We were also
interested in the extent to which an increasing number of DPRml computations running
simultaneously would affect the rate at which the phylogenetic trees are built. To investigate
these two related issues, we used one of the datasets that was used to test parallel fastDNAml
(Stewart et al., 2001), consisting of 101 taxa (1858 nucleotides per taxa), and we ran varying
numbers of DPRml computations on the system while keeping the number of donor machines
fixed. The set of clients consisted of a university computing laboratory with a total of 40
desktop PC’s (each machine was a Pentium III 600 MHz with 128 Mbytes of memory
running Windows NT). By examining the distributed system log files, we completed a graph
(see Fig. 4) showing the efficiency of the system over a period of 24 hours for each set of
problems. We also noted the average size of the trees built (see Table 2) at the end of each 24
hour period.

Figure 4 shows that efficiency is greatly increased when the number of tree building
computations running simultaneously in the system is increased. Table 2 is quite interesting
as it shows that by increasing the number of tree building computations from one to six only
reduced the average tree size by 31%. For this particular dataset and set of donor machines,
six tree building computations is sufficient to get almost 100% efficiency from the system. To
further investigate the effect on speedup of running multiple DPRml computations in the
distributed system, we completed a speedup graph (see Fig. 5) based on the running time of
six simultaneous DPRml computations. For this test, we used one of the datasets that was
used to test parallel fastDNAml (Stewart et al., 2001), consisting of 50 taxa (1858 nucleotides
per taxa), and ran six simultaneous computations with varying numbers of clients. As
expected, Fig. 5 demonstrates that DPRml achieves near linear speedup when speedup is
measured with multiple DPRml computations running simultaneously.

The above results fit well with the expected usage of the program. As the algorithm
outlined in section 2 is heuristic, it is possible to become trapped in a local optimum, rather
than a global one. Typically a researcher would repeat the entire tree building process with

7

several different randomisations of the taxa addition order and then compare the best of the
resulting trees to determine a consensus tree (Jermiin et al., 1997). As has been noted by
parallel computing authors (Amdahl, 1967), it is quite rare and difficult for a parallel or
distributed system to achieve 100% efficiency. We are the first, to our knowledge, to report
the completion of a distributed phylogenetic tree building program that can achieve near
linear speedup and almost 100% system efficiency while only using the idle clock cycles of
standard desktop machines.

4 Discussion
DPRml is an easy-to-use practical application that can harness the idle computing resources
of any research institute to construct large phylogenetic trees using ML. The real significance
of DPRml lies in the fact that it gives a researcher, who may not have access to (or the
technical skills necessary to access) a dedicated parallel machine, the ability to build large
and accurate phylogenetic trees. Unlike other parallel phylogenetic programs, no specialist
parallel computing knowledge is required to set up and run DPRml. The program offers an
extensive list of DNA substitution models that allows users to pick the substitution model that
better reflect their dataset. We have shown how effective DPRml can be for speeding up
phylogenetic computations by performing a full performance analysis. The final outputs of
the program are in standard formats that allow the user to perform further manipulation and
analysis of results using other phylogenetic packages.

This first release of DPRml uses PAL v1.4 (Drummond and Strimmer, 2001) for all of
its optimisation and likelihood calculations. As new features and algorithmic improvements
appear in later versions of PAL (Goode et al., 2004), we will release updated versions of
DPRml on our webpage to take advantage of the improvements. In future versions of DPRml
we plan to focus our investigations on algorithmic improvements and plan to add features
such as bootstrap analysis and supertree construction. On the wider issue of the large-scale
distributed computing paradigm, we have highlighted the principal advantages of the
paradigm, which are ease-of-use, flexibility, affordability, and efficiency.

8

Acknowledgements

This research has been funded by Embark Initiative from the Irish Research Council for
Science, Engineering and Technology: funded by the National Development Plan. We would
also like to thank Matthew Goode of the PAL project for help and advice on how to use PAL
v1.4.

9

References

Amdahl, G.M. (1967) Validity of the Single Processor Approach to Achieving Large-Scale
Computing Capabilities, In AFIPS Conference Proceedings, 30, 483-485, AFIPS
Press, Reston, Va

Bodlaender, H., Fellows, M., and Warnow, T. (1992) Two strikes against perfect phylogeny,
Proceedings of the 19th International Colloquium on Automata, Languages, and
Programming, Lecture Notes in Computer Science, 623, 273-283, Springer-Verlag,
NY

Bull, J.M, Smith, L.A., Pottage, L., and Freeman, R. (2001) Benchmarking Java against C and
Fortran for Scientific Applications, ACM 2001 Java Grande/ISCOPE Conference, 97-
105, San Francisco, CA

Buyya, R., editor (1999) High Performance Cluster computing: Architectures and Systems,
Prentice Hall Inc., ISBN-0130-1378-47

Drummond, A. and Strimmer, K. (2001) PAL: An object-oriented programming library for
molecular evolution and phylogenetics, Bioinformatics, 17, 662-663

Felsenstein, J. (1989) PHYLIP -- Phylogeny Inference Package (Version 3.2), Cladistics, 5,
164-166

Felsenstein, J. (1981) Evolutionary trees from DNA sequences: A maximum likelihood
approach, Journal of Molecular Evolution, 17, 368-376

Fritsche, K., Power, J., and Waldron, J. (2001) A Java distributed computation library,
Proceedings of the 2nd International Conference on Parallel and Distributed
Computing, Applications and Technologies (PDCAT2001), 236-243, Taipei, Taiwan

Goode, M., Strimmer, K., Drummond, A., Buckler, E., and Rodrigo A. (2004) A brief
introduction to the phylogenetic analysis library, version 1.5, Proceedings of the
Second Asia-Pacific Bioinformatics Conference (APBC2004), Dunedin, NZ

Guindon, S. and Gascuel, O. (2003) A Simple, Fast, and Accurate Algorithm to Estimate
Large Phylogenies by Maximum Likelihood, Systematic Biology, 52(5), 696-704

Hasegawa, M., Kishino, H., and Yano, T. (1985) Dating the human-age splitting by a
molecular clock of mitochondrial DNA, Journal of Molecular Evolution, 22, 160-174

Hershkovitz, M.A., and Leipe, D.D. (1998) Bioinformatics: a practical guide to the analysis
of genes and proteins, A.D. Baxevanis and B.F.F. Ouelette (Eds.), 189-230, Wiley-
Liss, New York

Hillis, D.M., and Lewis, P. (2000) Computing the Tree of Life, Envision, 16 (3)
Huelsenbeck, J.P. (1995) Performance of phylogenetic methods in simulation, Systematic

Biology, 44, 17–48
Huelsenbeck, J.P., and Hillis, D.M. (1993) Success of phylogenetic methods in the four-taxon

case, Systematic Biology, 42, 247–264
Jermiin, L. S., Olsen, G.J., and Easteal, S. (1997) Majority rule consensus of maximum

likelihood trees, Molecular Biology and Evolution, 14, 1296–1302
Keane, T., Allen, R., Naughton, T., McInerney, J., and Waldron, J. (2003) Distributed Java

platform with programmable MIMD capabilities, in Guelfi, N., Astesiano, E., Reggio,
G. (Eds.), Scientific Engineering for Distributed Java Applications, Lecture Notes in
Computer Science, 2604, 122-132, Springer, Berlin

Korber, B., Muldoon, M., Theiler, J., Gao, F., Gupta, R., Lapedes, A., Hahn, B.H., Wolinsky,
S., and Bhattacharya, T. (2000) Timing the ancestor of the HIV-1 pandemic strains,
Science, 288, 1789-1796

Korpela, E., Werthimer, D., Anderson, D., Cobb, J., and Lebofsky, M. (2001) SETI@home-
Massively Distributed Computing for SETI, IEEE: Computer Science and
Engineering, 3 (1), 77-83

10

Kuhner, M.K., and Felsenstein, J. (1994) A simulation comparison of phylogeny algorithms
under equal and unequal evolutionary rates, Molecular Biology and Evolution, 11,
459–468

Larson, S.M., Snow, C.D., Shirts, M.R., Pande. V.S., (2003) Folding@Home and
Genome@Home: Using distributed computing to tackle previously intractable
problems in computational biology, to appear in Computational Genomics, Richard
Grant, editor, Horizon Press

Olsen, G.J., Matsuda, H., Hagstrom, R., and Overbeek, R. (1994) FastDNAml: A tool for
construction of phylogenetic trees of DNA sequences using maximum likelihood,
Computer Applications in the Biosciences, 10, 41-48

Posada, D. and Crandall, K.A. (1998) MODELTEST: testing the model of DNA substitution,
Bioinformatics 14 (9), 817-818

Ranwez, V., and Gascuel, O. (2002) Improvement of distance-based phylogenetic methods by
a local maximum likelihood approach using triplets, Molecular Biology and
Evolution, 19, 1952–1963

Rogers, J. S. and Swofford D. L. (1998) A fast method for approximating maximum
likelihoods of phylogenetic trees from nucleotide sequences, Systematic Biology, 47,
77-89

Rosenberg, M., and Kumar, S. (2001) Traditional phylogenetic reconstruction methods
reconstruct shallow and deep evolutionary relationship equally well, Molecular
Biology and Evolution, 19, 1823–1827

Schmidt, H.A., Strimmer, K., Vingron, M., and von Haeseler, A. (2002) TREE-PUZZLE:
maximum likelihood phylogenetic analysis using quartets and parallel computing,
Bioinformatics, 18, 502-504

Stamatakis, A.P., and Ludwig, T. (2003) Phylogenetic Tree Inference on PC Architectures
with AxML/PAxML, Proceedings of IPDPS2003 (High Performance Computational
Biology workshop), 157, Nice, France

Stewart, C.A., Hart, D., Berry, D.K., Olsen, G.J., Wernert, E.A., and Fischer, W. (2001)
Parallel implementation and performance of fastDNAml – a program for maximum
likelihood phylogenetic inference, Proceedings of SC2001, Denver, CO, USA

Thain, D., Tannenbaum, T., and Livny, M. (2003) Condor and the Grid, in Berman, F., Hey,
A., and Fox, G. editors, Grid Computing: Making the Global Infrastructure a Reality,
John Wiley

11

Figure Captions

Figure 1. Tree building algorithm implemented by DPRml

Figure 2. Decrease in computation time with an increase in the number of processors over
each of the three datasets (50, 101, and 150 taxa). The average over two runs for each dataset
is shown

Figure 3. Speedup achieved over each of the three datasets (50, 101, and 150 taxa). The
average over two runs for each dataset is shown. Linear speedup is the theoretical maximum
for parallel algorithms

Figure 4. Efficiency of the system over a period of 24 hours for varying numbers of DPRml
computations running in the system

Figure 5. Speedup achieved over 50 taxa dataset with 6 problems running simultaneously.
Linear speedup is the theoretical maximum for parallel algorithms

12

ClientServer ClientServer

Read in
sequences,
model and
parameters

Build initial tree
for m minutes
on one donor

machine

Add next taxon
to every

topologically
distinct place of

best tree
(creating 2i-5

trees)

Best tree

Optimise
branch lengths
(optional) and

calculate
likelihoods

Trees

Likelihoods + trees

Determine best
tree

Rearrange best
tree by

swapping the
position of

every possible
subtree

crossing up to v
internal

branches

Trees Optimise branch
lengths

(optional) and
calculate

likelihoods

Determine best
tree

Did likelihood
improve?

Yes

No

Have all taxa been
added?

Yes

Output best
tree

No

Were branch lengths
optimised throughout

the computation?

No

Issue best tree
Tree

Optimise
branch lengths
and calculate

likelihood
Likelihood + Tree

Output best
tree

Likelihoods + trees

Sequences

Fig. 1

13

5 10 15 20 25 30 35 40 45 50 55 60
10

4

10
5

10
6

10
7

P
ro

ce
ss

in
g

T
im

e,
 lo

g1
0

(s
ec

)

Number of Processors

50 Taxa
101 Taxa
150 Taxa

Fig. 2

14

5 10 15 20 25 30 35 40 45 50 55 60

5

10

15

20

25

30

35

40

45

50

55

60

Number of Processors

S
pe

ed
up

Linear Speedup
50 Taxa
101 Taxa
150 Taxa

Fig. 3

15

200 400 600 800 1000 1200 1400

10

20

30

40

50

60

70

80

90

100

Time (mins)

E
ff

ic
ie

nc
y

(%
)

6 Problems
4 Problems
2 Problems
1 Problem

Fig. 4

16

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

Number of Processors

S
pe

ed
up

Linear Speedup
6 problems simultaneously

Fig. 5

17

50 Taxa 101 Taxa 150 Taxa
DPRml 1386 57373 123484

FastDNAml 240 8726 14685

Table 1. Runtime comparison of DPRml and FastDNAml for the three datasets (50, 101 and
150 taxa). All times are in minutes.

Problems 1 2 4 6
Tree Size 72 58 54 49

Table 2. Average tree size after 24 hours for varying numbers of DPRml problems running
simultaneously in the distributed system

