
Fast Robust Subject-Independent
Magnetoencephalographic Source Localization

Using an Artificial Neural Network

Sung Chan Jun1* and Barak A. Pearlmutter2

1Biological and Quantum Physics Group, Los Alamos National Laboratory,
Los Alamos, New Mexico

2Hamilton Institute, NUI Maynooth Co., Kildare, Ireland

� �

Abstract: We describe a system that localizes a single dipole to reasonable accuracy from noisy magne-
toencephalographic (MEG) measurements in real time. At its core is a multilayer perceptron (MLP)
trained to map sensor signals and head position to dipole location. Including head position overcomes the
previous need to retrain the MLP for each subject and session. The training dataset was generated by
mapping randomly chosen dipoles and head positions through an analytic model and adding noise from
real MEG recordings. After training, a localization took 0.7 ms with an average error of 0.90 cm. A few
iterations of a Levenberg-Marquardt routine using the MLP output as its initial guess took 15 ms and
improved accuracy to 0.53 cm, which approaches the natural limit on accuracy imposed by noise. We
applied these methods to localize single dipole sources from MEG components isolated by blind source
separation and compared the estimated locations to those generated by standard manually assisted
commercial software. Hum Brain Mapp 24:21–34, 2005. © 2004 Wiley-Liss, Inc.
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INTRODUCTION

The goal of magnetoencephalographic (MEG) or electro-
encephalographic (EEG) localization is to identify and mea-
sure the sinals emitted by electrically active brain regions.
There are a number of MEG/EEG localization methods in
widespread use, most of which assume a dipolar source

[Hämäläinen et al., 1993]. The multilayer perceptron (MLP)
[Rumelhart et al., 1986], a particular sort of universal ap-
proximator, has become popular recently for building fast
dipole localizers. Because it is easy to use a forward model
to create synthetic data consisting of dipole locations and
corresponding sensor signals, one can train a MLP to solve
the inverse problem directly, i.e., to map sensor signals
directly to dipole locations without any intermediate model
fit. The speed, autonomy, and robustness of this approach
are of particular importance for our intended application,
namely high-bandwidth brain–computer interfaces, in
which we need to automatically screen hundreds of blind
source separation (BSS) algorithm-separated sources per sec-
ond. Furthermore, unlike other candidate algorithms for this
application, MLP-based localization can be extended to mul-
tidipole localization without any major modification by us-
ing a distributed output representation with a more complex
training set and more sophisticated decoder than that of [Jun
et al., 2003]. MLPs were first used for EEG dipole source
localization and presented as feasible source localizers by
[Abeyratne et al., 1991], and [Kinouchi et al., 1996] first used
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MLPs for MEG source localization by training on a noise-
free dataset of near-surface dipoles. [Yuasa et al., 1998] in-
vestigated the two-dipole case for EEG dipole source local-
ization while restricting each source dipole to a small region.
[Hoey et al., 2000] studied EEG measurements for both
spherical and realistic head models, trained on a randomly
generated noise-free dataset, and presented a comparison
between a MLP and an iterative method for localization with
noisy signals at three fixed dipole locations. [Sun and Scla-
bassi, 2000] adapted an MLP to speed up the calculation of
forward EEG solutions for a spheroidal head model from
simple EEG solutions for a spherical head model. Recently,
[Kamijo et al., 2001] and [Jun et al., 2002] studied hybrid
approaches to EEG/MEG dipole source localization, in
which trained MLPs are used as initializers for iterative
methods. In addition, [Jun et al., 2003] proposed an MLP-
based MEG dipole source localizer that uses a distributed
output representation in the MLP structure, which is ex-
pected to be more easily extensible to the multiple dipole
case. Interestingly, all work to date is trained with a fixed
head model. In MEG, however, head movement relative to
the fixed sensor array is surprisingly difficult to avoid, par-
ticularly in the context of a brain–computer interface, and
even with heroic measures (e.g., bite bars) the position of the
head relative to the sensor array will vary from subject to
subject and session to session. This either results in signifi-
cant localization error [Kwon et al., 2002; Vanrumste et al.,

2002] or requires laborious retraining and revalidation of the
MLP.

We propose an augmented system that takes head posi-
tion into account, yet remains able to localize a single dipole
to reasonable accuracy within a fraction of a millisecond on
a standard PC, even when the signals are contaminated by
considerable noise. The system uses a MLP trained on ran-
dom dipoles and random head positions, which takes as
inputs both the coordinates of the center of a sphere fitted to
the head and the sensor measurements, uses two hidden
layers, and generates the source location (in Cartesian coor-
dinates) as its output. Adding head position as an extra
input overcomes the primary practical limitation of previous
MLP-based MEG localization systems: the need to retrain
the network for each new head position. In other words,
once the system described here has been trained for the
sensor geometry of the MEG system, it can be used on any
subject at any position.

We used an analytical model of quasistatic electromag-
netic propagation through a spherical head to map ran-
domly chosen dipoles and head positions to superconduct-
ing quantum interference device (SQUID) sensor activities
according to the sensor geometry of a 4D Neuroimaging
Neuromag-122 MEG system, and trained an MLP to invert
this mapping in the presence of real brain noise. To improve
the localization accuracy, we used a hybrid MLP-start-Lev-
enberg-Marquardt (LM) method, in which the MLP output

Figure 1.
Sensor surface and training region. The center
of the spherical head model was varied within
the given region. Diamonds denote sensors.

� Jun and Pearlmutter �

� 22 �



provides the starting point for an LM optimization [Leven-
bert, 1944; Marquardt, 1963]. We used the MLP and MLP-
start-LM methods to localize single dipole sources from
actual MEG signal components isolated by a BSS algorithm
[Tang et al., 2002] and compared the results to the output of
standard interactive commercial localization software.

We begin with a description of our synthetic data, the
forward model, the noise used to additively contaminate the
training data, and the MLP structure. We present the local-
ization performance of both the MLP and MLP-start-LM,
and compare them to various conventional LM methods.
Finally, comparative localization results for our proposed
methods and standard Neuromag commercial software on
actual BSS-separated MEG signals are presented.

MATERIALS AND METHODS

Data

We constructed noisy data using the procedure of [Jun et
al., 2002], except that an additional input was associated
with each exemplar, namely the (x,y,z) coordinates of the

center of a sphere fitted to the head. The forward model was
modified to account for this offset. Each exemplar consisted
of the (x,y,z) coordinates of the center of a sphere fitted to the
head, sensor activations generated by a forward model, and
the target dipole location.1

We made two datasets: one for training and another for
testing. A spherical head model was used, with the cen-
ters drawn uniformly from a ball of radius 3 cm centered
4 cm above the bottom of the training region,2 as shown in
Figure 1. Because we are using only MEG data, the radius
of the sphere does not affect the generated data. The
dipoles in the training set were drawn uniformly from a
spherical region centered at the corresponding center,
with a radius of 7.5 cm, and truncated at the bottom. Their
moments were drawn uniformly3 from vectors of strength
�200 nAm. The corresponding sensor activations were
calculated by adding the results of the forward model and
a noise model. To check the performance of the network

1Given the sensor activations and a dipole location, the minimum
error dipole moment can be calculated analytically [Hämäläinen et
al., 1993]. Although the dipoles used in generating the dataset had
both location and moment, the moments were therefore not in-
cluded in the datasets used for training or testing.
2Fitted spheres from 12 subjects carrying out various tasks on a
4D Neuroimaging Neuromag-122 MEG system were collected,
and this distribution of head positions was chosen to include all
12 cases. Just as the position of the center of the head varies from
session to session and subject to subject, so does head orientation
and radius. Because a sphere is rotationally symmetric, our for-
ward model is insensitive to orientation, and similarly the exter-
nal magnetic field caused by a dipole in a homogeneous sphere is
invariant to the sphere’s radius. On the other hand, the noise
process would not be invariant to orientation or radius, so we
might expect a slight increase in performance if the network had
orientation and radius available as inputs, rather than just the
position of the center.
3This allowed only tangential components.

Figure 2.
Mean localization error versus epoch for
training of 100,000 exemplars with real brain
noise. Testing used 25,000 patterns contami-
nated by real brain noise.

TABLE I. Distribution of signal-to-noise ratios for the
25,000 testing patterns

SNR (dB) Patterns (n) Frequency (%)

�4–�2 3,807 15.23
�2–0 3,760 15.04

0–2 3,615 14.46
2–4 3,185 12.74
4–6 2,672 10.69
6–8 2,241 8.96
8–10 1,653 6.61

10–12 1,323 5.29
12–14 895 3.58

�14 1,849 7.40

SNR, signal-to-noise ratio.
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during training, a test set was generated in the same
fashion as the training set.

We used the sensor geometry of a 4D Neuroimaging
Neuromag-122 whole-head gradiometer [Ahonen et al.,
1993] and a standard analytic forward model of quasistatic
electromagnetic propagation in a spherical head [Jun et al.,
2002; Sarvas, 1987]:

Bs(x,Q,c) �
(M(x � c, Q; xs

1 � c) � M(x � c, Q; xs
2 � c))•rs

�xs
1 � xs

2�

M(x, Q; xs) �
�0

4�

FQ � x � (Q � x•xs)ƒFx

F2

F(x, xs) � d(xsd � xs
2 � (xs•x))

ƒFx(x, xs) � �d2

xs
�

(d•xs)
d

� 2d � 2xs�xs

� �d � 2xs �
(d•xs)

d �x

d � xs � x, d��xs � x�, xs � �xs�

where x, Q, and c denote a source dipole location vector, a
source dipole moment vector, and the center of a sphere,
respectively, and sensor index s � 1, . . . ,122. The vectors xs

1

and xs
2 denote the positions of the centers of the first and

second coils of the sth sensor, and rs denotes the orientation
vector of the sth sensor. Bs(x,Q,c) is the sensor activation of
sth sensor through the forward model, and �0 is the perme-
ability constant of air.

This work could be extended easily to a more realistic
head model. In that case, the integral equations would be
numerically solved by a boundary element method (BEM) or
a finite element method (FEM) [Hämäläinen et al., 1993], or
a higher-order analytical expansion would be used [Nolte et
al., 2000; Nolte, 2004]. Studies have shown that the fitted
spherical head model for MEG localization is either compa-
rable [Huang et al., 1999], or at worst perhaps slightly infe-
rior [Leahy et al., 1998] in accuracy to a realistic head model
numerically calculated using a BEM. In forward calculation,
a spherical head model has some advantages: it is imple-
mented more easily and is much faster. Despite its potential
for slightly degraded localization accuracy, we use a spher-
ical head model in this work. The trained localizer should
not be any slower, even if a very accurate and computation-
ally burdensome forward model were used to construct the
training set, so this is a simple avenue by which increased
training effort could result in improved run-time perfor-
mance.

Figure 3.
Mean localization errors of the trained MLP as a function of correct dipole location, binned into
regions. All units are in cm. Left, coronal cross section; right, sagittal cross section.

Figure 4.
Mean localization errors of the trained MLP for dipole noisy signals
as a function of distance of the center of the spherical head model
to the center of the helmet.
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To compare properly the performance of various localiz-
ers, one needs a dataset for which the ground truth is
known, but which contains the sorts of noise encountered in
actual MEG recordings. To this end, we measured real brain
noise and used it to additively contaminate synthetic sensor
readings [Jun et al., 2002, 2003; Kwon et al., 2000]. This noise
was taken unaveraged from MEG recordings during periods
in which the brain region of interest in the experiment was
quiescent, and therefore included all sources of noise
present in actual data: brain noise, external noise, sensor
noise, etc. This had a square root of mean square (RMS)
magnitude of roughly Pn � 50 � 200 fT/cm, where we
measure the signal-to-noise ratio (SNR) of a dataset using
the ratios of the powers in the signal and noise, SNR (in dB)
� 20log10Ps/Pn, where Ps and Pn are the RMS sensor read-
ings from the dipole and noise, respectively. The datasets
used for training and testing were made by adding the noise
to synthetic sensor activations generated by the forward
model, and exemplars whose resulting SNR was below �4
dB were rejected.

The MLP charged with approximating the inverse map-
ping had an input layer of 125 units consisting of the three
Cartesian coordinates of the center of a fitted sphere and the
122 sensor activations. It had two hidden layers with 320
and 30 units respectively, and an output layer of three units
representing the Cartesian coordinates of the fitted dipole.
The appendix contains detailed information on the MLP
structure and learning procedure.

RESULTS AND DISCUSSION

Training and Localization Results

Datasets of 100,000 (training) and 25,000 (testing) patterns,
all contaminated by real brain noise, were constructed. The
SNR distributions for the testing dataset are shown in Table
I. Figure 2 shows the training and testing curves of the MLP.

As is typical, the incremental gains per epoch4 decrease
exponentially with training. From the curves, it is evident
that additional training would have resulted in a further
decreased error, but we nonetheless stopped after 1,000
epochs, which took about 3 days on an 2.8 GHz Intel Xeon
CPU.

We investigated localization error distributions over var-
ious regions of interest. We considered two cross sections
(coronal and sagittal views) with width of 2 cm, and each of
these was divided into 19 regions, as shown in Figure 3. We
extracted the noisy signals and the corresponding dipoles
from the testing dataset. For each region, 49–500 patterns
were collected. A dipole localization was carried out using
the trained MLP, and the average localization error for each
region was calculated. Figure 3 shows the localization error
distribution over two cross sections. In general, dipoles
closer to the sensor surface were localized better.

We also measured the localization performance as a func-
tion of head position. Centers of fitted spherical head models
were drawn randomly within a ball of radius 3 cm posi-
tioned as shown in Figure 1. We divided this ball into six
spherical shells of thicknesses 1.2, 0.6, 0.4, 0.3, and two with
thickness of 0.25 cm, in order from the innermost to the
outermost shell. Each sample in the testing dataset was
classified by which of these shells contained the center of the
head model used in that sample. Figure 4 shows the local-
ization error distribution over various spherical shells. Head
models whose centers came from the outer shells exhibited
slightly degraded localization performance (see Fig. 4). The
performance degradation in the outermost shell is much
greater due to a higher fraction of dipoles being both far
below the z-axis and close to the frontal region, which is an
area with poor sensor coverage due to the lack of sensors
over the face (in practice, this region is not generally a region
of interest in MEG). Head positions offset from the helmet
center by up to 2.5 cm still give acceptable performance.
Note that decreased SNR under these circumstances will

4In one epoch each exemplar in the training dataset is presented
once.

Figure 5.
Mean localization error vs. SNR. MLP, MLP-start-LM, and optimal-
start-LM were tested on signals from 25,000 random dipoles,
contaminated by real brain noise.

TABLE II. Comparison of performances on real brain
noise test set of LM source localizers with three LM

restart strategies, the trained MLP,
and a hybrid system

Algorithm
Computation

time (ms)
Localization
error (cm)

Fixed-4-start-LM 120 0.83
Random-20-start-LM 663 0.54
Optimal-start-LM 14 0.49
MLP 0.7 0.90
MLP-start-LM 15 0.53

Each number is an average over 25,000 localizations, so error bars
are negligible. Training used real brain noise.
LM, Levenberg-Marquart; MLP, multilayer perceptron
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Figure 6.
MEG source localization procedure.
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affect any localization technique, not just those discussed
here.

We compared various automatic localization methods,
most of which consisted of LM used in different ways:

MLP-start-LM: LM was initialized at the trained MLP
output.
Fixed-4-start-LM: LM was restarted at four fixed initial
points5 chosen heuristically to give good robust perfor-
mance, (0, 0, 6), (�5, 2, �1), (5, 2, �1), and (0, �5, �1), in

cm relative to the center of the head model. The best
(lowest residual) of the four LM runs was chosen.
Random-n-start-LM: LM was restarted with n random
(uniformly distributed) points within the spherical head
model, and the best (lowest residual) of the runs was
chosen. We checked how many restarts were needed to
match the accuracy of the MLP-start-LM, yielding n � 20,
which coincidentally is the same as in [2002].
Optimal-start-LM: LM was started with the known actual
dipole source location.

One method we did not implement was Global Search
Algorithm (GSA) [de Munck et al., 2001], a brute-force ap-
proach involving the construction of an exhaustive table of

5These tuned initial points were chosen empirically and manually,
using simulations and repeated trial-and-error, to roughly optimize
localization performance.

Figure 7.
Dipole source localization results of Neuromag software (XFIT),
our MLP, and MLP-start-LM for four real BSS-separated MEG
signal components obtained in the trump card task of Subject 1.
Left, axial view; center, coronal view; right, sagittal view. The outer
surface denotes the sensor surface, and diamonds on this surface
denote sensors. The inner surface denotes a spherical head model

fit to the subject. The center of a fitted spherical head model is
(0.335, 0.698, 3.157). All units are in cm. Each localized dipole
source triple is denoted by an acronym: PV, primary visual source;
SV, secondary visual source; RA, auditory source in the right
hemisphere; LA, auditory source in the left hemisphere.

Figure 8.
Dipole source localization results of Neuromag software (XFIT), our MLP, MLP-start-LM for real
BSS-separated MEG signal components obtained by transverse patterning task of Subject 1. The
center of a fitted spherical head model is at (0.373, 0.642, 3.205). Layout as in Figure 7. Each
localized dipole source triple is denoted by an acronym: PV, primary visual source; SV, secondary
visual source; RS, somatosensory source in the right hemisphere.
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dipole field maps for dipoles located at all points on a dense
3-D grid. This was not considered here for various reasons,
the most important of these being: (1) the GSA table must be
rebuilt for each subject and head position, and we are con-
sidering only localizers that can be adapted instantly to a
shift in head position; and (2) GSA cannot be extended easily
to the multiple dipole case, whereas the other algorithms
have clear paths to multiple dipole localization.

Figure 5 shows the localization performance as a function
of SNR for fixed-4-start-LM, optimal-start-LM, the trained
MLP, and MLP-start-LM. Optimal-start-LM shows the best
localization performance across the whole range of SNRs.
The hybrid system, however, shows almost the same per-
formance as optimal-start-LM except at very high SNRs,
whereas the trained MLP is more robust to noise than is
fixed-4-start-LM. In this experiment, most of the sources
with very high SNR were superficial, located around the
upper neck or back of the head. These sorts of sources are
often very hard to localize well, as it is easy to become
trapped in a local minimum [Jun et al., 2002]. It is expected
that under these conditions, a better initial guess than the
MLP output (which is 0.7 cm on average from the exact
source) would be required to obtain near-optimal perfor-
mance from LM.

A grand summary, averaged across various SNR condi-
tions, is shown in Table II. The trained MLP is fastest, and its
hybrid system is about 40� faster than is random-20-start-
LM, whereas the hybrid system is about 9� faster, yet more
accurate, than is fixed-4-start-LM. This means that MLP-
start-LM was about twice as fast as might be expected na-
ively.

Localization on Real MEG Signals and Comparison
With Commercial Software

The sensors in MEG systems have poor SNRs for single-
trial data, because MEG data is contaminated strongly by
various noises. BSS of MEG data segregates noise from
signal [Sander et al., 2002; Tang et al., 2000a; Vigário et al.,
2000], raising the SNR sufficiently to allow single-trial anal-
ysis [Tang et al., 2000b]. Although the sensor attenuation
vectors of BSS-separated components can be localized well
to equivalent current dipoles [Tang et al., 2002; Vigário et al.,
2000], the recovered field maps can be quite noisy. We
applied the MLP and MLP-start-LM to localize single dipo-
lar sources from various actual BSS-separated MEG signals.
The XFIT program (standard commercial software bundled
with the 4D Neuroimaging Neuromag-122 MEG system,
generally operated with some manual assistance) is com-

Figure 9.
Dipole source localization results of Neuromag software (XFIT), our MLP, and MLP-start-LM, for
four BSS-separated primary visual MEG signal components from Subject S01, taken from four tasks.
Dipole locations are shown full-scale in the top row, whereas graphs on the bottom zoom in on the
rectangular regions shown. Layout as in Figure 7.
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pared to the methods developed here. The MEG signal
processing pipeline we used is depicted in Figure 6.

Continuous 122-channel MEG data for four subjects was
collected using a cognitive protocol, band-pass filtered, sep-
arated using second-order blind identification algorithm
(SOBI), and scanned for neuronal sources of interest. For
each subject, four visual reaction experiments6 were carried
out on the same day, but each in a separate session. Subjects
were permitted to move their heads between experiments.
SOBI was carried out on continuous 122-channel data col-
lected during the entire period of the experiment to generate
122 components, each a 1D time series with an associated
field map (attenuation vector in Figure 6). Each component
potentially corresponds to a set of magnetic field generators.
The input to the dipole-fitting algorithm of XFIT was the
attenuation vector and the output was the location of equiv-
alent current dipoles. From all separated components for
four subjects and four tasks shown in the Appendix, we
chose (using the procedures of [Tang et al., 2002]) the 14
BSS-separated MEG signal components for which XFIT had

localized a single dipole source well and that matched other
criteria7 for correct localization (see Appendix for further
experimental details).

The field map of each separated component was scaled to
an RMS of 0.5 and input to the trained MLP. The MLP
outputs were transformed from MLP output coordinates to
head coordinates, and these dipole locations were used to
initialize a LM routine. For each component, three results
(XFIT, trained MLP, and MLP-start-LM) were compared.
Figure 7 shows the dipoles localized by the MLP, hybrid
MLP-start-LM, and XFIT, for four BSS-separated MEG sig-
nal components from the trump card task of Subject S01, and
Figure 8 shows the localized dipoles for three BSS-separated
MEG signal components from the transverse patterning task
of Subject S01. Each figure consists of three viewpoints: axial
(x–y plane), coronal (x–z plane), and sagittal (y–z plane).

Figures 9–11 show the dipole locations estimated by the
MLP, MLP-start-LM, and Neuromag XFIT software, for var-
ious sensory sources (primary visual sources, secondary

6Stimulus pre-exposure task (SPT), Trump card task (TCT), Elemen-
tal discrimination task (EDT), and Transverse patterning task (TPT).
For more detail, see Appendix.

7Source field maps, time courses, and localized dipoles were
checked for consistency with known neurophysiology and anatomy
[Tang et al., 2002].

Figure 10.
Dipole source localization results of Neuromag software (XFIT), our MLP, and MLP-start-LM for
four BSS-separated secondary visual MEG signal components from Subject S01, over four tasks.
Dipole locations are shown full-scale in the top row, whereas graphs on the bottom zoom in on the
rectangular regions shown. Layout as in Figure 7.
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visual sources, and auditory sources) over four tasks in
subject S01. Figure 12 shows the estimated dipole locations
for somatosensory sources over three different subjects. All
dipole locations estimated by the MLP and MLP-start-LM
are clustered within � 3 cm, and � 0.7 cm, of XFIT’s results,
respectively. We see that the primary visual sources are
localized more consistently than are the secondary visual
sources, across all four tasks. The secondary sources also
had more variable stimulus-locked average time courses
[Tang and Pearlmutter, 2003]. It is noticeable that somato-
sensory sources in the right hemisphere are localized poorly
by the MLP, but well localized by the hybrid method. Al-
though the auditory sources are the weakest, i.e., have the
lowest SNRs, they are reasonably well localized.

Although the MLP-estimated location is about 1.16 cm
(�dx� 	 0.90, �dy� 	 0.57, �dz� 	 0.46) on average (N � 14) from
those of XFIT, the hybrid method’s result is about 0.35 cm
(�dx� 	 0.20, �dy� 	 0.22, �dz� 	 0.10) from the location esti-
mated by XFIT. A total of 14 localization results by both the
MLP and MLP-start-LM are summarized in Table III. Con-
sidering that XFIT had extra information, namely the iden-
tity of a subset of the sensors to use, this hybrid method
result is believed to be almost as good as the XFIT result. The
trained MLP and the hybrid method are applicable to actual

MEG signals, and seem to offer comparable localization
relative to XFIT, with clear advantages in speed and in the
lack of required human interaction or subjective human
input.

Assumptions and Limitations

Because the MLP outputs a particular source hypothesis,
rather than a posterior distribution of hypotheses, error bars
cannot be generated easily. Furthermore, the MLP is only
intended as a single stage in a data processing pipeline. Its
performance is hence limited by the performance of previ-
ous stages. In particular, the MLP is trained using field maps
generated by a forward model, and after training takes as
input noisy field maps presumed to originate from a main
focal source. Consequently, it is necessary to assume that an
accurate forward model is available to generate training
data, and that field maps corresponding to focal sources can
be gleaned from acquired data. Before the output of the MLP
could be trusted, these two assumptions would need to have
been tested. Fortunately, the two assumptions have been the
subject of extensive investigation. The accuracy of forward
models has been estimated using both phantom studies
[Baillet et al., 2001; Kraus et al., 2002; Leahy et al., 1998] and

Figure 11.
Dipole source localization results of Neuromag software (XFIT), our MLP, and MLP-start-LM
for three real BSS-separated auditory MEG signal components from Subject S01, over the
trump card (TCT) and elemental discrimination (EDT) tasks. Dipole locations are shown
full-scale in the top row, whereas graphs on the bottom zoom in on the rectangular regions
shown. Layout as in Figure 7.
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Figure 12.
Dipole source localization results of Neuromag software (XFIT), our MLP, and MLP-start-LM for
three BSS-separated somatosensory MEG signal components from the transverse patterning task
(TPT) over three subjects (S01, S02, S03). Dipole locations are shown full-scale in the top row,
whereas graphs on the bottom zoom in on the rectangular regions shown. Layout as in Figure 7.

TABLE III. Dipole locations calculated by MLP and MLP-start-LM relative to XFIT’s estimate,
for 14 actual BSS-separated MEG signal components

Subject Task
Brain

activity

MLP (cm) MLP-start-LM (cm)

dx dy dz dx dy dz

S01 SPT PV �0.09 �0.44 0.24 �0.01 �0.03 �0.01
SV 2.74 �0.71 0.39 0.55 0.20 �0.17

TCT PV 0.16 0.32 �0.28 �0.04 0.40 �0.22
SV 1.65 �0.24 0.22 0.55 0.34 �0.04
RA 0.03 �0.30 �0.07 0.00 0.05 0.13
LA 0.63 0.46 �0.48 0.12 0.40 0.02

EDT PV �0.03 �0.02 0.34 0.01 0.12 0.00
SV 1.37 �0.04 0.35 0.44 0.23 �0.04
LA 0.14 0.20 �0.25 �0.15 0.57 �0.35

TPT PV �0.21 �0.52 0.30 �0.12 0.28 �0.03
SV 1.32 �0.30 �0.17 0.29 0.22 0.03
RS �1.05 �1.43 0.75 �0.18 0.03 �0.20

S02 TPT RS �1.82 �1.43 1.27 �0.19 �0.10 0.01
S03 TPT RS �1.37 �1.52 1.29 �0.11 �0.05 0.11

MLP, multilayer perceptron; LM, Levenberg-Marquardt source localizers; BSS, blind source separated; MEG, magnetoencephalography;
SPT, stimulus pre-exposure task; TCT, trump cart task; ECT, elemental discrimination task; TPT, transverse patterning task; PV, primary
visual source; SV, secondary visual source; RA, auditory source in the right hemisphere; LA, auditory source in the left hemisphere; RS,
somatosensory source in the left hemisphere.
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experiments designed to activate known focal brain regions
[Balish et al., 1991; Barth et al., 1986]. Although averaging
and manual peak-picking is the most common technique for
generating field maps from acquired data, we are interested
in integration with fully automated methods. One such tech-
nique that we have used is blind source separation (BSS).
BSS has been shown to segregate neuronal from nonneuro-
nal signals, and neuronal signals from each other, in both
EEG [Jung et al., 2000a, b; Makeig et al., 1997, 1999] and
MEG [Cao et al., 2000; Tang et al., 2000a,b, 2002; Tang and
Pearlmutter, 2003; Vigário et al., 1998, 1999, 2000; Wübbeler
et al., 2000; Ziehe et al., 2000]. For these reasons, despite its
limitations, it seems feasible to use the localizer proposed
above as a stage in a practical robust real-time MEG pro-
cessing pipeline.

CONCLUSIONS

We propose the inclusion of a head position input for
MLP-based MEG dipole localizers. This overcomes the lim-
itation of previous MLP-based MEG localization systems,
namely the need to retrain the network for each session or
subject. Experiments showed that the trained MLP was far
faster, albeit slightly less accurate, than was fixed-4-
start-LM. This motivated us to construct a hybrid system,
MLP-start-LM, which improves localization accuracy while
reducing the computational burden to less than one-ninth
that of fixed-4-start-LM. This hybrid method was compara-
ble in accuracy to random-20-start-LM, at 1/40th the com-
putation burden, which is about two times faster than might
be expected naively. Over the whole range of SNRs, the
hybrid system showed almost as good performance in ac-
curacy and computation time as that with hypothetical op-
timal-start-LM.

We applied the MLP and MLP-start-LM to localize single
dipolar sources from actual BSS-separated MEG signals, and
compared these to the results of the commercial Neuromag
program XFIT. The MLP yielded dipole locations close to
those of manually assisted XFIT, and MLP-start-LM gave
locations that were even closer to those of XFIT.

In conclusion, this MLP can itself serve as a reasonably
accurate real-time MEG dipole localizer, even when the
head position changes regularly. This MLP also constitutes
an excellent initializer for LM, coming very close to meeting
the Cramer-Rao bound in this role. Because the MLP re-
ceives a head position input, a weakness of all previous
MLP-based systems, namely the need to retrain for various
subjects or sessions, has been eliminated without sacrificing
the advantages of the universal-approximator direct inverse
approach to localization. In other words, for a particular
MEG system, this network needs to be trained only once.

The most serious weakness of the system presented above
is its inability to localize automatically multiple dipoles from
a single field map. We hope to overcome this limitation by
combining the subject-independent approach described
above with the distributed output representation used in
earlier work [Jun et al., 2003] and introducing a post-pro-
cessing clustering phase.
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APPENDIX

MLP structure

The MLP charged with approximating the inverse map-
ping had an input layer of 125 units consisting of the three
Cartesian coordinates of the center of a fitted sphere and the
122 sensor activations (Fig. 13). It had two hidden layers
with N1 � 320 and N2 � 30 units, respectively, and an
output layer of three units representing the Cartesian coor-
dinates of the fitted dipole.8

As in [Jun et al., 2002], the output units had linear activa-
tion functions,9 whereas to accelerate training the hidden

8After Jun et al. [2002], we used N1 � 320 and N2 � 30 units for the
two hidden layers. Slightly better performance might be expected if
the number of units in the hidden layers were optimized for this
particular application.
9In artificial neural networks, the activation function computes the
output value of an artificial neuron based on the weighted sum of its
inputs. The output value may be continuous or discrete, and heavy-
side, linear, sigmoid, and hyperbolic tangent activation functions
are widely used.
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unit had hyperbolic tangent activation functions [LeCun et
al., 1991]. As shown in Figure 6, adjacent layers were con-
nected fully, and there were no cut-through connections.
Input data are usually preprocessed to improve perfor-
mance, and output data is scaled into the dynamic range of
the output unit activation function to avoid driving the
weights of the network to infinity or driving the hidden
units to saturation [Abeyratne et al., 1991; Haykin, 1994].
The 122-sensor activation inputs were scaled to an RMS
value of 0.5, and the target outputs were scaled into the
region (�1, �1). The network weights were initialized with
uniformly distributed random values between 
1. Back-
propagation was used to calculate the gradient [Rumelhart
et al., 1986], and online stochastic gradient descent with no
momentum (the past increment to the weights) was used for
optimization, with the learning rate (constant of proportion-
ality for weights updates) chosen empirically.

Experimental Details

Continuous 300 Hz MEG data for four right-handed subjects
(two females, two males) was collected using a cognitive pro-
tocol developed by Michael P. Weisend, band-pass filtered at
0.03–100 Hz, separated using the second-order blind identifi-
cation algorithm (SOBI), and scanned for neuronal sources of
interest. In all tasks, each trial consisted of a pair of colored
abstract block compositions, of which one was the target pre-
sented symmetrically and simultaneously on the left and right
halves of the screen. When a target stimulus was presented to
the left or right side of the screen, respectively, subjects were
instructed to respond with a left- or right-hand mouse press.
The button press elicited an auditory feedback that was com-
posed of two sorts of tones indicating correct versus incorrect
choices. For each subject, all four experiments were carried out
on the same day, but each in a separate session. Subjects were
permitted to move their heads between experiments. The fol-
lowing four visual reaction time tasks were carried out by each
subject:

Stimulus pre-exposure task (SPT): There were no predefined
relationships between stimuli and button presses. No
feedback was given to the subjects about any choice.
Trump card task (TCT): Subjects were instructed to dis-
cover, by trial and error, which of the two stimuli in the
stimulus pair was the target (the trump card). A total of 9
stimulus pairs involving 10 stimuli were used, with a
single stimulus as the trump card.
Elemental discrimination task (EDT): Subjects were in-
structed to discover which one of the stimulus pair was
the target stimulus by trial and error. A total of three
stimulus pairs consisting of six stimuli were used. For
each pair of stimuli, one of the pair was the target.
Transverse patterning task (TPT): Subjects were instructed to
discover which of the two stimuli in a stimulus pair was the
target. Three stimulus pairs consisting of three stimulus
compositions were used. Each stimulus could be a target or
nontarget depending upon what it was paired with.

SOBI was carried out on continuous 122-channel data
collected during the entire period of the experiment. It gen-
erated 122 components, each a 1D time series with an asso-
ciated field map. Each component potentially corresponds to
a set of magnetic field generators. Event-triggered averages
were calculated from their continuous single-trial time series
for all 122 separated components, where the triggering
events were either sensory stimuli or behavioral responses.
For a task-related component, if its field map and time
course were consistent with known neurophysiologic and
neuroanatomic facts, we considered it a neural component
reflecting the activity of a neuronal generator. A dipole-
fitting method was applied to the identified neural compo-
nents. The input to the dipole-fitting algorithm of XFIT was
the field map and the output was the location of ECDs
projected onto the subject’s structural MRI images. See
[Tang et al., 2002] for further experimental details along with
a more detailed description of the SOBI algorithm.

Figure 13.
Training datasets were loaded into this MLP structure. Note that the input includes the coordinates
of the center of a sphere fit to the subject’s head.
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