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Abstract

Activation of the superoxide forming respiratory burst oxidase of human neutrophils, crucial in host defence, requires

the cytosolic proteins p47phox and p67phox which translocate to the plasma membrane upon cell stimulation and activate

flavocytochrome b558, the redox centre of this enzyme system. We have previously demonstrated the presence of proteins

(67 and 47 kDa) in hemocytes of the insect Galleria mellonella homologous to proteins of the superoxide-forming NADPH

oxidase complex of neutrophils. The work presented here illustrates for the first time translocation of homologous

hemocyte proteins, 67 and 47 kDa from the cytosol to the plasma membrane upon phorbol 12-myristate 13 acetate (PMA)

activation. In hemocytes, gliotoxin (GT), the fungal secondary metabolite significantly suppressed PMA-induced

superoxide generation in a concentration dependent manner and reduced translocation to basel nonstimulated levels.

Primarily these results correlate translocation of hemocyte 47 and 67 kDa proteins with PMA induced oxidase activity.

Collectively results presented here, demonstrate further cellular and functional similarities between phagocytes of insects

and mammals and further justify the use of insects in place of mammals for modelling the innate immune response to

microbial pathogens.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Insects rely upon both cellular and humoral
mechanisms to mount a potent antimicrobial

defence. Microbial infection results in a range of
responses including changes in the hemocyte popu-
lation [1] and density [2], changes in performance of
the hemocytes (i.e. spreading, phagocytosis and
nodule/capsule formation) [3], activation of the
prophenoloxidase cascade and release of antimicro-
bial peptides and proteins (i.e. lysozyme, metallo-
proteinase and defensins) [4].

Given the role of the innate immune response in
protecting mammals from microbial infection and
the high degree of similarity that exists between the
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mammalian and insect innate immune response,
insect models have been developed for the study of
microbial virulence [5,6]. Advantages of the use of
insects include low cost, ease of rearing in the
laboratory, genetic manipulability and fewer ethical
considerations than the use of mammalian models
[4]. We are interested in developing the use of larvae
of the Greater Wax Moth Galleria mellonella

(G. mellonella) which is attracting ever-increasing
attention as a model organism for the study of a
range of pathogenic bacteria (Pseudomonas aerugi-

nosa [5], Proteus mirabilis [7], Escherichia coli,

Bacillus cereus, [8] and Staphylococcus aureus [6])
and fungi (Cryptococcus neoformans [9], Aspergillus
and Candida species [6,10]). The demonstration of a
positive correlation between the virulence of Candi-
da mutants in BalbC mice and G. mellonella larvae
augments the use of G. mellonella as a model for
evaluating microbial pathogenicity [11].

Immune related proteins and mechanisms that
are similar between insects and mammals have been
identified. These include the remarkable structural
and functional similarities between the systems
mediating Drosophilia Toll and mammalian IL-1
receptor-mediated signalling [12]. Pattern recogni-
tion molecules such as apolipophorin III (apoLp-
III) has been identified in insects and found
homologous to mammalian apolipoprotein E
(apoE) involved in LPS detoxification and phago-
cytosis [13]. Further lines of defence where direct
comparisons can be drawn is in the synthesis of a
broad range of antimicrobial peptides [14], which
are synthesised by the fat body, released into the
open circulatory system and play a crucial role in
combating infection [15,16].

Neutrophils play a central role in the innate
immune response of mammals and function in a
similar manner to phagocytic insect cells (plasma-
tocytes and granulocytes) by phagocytosing and
destroying invading microorganisms [4,15]. The
burst in oxidative metabolism associated with
activation of either human neutrophils or insect
hemocytes results in the manufacture of reactive
oxygen species (ROS) as detected by electron spin
resonance spectroscopy [17] and more recently by
cytochrome c reduction, with evidence of increased
oxygen consumption resulting in superoxide (O2

�)
production (0.25 mM/min/106) by hemocytes of
G. mellonella [6].

The significance of the oxidase in host defense is
evident by the life threatening infections that occur
in patients with chronic granulomatous disease

(CGD), whose phagocytes are defective in oxidase
activity and O2

� production [18]. The O2
� generating

NADPH oxidase is a multicomponent system
consisting of a membrane-bound flavocytochrome
b558 (composed of two subunits, p22phox and
gp91phox) [19] and four cytosolic factors, p47phox,
p67phox, p40phox and the small G protein, rac 2 [20].
These cytosolic proteins interact with each other
[21,22], with rac [23,24] and with the flavocyto-
chrome [25–27] through a number of Src homology
3 (SH3), proline-rich, tetratricopeptide repeat, and
PC motifs. Using immunological and matrix-
assisted laser desorption ionisation-time of flight
analysis (MALDI-TOF), the presence of homolo-
gous proteins to p67phox and p47phox were found in
insect hemocytes [6] further strengthening the
similarities between the oxidative burst pathways
in the two cell types.

The cytochrome b558 comprises the electron
transporting system and forms the membrane-
docking site for the translocated cytosolic compo-
nents. In CGD neutrophils lacking cytochrome b558,
neither p47phox nor p67phox can be recruited to the
membrane upon cell stimulation [28]. In p47phox

deficient phagocytes, membrane targeting of p67phox

does not occur whereas p47phox is independently
targeted to the membrane in p67phox deficient cells
[28,29]. Phosphorylation induced conformational
changes in p47phox [30] targets interactions between
its SH3 domain and the proline-rich region of
p22phox [31,32] an essential step in attaching the
translocated p47phox, p67phox and p40phox complex
to the flavocytochrome. The P156Q substitution in
p22phox, a mutation that has occurred in a case of
CGD [27] results in not only impaired interaction
between p22phox and p47phox in vitro but also
defective translocation of p47phox to the membrane
in vivo [33]. Concomitantly rac 2 translocates to the
membrane autonomously, with interactions by way
of the flavocytochrome and p67phox reported
[23,24]. Once activated, the cytochrome takes
electrons from NADPH and passes them, via
FAD and haem, to O2 with kinetics of cytochrome
reduction correlating with the observed rate of O2

�

generation [34].
Common infectious organisms affecting CGD

patients include S. aureus, Klebsiella, E. coli,

Pseudomonas, Serratia marcescens and also fungi,
especially Aspergillus fumigatus. Gliotoxin (GT),
one of the major metabolites produced by
A. fumigatus and an inhibitor employed in this
study, has received particular attention because it
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has potent immunosuppressive [35], genotoxic,
cytotoxic [36] and apoptotic effects [37]. In addition
this toxin has been associated with cases of clinical
aspergillosis [38,39]. Reports have suggested that
A. fumigatusmay retard the action of neutrophils by
inhibiting protein kinase C bII-related responses:
p47phox phosphorylation, its incorporation to the
cytoskeleton, and the subsequent membrane trans-
location of p67phox and p47phox [40]. In a recent
study it was shown that GT directly harms sites
crucial for electron transport in flavocytochrome
b558 [41].

Fundamental experiments are required to further
validate the use of insects as an alternative to
mammalian models for evaluating microbial viru-
lence. We have previously demonstrated at the
cellular level the respiratory burst of insect hemo-
cytes and the presence of proteins (47 and 67 kDa)
homologous to neutrophil p47phox and p67phox [6].
However, it remained unresolved whether activation
of the NADPH oxidase of hemocytes resulted in
translocation of these homologous phox compo-
nents to the plasma membrane of activated hemo-
cytes. The current study found extensive protein
rearrangements accompanying hemocyte activation
including translocation of proteins homologous to
neutrophil p67phox and p47phox from the cellular
cytosolic compartment to a membrane fraction. The
effect of GT on oxidase activation and translocation
of cytosolic oxidase components was studied with
findings further strengthening the similarities be-
tween the oxidative burst pathways of neutrophils
and insect hemocytes.

2. Material and methods

2.1. Chemicals

All chemicals were of the highest purity and were
purchased from Sigma Aldrich Chemical Co. Ltd.,
Dorset, United Kingdom, unless otherwise indi-
cated.

2.2. Preparation of human neutrophils and insect

hemocytes

Blood was obtained from healthy donors and
neutrophils were isolated by dextran sedimentation
and Ficoll-Hypaque (Axis-ShieldPoC AS, Oslo,
Norway) centrifugation [6]. Neutrophils were re-
suspended in PBS (pH 7.4) containing 5mM glucose
(PBS-G) and used immediately.

Storage, handling and inoculation of G. mello-

nella larvae, was as previously described [6]. Insect
hemocytes were harvested from healthy, sixth
instar, G. mellonella larvae (Mealworm Company,
Sheffield, United Kingdom) [6]. The cells were
washed once in insect physiological saline (IPS)
[42] and finally resuspended in PBS-G.

2.3. Effect of GT on superoxide production by PMA

stimulated hemocytes

Production of superoxide by hemocytes (1� 107)
following stimulation with Phorbol 12-Myristate
13-Acetate (PMA) (1 mg/ml) was measured by
determining the superoxide dismutase (SOD)
(50 mg/ml)-inhibitable reduction of cytochrome c

[43]. Experiments were performed in the presence or
absence of diphenyleneiodonium chloride (DPI)
(5 mM) [44] or GT (0.01, 0.025, 0.03 or 0.06 mg/ml).
Absorbance at 550 nm was recorded with a Synergy
HT multi-plate reader (Bio Tek) over 30min.

2.4. Cellular fractionation of hemocytes and

neutrophils

Hemocytes and neutrophils at a concentration of
1� 108/ml were isolated and stimulated with PMA
(1 mg/ml) in the presence or absence of DPI (5 mM)
or GT (0.06 mg/ml for hemocytes and 0.25 mg/ml for
neutrophils). Following treatment cells were pel-
leted and Di-isopropyl fluorophosphate (1mM)
added on ice for 10min. The cells were resuspended
in 200 ml Break buffer (10mM KCl, 3mM NaCl,
4mM MgCl2, 10mM piperazine-N, N0-bis(2-etha-
nesulfonic acid) (PIPES); pH 7.2) [45] containing
protease inhibitors (10 mg/ml leupeptin, pepstatin A,
aprotinin, and N-a-p-tosyl-L-lysine chloromethylk-
etone hydrochloride [TLCK]), sonicated (Bandelin
Sonopuls; Bandelin Electronics, Germany) three
times for 5 s, and centrifuged at 200� g for 10min
at 4 1C. The postnuclear supernatant (PNS) was
layered on top of a continuous sucrose gradient
from 10–60% (wt/wt in Break buffer) and centri-
fuged at 40,000� g for 3 h at 4 1C in a Beckman
SW40 TI head. The percentage sucrose in each
fraction was measured using a refractometer (Miltor
Roy). Bradford/Protein Assay reagent (Biorad
Laboratories) was used to assay the amount of
protein in each fraction, using BSA as a standard.
Sub-cellular fractionation was also performed on a
discontinuous gradient of 10%, 17.5% and 34%
sucrose (wt/wt). Membranes at the 17.5%/34%
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interface were diluted 1:1 with ice-cold Break buffer
and pelleted at 22,000� g for 30min.

2.5. Electrophoresis and immunoblotting

Samples from the continuous and discontinuous
sucrose gradients were run on SDS-polyacrylamide
gel electrophoresis (PAGE) minigels (12.5% acry-
lamide), and protein profiles visualized by Coomas-
sie blue staining. For Western blotting, the protein
was transferred to a nitrocellulose membrane using
a semidry blotter for 1 h at 1.4mA/cm2. Goat
polyclonal antisera raised against human p47phox

and p67phox [46] were used at a dilution of 1/1,000
for 1 h. Rabbit polyclonal antibodies against Toll-
like receptor 1 (TLR1) were purchased from
Abcam, (Cambridge, United Kingdom) and were
used at a dilution of 1/1000 for 1 h. Horseradish
peroxidase-conjugated rabbit anti-goat antibody
(1/5000; Calbiochem, Merck Biosciences Ltd.,
Nottingham, United Kingdom) was used to detect
reactive bands by enhanced chemiluminescence
(Pierce Biotechnology, Inc., Rockford, I11, USA).
In certain experiments these ECL bands were
quantitated by densitometry using a Syngene Gene
Genius, Bio Imaging system.

2.6. Confocal immunofluorescence microscopy

Samples for confocal microscopy were prepared
as described previously [47] and viewed with the use
of a Olympus Fluoview 1000 confocal microscope.
Cells were fixed with 4% (v/v) paraformaldehyde,
permeabilized with 0.2% (v/v) Triton X-100 and
blocked with 10mM NaBH4. The cells were
incubated with rabbit primary antibody against
p47phox and p67phox [46] overnight at 4 1C. The
slides were washed in PBS and incubated with
tetramethyl rodamine iso-thiocyanate (TRITC)
goat anti-rabbit IgG secondary antibody (The
Jackson Laboratory, Bar Harbor, Maine, USA)
for 1 h. The controls for this experiment included
cells alone and cells exposed to secondary antibody.

2.7. Statistical analysis

Statistical comparisons were made with
student’s t test using the Sigma Stat statisti-
cal analysis package, version 1.00 (SPSS Inc.,
Chicago, I11). A P value of o0.05 was considered
significant.

3. Results

3.1. Effect of GT on PMA activation of NADPH

oxidase in hemocytes

Reports of O2
� production by PMA activated

hemocytes [6] and the ability of GT to inhibit O2
�

production by neutrophils [40] prompted an in-
vestigation into the effects of GT on O2

� production
by insect hemocytes. O2

� was measured by determin-
ing the superoxide dismutase (SOD) (50 mg/ml)-
inhibitable reduction of cytochrome c [43] and the
characteristics of O2

� production and cytochrome c

reduction by hemocytes are summarized in Fig. 1.
Basel levels of cytochrome c reduction occurred
upon incubation of unstimulated hemocytes (con-
trol) within the assay (1.270.015 mM/min for a cell
population of 1� 107). Incubation of hemocytes
with PMA (1 mg/ml) resulted in increased reduction
of the cytochrome, and the O2

� production was
4.1670.04 mM/min for 1� 107 cells. The O2

� pro-
duction by hemocytes was reduced to almost
control levels when the NADPH oxidase inhibitor
DPI (5 mM) [44] was added 5min prior to the
stimulus or 50 mg/ml SOD was added to the cell
suspension. When hemocytes were pretreated with
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Fig. 1. Effect of DPI or GT on in vitro PMA-stimulated

generation of O2
� by insect hemocytes. The production of O2

�

by unstimulated hemocytes (1� 107 cells/ml) (Control) and PMA

(1mg/ml)-activated cells was measured using the reduced cyto-

chrome c assay. Cellular production of O2
� was inhibited in the

presence of the oxidase inhibitor DPI (5mM) and scavenged by

SOD (50mg/ml). The inhibitory effect of GT was observed by pre-

incubating cells with increasing concentrations of GT (0.01,

0.025, 0.03 or 0.06mg/ml) for 20min at 37 1C, prior to the O2
�

generation assay in the presence of PMA (1mg/ml). Data are

means7S.E. of duplicate assays and representative of three

experiments.
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GT for 20min at 37 1C, the O2
� generation was

reduced in a dose-dependent manner. Hemocytes
treated with 0.01 mg/ml GT prior to the addition of
PMA (1 mg/ml) showed a 22.1%73.3% reduction
in O2

� production to 3.2470.02 mM/min/107 cells.
As the dose of GT was increased to 0.06 mg/ml
cytochrome c reduction was reduced by 76%7
6.6% with measurements of 1.070.04 mM/min/107

cells recorded. These decreases in hemocyte O2
�

generation were statistically significant (for DPI,
Po0.004; SOD, P ¼ 0.004; GT, 0.01 & 0.06 mg/ml,
Po0.05) compared to the O2

� generation of PMA
activated cells. The inhibition by 0.06 mg of GT/ml
on O2

� generation by hemocytes was not associated
with cell death under conditions employed, as tested
by trypan blue dye exclusion.

3.2. Membrane translocation of cytosolic protein

homologous to p47phox in PMA-stimulated hemocytes

The activation of NADPH oxidase requires the
assembly of membrane bound flavocytochrome b558
with the cytosolic components p47phox, p67phox,
p40phox and rac 2 [20]. Having identified proteins
homologous to p47phox and p67phox in insect
hemocytes by MALDI-TOF [6], experiments were
undertaken to investigate whether these homolo-
gous proteins also transferred from the cytosolic
compartment to the membrane fraction as a result
of cellular activation. Upon subcellular fractiona-
tion of neutrophils, it is well established that the
membrane fraction is successfully isolated at a 34%
(wt/wt) sucrose interface [47]. Fig. 2 shows the result
of a study to determine the percentage sucrose at
which hemocyte membranes can be isolated. Coo-
massie stained gels illustrate typical protein profiles
of neutrophils and hemocytes fractionated by
density-dependent sucrose gradients (10%–50%
wt/wt). Fractions were collected and the subcellular
distribution of membranes and p47phox located by
immunoblotting. In unactivated neutrophils, the
cytosolic phox component p47phox was located high
up on the density gradient (Fig. 2A, fract. 2–8). As
previously described, neutrophil stimulation with
PMA (1 mg/ml) caused the translocation of this
phox protein to fractions lower in the gradient
(Fig. 2A, fract. 12–15) consisting of 34% (wt/wt)
sucrose, characteristic of the neutrophil membrane
fraction. Antibodies to insect TLR1 (plasma mem-
brane marker, Toll-like receptor 1 [48]) were
employed to locate hemocyte membranes within
the continuous sucrose gradient. TLR1 reactivity

occurred at approximately 34% (wt/wt) sucrose
(Fig. 2B, fract. 12–15), indicating that hemocyte
membranes located to an equivalent sucrose con-
centration as neutrophil membranes. Upon PMA
activation of hemocytes, polyclonal antibodies
against p47phox showed a clear shift of the homo-
logous 47 kDa protein of hemocytes from the
cytosolic region of the gradient (approx. 12.5%
wt/wt, fract. 6–9) to fractions containing the plasma
membrane marker TLR1 (Fig. 2B, fract. 12–15).
The sucrose concentration of these fractions (34%
wt/wt), was similar to the sucrose concentration to
which neutrophil p47phox was shown to migrate
(Fig. 2A). This result suggests that the 47 kDa
protein of hemocytes was indeed migrating from the
cytosol to the plasma membrane upon PMA
stimulation and behaves in a similar manner to
neutrophil p47phox upon activation of the NADPH
oxidase. As previously reported [49] the amount of
47phox that became membrane-associated was a
relatively small proportion of that present in the
cytosol, as evident with the majority remaining in
the higher cytosolic fractions (Fig. 2A, fract 2–8), a
phenomenon also observed for the homologous
hemocyte 47 kDa protein (Fig. 2B, fract. 6–9).

To further substantiate movement of cellular
protein in response to oxidase activation the
migration of protein from the cytosolic fraction to
the particular cellular compartments that were
separated on continuous sucrose gradients was
performed employing Bradford/Protein assay
(Fig 2C). The protein content of 1� 108 hemocytes
was 12mg, of which 3.4mg70.23mg was in the
cytosolic fraction (Fig. 2B, fract. 6–9). Of this
0.45mg70.12mg of total cytosolic protein relo-
cated from the cytosolic fractions to the membrane
fractions (Fig. 2B, fract. 12–15). This result shows
that extensive protein rearrangements accompany
hemocyte activation including translocation of the
protein homologous to p47phox in insect hemocytes.

3.3. The effect of GT on membrane translocation of

cytosolic components in PMA stimulated cells

The NADPH oxidase cytosolic components of
neutrophils form an activation complex, which
translocates to the membrane to associate with
flavocytochrome b558 [49]. It has recently been
shown that GT inhibits the assembly of these
cytosolic phox components [40] by targeting the
flavocytochrome b558 [41]. Having demonstrated
that the 47 kDa hemocyte protein, homologous to
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p47phox translocated to a membrane fraction upon
PMA activation, the ability of this protein and the
67 kDa protein homologous to p67phox [6] to
assemble at the membrane in the presence or
absence of GT was determined. Discontinuous
sucrose gradients were run, with sucrose layers of
17.5% (wt/wt) and 34% (wt/wt) employed to iso-
late cytosol and plasma membranes respectively
(Fig. 3A and B). By Western blotting, confirmation
of membrane fractions of both cell types was made
employing antibodies against the flavocytochrome
gp91phox of neutrophils and TLR1 of hemocytes
(Fig. 3C and D). Polyclonal antibodies against
human p47phox and p67phox proteins were used to
identify the relevant proteins in hemocyte fractions.
In unactivated (Un) neutrophils and hemocytes, the
phox and homologous 47 kDa and 67 kDa proteins
are located in the cytosol (Fig. 3E–H). Subsequent
stimulation with PMA (1 mg/ml) caused increased
membrane association of these components
(Fig. 3E–H). Pre-treatment of hemocytes with GT
(0.06 mg/ml) prior to PMA stimulation caused a
decrease in oxidase activity (Fig. 1), which corre-
lated with the reduced membrane translocation
levels of 47 and 67 kDa proteins (Fig. 3F and H).
In Fig. 3H polyclonal antibodies against neutrophil
p67phox reacted with the insect hemocyte homo-
logous protein present in the membrane fraction.
This immunoreactive band appeared as a doublet
possibly due to proteolytic breakdown of the
immunologically related protein during experimen-
tal procedure.

To extend this study the percentage of untranslo-
cated and translocated proteins present in the
cytosol and membranes fractions was determined
(Fig. 4). Following PMA stimulation of neutrophils,
p47phox and p67phox were distributed between the
cytosol and membrane fractions (Fig. 4A and C).
The presence of p47phox and p67phox in the mem-
brane fraction increased from 30.5%75.6% to
47.97%75.49% (Po0.05) and 5.58%70.97%
to 23.68%72.9% (Po0.04) respectively. Thus
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Fig. 2. Translocation of the cytosolic components of NADPH oxidase. Neutrophils (A) and hemocytes (B) were either unstimulated (Un)

or PMA (1mg/ml) activated (Stim), disrupted and cellular components separated on continuous sucrose gradient (10–50%). (A) Coomassie

blue-stained SDS-PAGE gel (12.5% polyacrylamide) of fractionated PMA activated neutrophil or hemocyte (B) lysate with molecular

weight markers indicated on the left. Electrophoretically separated proteins were transferred to nitrocellulose and probed with rabbit

antiserum to p47phox or TLR1 as a hemocyte membrane marker. The results revealed the immunologically related hemocyte protein

47 kDa, translocating upon PMA activation to sucrose concentrations of approximately 34%, also containing the membrane TLR1

marker. Data shown are representative of three independent experiments. (C) Separation of cellular lysates was performed on a continuous

gradient, and the distribution of total cellular protein in PMA activated hemocytes (-J-) was compared to resting hemocytes (-K-), where

shaded/highlighted area indicates movement of protein to fractions containing approximately 34% (wt/wt) sucrose.
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approximately 17% of both p47phox and p67phox

translocated to the membrane upon PMA stimula-
tion. In insect hemocytes slightly higher levels of
translocation were observed with 22.02%72.99%
(Po0.05) and 21.36%73.37% (Po0.05) of pro-
teins homologous to p47phox and p67phox (47 and
67 kDa) translocating from the cytosol to the
membranes (Fig. 4B and D). Hemocytes exhibited
markedly reduced levels of oxidase activity on the
addition of GT (0.06 mg/ml) prior to PMA stimula-
tion (Fig. 1), which corresponded directly to
reduced levels of translocation (Fig. 4B & D). In
hemocytes where the oxidase had been inhibited by
inclusion of GT, translocation was reduced to basal
nonstimulated levels.

To further strengthen the evidence that O2
�

production in insect hemocytes is associated with
the GT inhibitory translocation of homologous
components of the NADPH oxidase complex of
human neutrophils, confocal fluorescence micro-
scopy was used to determine the distribution of 47
and 67 kDa in insect hemocytes. TRITC-labelled
antibodies to p47phox and p67phox were employed to
follow the distribution of these proteins in resting

and PMA stimulated cells and to determine the
effects of GT. Cells that had attached to a glass
coverslip and spread were examined. Results re-
vealed neutrophil phox proteins and homologous
insect equivalents (47 and 67 kDa) to be predomi-
nantly located throughout the cytosol (Figs. 5C–F).
After PMA stimulation there was redistribution of a
proportion of the phox proteins and homologous 47
and 67 kDa to the membrane margins of the cells
(Fig. 5G–J) (p47phox and 47 kDa are shown in G
and I and had an analogous appearance to p67phox

and 67 kDa in H and J). Because of the demon-
strated association between the lack of translocation
and GT, we examined by confocal microscopy the
influence of GT on protein translocation. The
striking anomaly observed in cells treated with GT
(Fig. K, L, M and N) was the failure of the
redistribution of the phox proteins and the com-
plementary hemocyte 47 and 67 kDa proteins after
stimulation with PMA.

These results correlate translocation of hemocyte
47 and 67 kDa proteins with PMA induced oxidase
activity and secondly indicate that in a similar
manner identified in human neutrophils [40], the

ARTICLE IN PRESS

- +- +PMA

P
ro

te
in

 p
47

ph
ox

 (%
)

cyt mem cyt mem

(A)

0

20

40

60

80

100
Neutrophil p47phox

PMA - +- +

0

20

40

60

80

100

P
ro

te
in

 p
67

ph
ox

 (
%

)

cyt mem cyt mem

(C)

Neutrophil p67phox

P
ro

te
in

 4
7k

D
a 

(%
)

(D)

0

20

40

60

80

100

cyt mem cyt mem cyt mem
- + +-
- - - -

+
++

+

Hemocyte 67kDa

PMA
GT

- +- + ++
- - + +

cyt mem cyt mem cyt mem

P
ro

te
in

 4
7k

D
a 

(%
)

(B)

0

20

40

60

80

100
Hemocyte 47kDa

PMA
GT --

Fig. 4. Effect of GT on membrane assembly of cytosolic components. Subcellular fractions were prepared from unstimulated or GT

(0.06mg/ml) treated cells in the same way as for Fig. 3. Analysis of neutrophil p47phox (A), p67phox (C) and hemocyte 47 kDa (B) and

67 kDa (D) association with the plasma membrane upon PMA (1mg/ml) stimulation was evaluated by immunoblotting with anti-p47phox

and p67phox sera. Immunoreactive bands were detected with an ECL-Plus reaction and quantitated by densitometry. The data are

representative of three independent experiments.

J. Renwick et al. / Developmental and Comparative Immunology ] (]]]]) ]]]–]]]8



membrane translocation of homologous phox com-
ponents (47 and 67 kDa) in insect hemocytes is
involved in the inhibitory process of GT. Such
comparative results further strengthen the simila-
rities between the oxidase pathways in insect
hemocytes and mammalian neutrophils.

4. Discussion

As the immune response of insects is similar to the
innate immune response of mammals, insects have
been recognized as valid alternatives for in vivo

testing of microbial mutants. Indeed, the
G. mellonella system has recently been used to detect
up-regulation of Metarhizium anisophilae-derived
Pr1 (a subtilisin-like protease) [50] and the virulence
of the flhA mutant of Bacillus thuringiensis [51].
Insects have also been used to quantify the role of the
rel A gene in contributing to the virulence of P.

aeruginosa [52], and the virulence of mutants of A.
fumigatus lacking the nucleolar protein Cgr A [53].

The Drosophilia and human Toll cascades high-
light the similarities of the insect and vertebrate
immune response. Mammalian immune cells express
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Fig. 5. The distribution of p47phox and p67phox homologous in unstimulated and PMA activated cytosol and membranes by confocal

fluorescence microscopy. Light microscope images of hemocytes and neutrophils are depicted in A and B respectively. The distribution of

p67phox, p47phox and homologous insect proteins, 47 and 67 kDa before (C, D, E and F) and after stimulation with PMA (G, H, I and J).

The distribution of the proteins was predominantly throughout the cytosol of unstimulated cells and after stimulation condensed around

the membrane (indicated by arrows). Translocation of proteins following PMA stimulation was inhibited in the presence of GT (K, L, M

and N). The scale bar indicated in panel N ¼ 10 mM.
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several Toll-like receptors that are considered
cellular pattern recognition receptors, because they
directly recognise LPS and other microbial pro-
ducts. Immunity-related proteins and mechanism
that are similar in insects are under tight regulation,
with transcription of insect genes encoding anti-
microbial peptides controlled by two separate
pathways. Bacterial (gram-positive) or fungal infec-
tion results in activation of the Toll pathway, which
controls the expression of drosomycin, an antifun-
gal peptide, and other genes via the NF-kB-family
member DIF (dorsal-related immune factor) [54].
The second described pathway, referred to as the
IMD (immune deficiency) is mainly triggered after
gram-negative infection and regulates via the NF-
kB protein Relish, the synthesis of additional
antibacterial peptides [14].

Adding to this list of comparisons between insect
hemocytes and mammalian immune cells was the
identification of immunologically related proteins of
all the essential components (gp91phox , p67phox,
p47phox, and rac) that are required in the cell-free
oxidase system of neutrophils and which may play a
role in the activation of the respiratory burst
oxidase of hemocytes of G. mellonella [6]. The
critical importance of these phox proteins in the role
of the neutrophil in host defence is demonstrated by
patients who suffer from CGD who inherit, through
an X-linked or autosomal recessive mechanism, the
absence or abnormality in one of the essential phox
proteins (gp91phox, p22phox, p47phox and p67phox)
[18]. It was demonstrated that significant regions of
domain structures including the PX domain of
p47phox and SH3 and PB1 domains of p67phox are
present within the homologous hemocyte 47 and
67 kDa proteins [6].

Activation of the cytochrome b558 requires
membrane translocation of the cytosolic proteins,
including the two SH3 domain-containing oxidase
proteins p47phox and p67phox. To further elucidate
the similarity between the insect hemocyte 47 and
67 kDa proteins and human neutrophil p47phox and
p67phox it was essential to establish whether activa-
tion of the NADPH oxidase of hemocytes resulted
in translocation of these homologous phox compo-
nents to the plasma membrane. To address this, we
determined the location of the homologous hemo-
cyte 47 and 67 kDa proteins in resting unstimulated
hemocytes and in hemocytes stimulated with PMA.
For this purpose we employed continuous and
discontinuous sucrose gradient systems to obtain
subcellular fractions after cellular disruption and

the location of neutrophil phox and homologous
hemocyte proteins established by Western blot
analysis. For identification of hemocyte plasma
membranes, antisera raised against membrane
bound TLR1 [48] was employed. Studies clearly
show that both p47phox and the 47 kDa homologous
protein in insect phagocytes, are cytosolic in resting
cells and become associated with the plasma
membrane after stimulation with PMA (Figs. 3
and 4). As previously shown in neutrophils the
association with the plasma membrane does not
result in complete disappearance from the cytosol.
Clark et al. (1990) [49] carried out quantitative
analysis and suggested that approximately 10% of
total cellular p47phox became membrane-associated
during neutrophil PMA activation and results of
this study indicated a 22% decrease in cytosolic
hemocyte 47 kDa protein upon PMA activation.

PMA activation of the NADPH oxidase is
intimately linked with a series of phosphorylation
events. Translocation of p47phox to the membrane
requires phosphorylation [55] of a number of serine
sites located in its C-terminus, resulting in exposure
of its SH3 domain, which binds directly to the
p22phox subunit of the flavocytochrome [56]. Neu-
trophils contain five of the eleven isoforms of PKC
and there are several lines of evidence supporting a
role for protein kinase C (PKC) a, bII, d and z in the
phosphorylation of p47phox [57] with a direct
interaction between this substrate and the kinase
been observed [58]. PKC is also capable of
phosphorylating p47phox at various sites, which
are absolutely essential for activation and trans-
location of the protein [59]. PKC d has been
successfully identified in insect hemocyte lysates
[6,60] and as this study revealed the translocation of
the insect 47 kDa protein from the cytosol to the
membrane, it is not inconceivable that phos-
phorylation of this immunologically similar protein
by PKC may occur upon stimulation of insect
phagocytes.

The interactions between p67phox and the other
components of NADPH oxidase have been widely
studied. p67phox has particular affinity for p40phox

[46] and its activation-induced translocation to the
membrane depends on the presence of p47phox [28].
Translocation of the insect 67 kDa protein in
response to PMA was confirmed by immunoblot-
ting (Fig. 3), which demonstrated that as in
neutrophils [49] only a relatively small proportion,
about 20%, of this protein translocates when the
cells were activated.
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p67phox phosphorylation is known to occur
during neutrophil activation by agonists such as
PMA, fMLP and serum-opsonized zymosan. A
relationship between p67phox phosphorylation and
translocation has been suggested, with both phos-
phoserine and phosphothreonine residues identified
[61]. Candidate kinases include ERK2 and
p38MAPK, with results indicating that phosphor-
ylation of the C-terminal portion of p67phox could
trigger protein conformational changes to an active
configuration [62]. Further studies are required to
examine the association between the insect 67 kDa
protein and possible phosphorylation by MAPK,
previously identified in hemocytes.

The similarities between hemocyte 67 and 47 kDa
proteins and the phox proteins of neutrophils
prompted us to repeat the translocation experiments
in the presence of GT. GT is an epipolythiodiox-
opiperazine metabolite of pathogenic fungi which is
capable of altering function and inducing apoptosis
in macrophages [63]. GT has been shown to inhibit
assembly of the NADPH oxidase of neutrophils via
inhibition of PKC and the subsequent membrane
translocation of p67phox and p47phox [40]. In this
study we investigated the effect of GT on insect
hemocytes and showed that GT inhibits both
translocation of the hemocyte 67 and 47 kDa
proteins and O2

� generation upon PMA activation.
A more recent study by Nishida et al. (2005) [41]
employed a cell free activation assay to specify the
cellular target of GT in human neutrophils and
showed that the membrane component (i.e. flavo-
cytochrome b558), was directly affected in the GT
treated neutrophils, compromising the flavocyto-
chrome b558 function for electron flow. This is of
tremendous interest as an immunologically related
protein was detected in insect hemocytes [6],
possibly suggesting that this antibody recognizes a
region of gp91phox that has remained conserved,
consisting of cysteine residues against which GT
exerts its effect. Compared to other investigators
[40], throughout this investigation low concentra-
tions of GT were employed to inhibit mem-
brane translocation (0.06–0.25 mg/ml compared to
1–3 mg/ml). To address this, it has been shown that
gliotoxin is actively concentrated in cells in a
glutathione-dependent manner and intracellular
levels of the toxin can be up to 1500-fold greater
than the applied concentration [64].

At the cellular level, the studies presented here
further illustrate the strong structural and func-
tional similarities between the innate immune

response of mammals and insects. From an evolu-
tionary perspective the success of the NADPH
oxidase system is clear, as it is present in immune
cells of insects and vertebrates that diverged
approximately 500 million years ago. We are
beginning to realise just how useful insect models
could be for studying mammalian innate immunity
and the results presented provide a stringent test of
the homology between the insect and mammal
oxidase complexes. Given the increased use of
insects for evaluating microbial virulence and the
need to reduce the number of vertebrates used in
such testing, this study further demonstrates the
validity of insects as an alternative to the use of
mammals.
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