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ABSTRACT 

In the field of psychoacoustic analysis the goal is to construct a 
transformation that will map a time waveform into a domain that 
best captures the response of a human perceiving sound. A key 
element of such transformations is the mapping between the sound 
intensity in decibels and its actual perceived loudness. A number of 
different loudness models exist to achieve this mapping. This paper 
examines implementation strategies for some of the more well-
known models in the Matlab software environment.  

1. INTRODUCTION 

The primary tool in the field of audio for the time-
frequency analysis of sound is the Spectrogram. It is popular 
because it is computationally fast and its output is well understood. 
However, since the 1990’s much work has been carried out on the 
development of better tools for sound analysis that make more 
efforts to take psychoacoustic properties into consideration. This 
has been driven by the availability of the technology to fully 
implement the results of psychoacoustic research that had been 
published over the previous decades, combined with the desire for 
significant advances in the coding of speech and audio signals. The 
MP3 standard is a good example of this. Thus nowadays, many 
algorithms designed for speech and audio processing will make 
reference to pyschoacoustic transformations. An important 
limitation of the spectrogram in this regard is the manner in which 
the signal intensity is displayed, generally in Decibels SPL. While 
this provides a measure of objective sound intensity, it does not 
properly capture the subjective impression a sound creates on the 
listener in terms of its loudness. To achieve this the sensitivity of 
the ear to the various sound levels of the frequency components 
contained in the sound must be accounted for. This is the kind of 
information contained in equal loudness curves for the human ear 
[1]. These curves show that the ear is less sensitive to low 
frequency sounds, having a maximum sensitivity in the region of 3-
4kHz. Employing these curves to modify the dB SPL intensity 
display of the sound transforms the intensity to the Phon scale, 
where different frequency components having the same Phon value 
will have the same loudness but will have different dB SPL 

intensities. One disadvantage with the Phon scale is that it is not 
directly proportional to perceived loudness, and thus a doubling of 
loudness value in Phons does not mean a doubling of the sound 
loudness [2]. To this end, the Sone scale was introduced to provide 
a linear scale of loudness. The Sone scale can be related to the phon 
scale by the equation [3] 
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where ( )iL  is the perceived loudness of the critical band i, and 
( )iD  is the spread critical spectrum in terms of phons in band i. 

The conversion from a time domain signal to a representation that 
describes its loudness in terms of Sone is outlined in Figure 1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Block Diagram of loudness modeling procedure [4] 
 
There are various approaches to implementing the different stages 
of the Loudness model in Figure 1. The basic procedure is to first 
transform the signal into the time-frequency domain. The frequency 
analysis points specified will have a relation to the critical band 
resolution of the ear. Time and Frequency masking may be 
accounted for and compensation carried out for components below 
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the threshold of audibility. This stage is followed by a conversion 
from the intensity levels of each time-frequency slice to specific 
loudness levels for each frequency band. These are then summed to 
give the overall loudness for each time slice. 
In this paper, three implementation strategies are examined: 
 

1. A direct implementation based on a time-frequency 
decomposition, a mapping from dB SPL to Phon 
followed by a direct implementation of equation (1); 

2. Three implementations of Zwicker’s model; 
3. The Moore and Glasberg Loudness model; 

 
The sources for some of the implementations discussed are speech 
quality measurement strategies. Specifically, the time-frequency 
decompositions and loudness conversion from the EMBSD [3], 
PSQM [10] and PEAQ [12] measures are investigated.  

2. MODEL IMPLEMETATIONS 

2.1 Calibration 

In all implementations the first, and possibly most 
crucial, stage is the calibration of the input signal. In Matlab sounds 
read in from wav files are normalized to have amplitude levels lying 
between 1 and –1. However, this will neither reflect the true 
recording or playback levels of the sound. The amplitude of sound 
can be scaled to give the sound a desired value of dB SPL. When 
using dB SPL to set a sound level, a value for the reference level 
must be chosen. For air, the reference level is usually chosen as 20 
micropascals [5]. If the actual dB SPL used when recording the 
sound is unknown, in the case of speech, if it is at a normal level, it 
is reasonable to assume a conversational level of between 65 and 70 
dB SPL. Thus, to scale the signal vector y to a level of 70dB in 
Matlab [6]:  
 
SPLmeas=70; 
Pref = 20e-6; 
y_refscaled= (y./Pref); 
RMS=sqrt(mean(y_refscaled.^2)); 
SPLmat=20*log10(RMS); % dBSPL in matlab  
c=10^((SPLmeas-SPLmat)/20); 
ycal=c*(y_refscaled); 
 
If the HUTear toolbox is installed, it is also possible to use the 
function [7]: 
 ret=Pascalize(y,70); 

2.2 Direct Implementation of Loudness Representation 

The algorithm for the direct implementation is taken from the 
EMBSD speech quality measure. The signal is separated into 
frames, each one windowed with a Hanning function and the power 
spectral density obtained. Each power spectrum is partitioned into 
critical bands of width one bark, with an upper frequency limit of 
3.4 kHz. In [3], Schroeder’s spreading function model is applied to 
include the effects of frequency masking across the critical bands. 
The loudness level of each critical band in units of phon is obtained 
using a set of equal-loudness contours taken from the literature and 
dB intensity values that lie in between the published contours are 
interpolated to get the correct loudness level [3]. These loudness 
levels are then converted to sone using equation (1). 
 

NFFT=1024;NOVERLAP=0; 
Bf=1:18; 
[Yxx,f] = psd(ycal,NFFT,fs,NFFT,0); 
Yxx_scale=(2.*Yxx)./NFFT; 
[B_XX,bark]=bk_frq02(Bf,f,Yxx_scale); 
C_XX=spread_new(Bf,B_XX); 
P_XX=dbtophon(C_XX); 
S_XX=phtosn(P_XX); 
N_mbsd(l)=sum(S_XX); 
 
The Matlab programs are as given in [3]. However, it was found 
that it was necessary to make adjustments to the program 
dbtophon.m. First of all, in the program code a file named 
equal.mat is called as it holds the transcribed equal loudness 
contours. However, the C program version in the thesis also 
contains the contour values in an array, which can be copied for use 
with Matlab.  Furthermore, the lines below, which were found to 
cause errors on occasion:  
 
j = 1; 
while T(i) >= eqlcon(j,i) 
j = j + 1; 
if j == 16,fprintf(1,'ERROR\n'),end 
end 
if j == 1,P_XX(i) = phons(1),end 
 
can be replaced with: 
 
[I]=find(T(i)<=equalcon(:,i)); 
if min(I)==1,P_XX(i)=phons(1),end 

2.3 Implementations based on Zwicker’s model 

Possibly the most well-known and popular model of loudness is the 
one proposed by Zwicker. It has formed part of an international 
standard [8], and has been adopted for use in a number of ITU 
standards on speech and audio quality. However, differences exist 
in the implementations.  

2.3.1 Implementation of the DIN 45631/ISO532B Loudness 
Model 

This Matlab program was a direct conversion from the basic 
program provided in [6]. This implementation uses a filterbank of 
one-third-octave filters for the spectral decomposition of the signal. 
However, a drawback is that this yields only a rough approximation 
to the shape of the auditory filters and the location of their centre 
frequencies. The equation for the specific loudness N ′  in 
Sone/Bark of a the dB SPL sound level GL  in a one-third-octave 
band is given by [9]: 
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The transmission of freefield sound to our hearing system through 
the head and the outer ear is described as attenuation 

0a . The 
excitation threshold in quiet is 

ETQL .  Values for these two 

parameters are given in [8]. To run the implementation given in [6], 
the sequence of Matlab commands is:  
 
[Yxx,f]=PowSpec(Pref.*ycal,fs,df); 
[YdB, err]=Convert2dB(Yxx, 1); 
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In this implementation, the power spectral density of the signal Yxx 
is found without the factor Pref taken into account. Furthermore, 
this quantity is only included after it has been converted to dB, i.e. 
the following line is required in Convert2dB.m: 
 
YdB=10*log10((cal^2)*Yxx/(Pref^2)); 
 
The other input arguments to PowSpec are fs and df, which are 
the sampling frequency and the frequency resolution respectively. 
The third-octave-band filters are generated using the code below 
and the filter design is performed using a program obtained from 
the Mathworks called Oct2dsgn.m. The output of PowSpec is 
given by f. Scaling of the filter responses is carried out to ensure no 
energy gain in introduced into the signal. The filtered bands of the 
signal power spectrum is given as Lt: 
 
[H, err]=GenerateFilters_16000(f); 
H=0.94833723551160*H;  
for ink=1:24  
Lt(ink)=10*log10(sum((10.^(YdB/10))  
.*(abs(H(ink,:).^2)))); 
end 
 
The final function call returns the total loudness N and specific 
loudness vector Ns. The input MS defines the sound field and by 
default is set to a free field, i.e., MS = 'f'. 
 
[N, Ns, err]=DIN45631_16000(Lt, MS); 

2.3.2 Zwicker’s Loudness model as used in PSQM 

The PSQM algorithm was adopted by the ITU for speech quality 
assessment [10], but it has recently been replaced by the PESQ 
algorithm [11]. The equation used for the implementation of 
Zwicker’s model is different to (2). The specific loudness ( )nfLX  
is given by: 
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where 
lS  is a scaling factor, ( )fP0

 is the absolute hearing 
threshold at frequency f, ( )nfPPX  is the Pitch Power Density at 
frequency f for frame n and γ  is a constant. The Pitch power 
densities are the power spectrum of a single frame warped to the 
bark scale with a resolution of 0.321 Bark, with scaling relative to 
the bandwidth in Hertz. According to the PSQM document [10], 

5.2401=lS  and 001.0=γ : 
 
[Yxx,f]=psd(ycal,NFFT,fs,NFFT,NOVERLAP); 
deltaz=0.312; 
for i=2:57 
deltaf=Ffreqs(i)-Ffreqs(i-1); 
scal=(deltaf./deltaz); 
indice=(Ffreqs(i-1) <= f & f < Ffreqs(i)); 
index=find(indice>0); 
index_first=index(1); 
index_last=index(end); 
PPX(i-1)=(scal./(index_last-
index_first+1)).*sum(Yxx(Ffreqs(i-1) <= f & 
f < Ffreqs(i))); 
end 
Lx=Sl.*(P0).^gamma.*(((1-
0.5+0.5.*PPX./P0).^gamma)-1);  

Lx(find(Lx<0))=0; 
N_pseq=sum(Lx);%total loudness 

2.3.3 Zwicker’s Loudness model as used in PEAQ 

This is the most sophisticated of the psycho-acoustic 
decompositions [12]. The power spectrum of each frame is 
weighted by the frequency response of the outer and middle ear 
derived from a model. The power spectral energies are then grouped 
into Critical bands, spaced at 0.25 Bark. An offset is then added to 
the Critical band energies to compensate for internal noise 
generated in the ear. A triangular (in dB) spreading function is used 
to implement spreading in the frequency domain. The spread 
excitation pattern is given by SRE~ . Unlike the PSQM algorithm the 
values for the excitation threshold in PEAQ were computed using a 
model description [12], with c a constant that is set to 1.07664: 
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where, in terms of dB, the threshold index is given by: 
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and the excitation threshold is: 
( ) ( ) 8.0100064.3 −= ffEtdB    (6) 

A complete implementation of this function is given in [13]. The 
variables X2 are the power spectrum of the frame, Eb is the bark 
warped spectrum, E is the spectrum following the application of 
spreading, and Lx and Ntot are the specific loudness and total 
loudness respectively. The functions named in the code below are 
the same as described in [13] but with the additional input 
parameters of signal length len and sampling frequency Fs.  
 
X2=PQDFTFrame(ycal,len); 
Eb=PQgroupCB(X2,'Basic',len,Fs); 
E=PQspreadCB(Eb,'Basic',Fs); 
[Ntot]=PQLoud(E,'Basic','FFT',Fs); 
N_tot(l)=Ntot; 

2.4 Loudness Model of Moore and Glasberg 

The model of Moore and Glasberg [14] is different to that of 
Zwicker in that the auditory frequency scale used is the equivalent 
rectangular bandwidth (ERB) and the equation for the specific 
loudness in a filter band is:  

( )αα −= ThQsig EECN '   (7) 

where 
sigE is the excitation pattern within a particular frequency 

band, ThQE  is the excitation at the hearing threshold, and  C  and α  

are constants. 
A Matlab implementation was proposed by [15]. It relied on the 
HUTear toolbox [7] to calculate the excitation patterns. Assuming a 
gammatone filterbank with 128 filters, the suggested model input 
parameters were: 
 
model.fs=Fs; 
[f,b,CentFreq]=Make_cgtbank(128,Fs,200,6); 
save gt128_test f b CentFreq; 
model.cochlea.fb.file='gt128_test.mat'; 
model.cochlea.asymmcomp=1; 
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model.haircell.rcf.r='half'; 
model.haircell.rcf.c=0.7; 
model.haircell.rcf.f='1kHz'; 
model.neural.function='mean'; 
 
For each frame the excitation pattern of the signal was generated 
using the AudMod function from the HUTear toolbox [7]: 
 
Esig=AudMod(ycal,model); 
 
Similarly, to generate the excitation pattern at the hearing threshold: 
 
[CrctLinPwr, frqNpts, CrctdB] =  
   OutMidCrct2('MAF',128,Fs); 
MAF = interp1 
(frqNpts,CrctdB,CentFreq,'linear','extrap'); 
for i=1:length(CentFreq) 
tones(i,:)=pascalize(sin(2.*pi.* 
 (0:frame_len-1).*CentFreqs(i)./Fs),MAF(i)); 
end; 
 
Ethq=AudMod(sum(tones),model);  
 
Once the excitation patterns are known, the specific and total 
loudness can be calculated. To find the total loudness from the 
specific loudness, scaling is applied based on the bandwidth of the 
ERB filters before summing:  
 
N=C.*(Esig.^alpha-Ethq.^alpha); 
N(find(N<0))=0; 
EarQ = 1/0.107939; 
minBW = 24.7; 
order = 1; 
b = 1.019; 
ERBwidth = ((CentFreq/EarQ).^order + 
minBW^order).^(1/order); 
totalLoudness=sum((N.*ERBwidth)'); 

3. OUTPUT CALIBRATION AND TESTING 

In the cases of the MBSD loudness model, the PSQM loudness 
model and the Moore and Glasberg loudness model, calibration was 
found to be necessary. The Matlab function lsqcurvefit.m 
from the optimization toolbox was used. One of its requirements is 
a function name within its input arguments, and using the MBSD 
loudness model as an example, it was be written in the form: 
 
function [l]= mbsd_cal(coef,S_XX) 
l=diag(sqrt(coef.*S_XX)*sqrt(coef.*S_XX)'); 
 
where coef is the calibration parameter, S_XX is excitation used 
to compute the specific loudness and l is the total loudness.  
Sinewaves of frequency 1000Hz, 512-points in length, sampled at 
16kHz and calibrated to be { }80,70,60,50,40  dB SPL were used. 
These should have a total loudness of { }16,8,4,2,1  respectively. In 
the case of the MBSD loudness model S_XX needs to be scaled by 
a factor of 0.2567. For the PSQM model, 41063.7 −×=lS  and 

2941.0=γ .  For the Moore and Glasberg model 0002.0=C  and 
8885.0=α .  

The total loudness in Sone produced by each model for 
these sinewaves is given in Table 1. It can be seen from the table 

that none of the measures produce the exact figure for total loudness 
but that all are approximately close to the expected value.  

 
Model 40db 50dB 60dB 70dB 80dB 
MBSD 0.701 1.709 3.835 7.97 16.102 
DIN45631 0.8030 1.974 4.513 9.43 18.76 
PSQM 0.975 1.985 4.001 8.007 15.98 
PEAQ 1.312 2.551 4.701 8.363 14.486 
MooreGlas 0.9364 2.06 3.978 7.23 13.1 
Table 1: Input Sinusoid SPL Values and Models outputs in Sones 

3. CONCLUSIONS 

This paper has presented Matlab implementations of a number 
of loudness models. Furthermore, where necessary the issue of 
model calibration was addressed. Finally, results were presented to 
demonstrate the model output for a sinewaves of various dB SPL 
levels. 

4. REFERENCES 

[1] Gelfand, S.A., Hearing: An Introduction to Psychological and 
Physiological Acoustics, Marcel Dekker, 1998. 

[2] http://hyperphysics.phy-
astr.gsu.edu/hbase/sound/phon.html#c2 

[3] Wonho, Y., Enhanced modified bark spectral distortion 
(EMBSD):An objective speech quality measure based on 
audible distortion and cognition model, Ph.D. thesis, Temple 
University, Ft. Washington, USA, 1999. 
http://www.temple.edu/speech_lab/Wonhos_Dissertation.PDF 

[4] Appell, J., et al., ‘Review of loudness models for normal and 
hearing-impaired listeners based on the model proposed by 
Zwicker’, Audiologische Akustik, 40, No.(2), 2002.  

[5] http://www.nd.edu/~atassi/Teaching/ame553/Notes/Sound_po
wer.pdf 

[6] http://widget.ecn.purdue.edu/~hastinga/Research.htm 
[7] http://www.acoustics.hut.fi/software/HUTear/ 
[8] Zwicker, E., Fastl, H., and Dallmayr, C., ‘BASIC program for 

calculating the loudness of sounds from their 1/3 oct band 
spectra according to ISO 532 B’, Acustica 55, 1984, pp. 63-67. 

[9] Quast, H., ‘Absolute Perceived Loudness of Speech’, 
Proceedings of the 7th Joint Symposium on Neural 
Computation, USC, 2000. 

[10] ITU Recommendation, P.861 Objective Measurement of 
Telephone Band (300-3400Hz) Speech Codecs (PSQM) 

[11] ITU Recommendation, P.862 Perceptual Evaluation of Speech 
Quality (PESQ), the New ITU Standard for End-to-end Speech 
Quality Assessment, 

[12] Thiede, T., Perceptual Audio Quality Assessment using a Non-
Linear Filter Bank, Ph.D. thesis, Technische Universitat 
Berlin, Berlin, Germany, 1999. 

[13] Kabal, P., ‘An Examination and Interpretation of ITU-R 
BS.1387: Perceptual Evaluation of Audio Quality’, TSP Lab 
Technical Report, Dept. Electrical & Computer Engineering, 
McGill University, May 2002. 
http://www.tsp.ece.mcgill.ca/MMSP/Documents/Reports/inde
x.html#KabalR2002 

[14] Moore, B., Glasberg, B., Baer, T., ‘A model for the prediction 
of thresholds, loudness and partial loudness’, J. Audio Eng. 
Soc. 45, 1997, pp. 224-240. 

[15] http://www.auditory.org/postings/2002/565.html 


