

Exploring the Spatial Density of Strategy Models in a Realistic Distributed
Interactive Application

Damien Marshall, Declan Delaney
Department of Computer Science,

National University of Ireland, Maynooth,
Co. Kildare, Republic of Ireland.

E-mail:{damienm, decland}@cs.may.ie

Seamus McLoone, Tomas Ward
Department of Electronic Engineering,

National University of Ireland, Maynooth,
Co. Kildare, Republic of Ireland.

E-mail: {seamus.mcloone, tomas.ward}@eeng.may.ie

Abstract

As Distributed Interactive Applications (DIAs) become
increasingly more prominent in the video game industry
they must scale to accommodate progressively more users
and maintain a globally consistent worldview. However,
network constraints, such as bandwidth, limit the amount
of communication allowed between users. Several
methods of reducing network communication packets,
while maintaining consistency, exist. These include dead
reckoning and the hybrid strategy-based modelling
approach. This latter method combines a short-term
model such as dead reckoning with a long-term strategy
model of user behaviour. By employing the strategy that
most closely represents user behaviour, a reduction in the
number of network packets that must be transmitted to
maintain consistency has been shown. In this paper a
novel method for constructing multiple long-term
strategies using dead reckoning and polygons is
described. Furthermore the algorithms are implemented
in an industry-proven game engine known as Torque. A
series of experiments are executed to investigate the
effects of varying the spatial density of strategy models on
the number of packets that need to be transmitted to
maintain the global consistency of the DIA. The results
show that increasing the spatial density of strategy
models allows a higher consistency to be achieved with
fewer packets using the hybrid strategy-based model than
with pure dead reckoning. In some cases, the hybrid
strategy-based model completely replaces dead reckoning
as a means of communicating updates.

1. Introduction

Distributed computer games are becoming one of the
more important facets of an already burgeoning games
industry. Such games pertain to a class of computer
application known as Distributed Interactive Applications
(DIAs), and can involve tens of thousands of simultaneous
players interacting in a simulated environment. Given the
scale of DIAs, the volume of data transmitted can be
considerable, for example, Everquest [1]. As the

complexity of the DIAs increases and the number of
concurrent users multiplies, the application and
connecting network must be able to scale without losing
the real-time experience of participating in a shared
environment [2]. This ability to scale is inherently linked
to the number of network packets that need to be
transmitted between participants to maintain a consistent
global worldview of the DIA. Several techniques exist to
reduce the quantity of network traffic, including relevance
filtering, compression and dead reckoning [3, 4].

Dead reckoning uses a short-term model to predict
entity dynamics. However, it does not take a priori
information regarding entity behaviour in relation to an
objective or goal into account. In contrast the recently
proposed hybrid strategy-based modelling approach
combines a short-term dead reckoning model with a long-
term strategy model [5]. Using this approach a reduction
in the number of packets that are required to maintain
global consistency has been demonstrated compared to
using dead reckoning alone. These results were based on
a restricted two-dimensional test environment that served
to prove the concept but did not allow the experiments to
scale to large numbers of strategy models. The long-term
strategy models themselves were constructed using visual
heuristics. Strategy models can be of two types: an
exploratory or transient strategy that users employ when
they are unfamiliar with the environment and a steady-
state strategy, which corresponds to a preferred way to
satisfy the user goal in the environment.

Here, a novel implementation of the strategy model
technique in an industry-proven game engine called
Torque is presented [6]. This method builds on previous
work by facilitating the construction of an arbitrary
number of strategy models. Furthermore, simulation
results are presented for experiments featuring a varying
spatial density of strategy models using this new test
environment. The results show that as the number of
models increases, there is a decrease in the number of
packets required in order to maintain consistency in the
DIA. An optimum number of these models exist for
steady-state trajectories, above which no further packet

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by MURAL - Maynooth University Research Archive Library

https://core.ac.uk/display/297008573?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

reduction is obtained. The actual value itself will vary
from application to application.

2. Implementing the Hybrid Strategy-Based
Model

One of the key difficulties with the hybrid strategy-
based model approach is the determination of the strategy
models. To date, actual user data has been recorded in a
limited game-like environment and a representative steady
state strategy was chosen based on a visual analysis of
actual user steady-state trajectories[5].

Here, a novel approach based on dead reckoning is
proposed. When dead reckoning is employed, the error
threshold is always exceeded at certain key areas. By
recording the points where the dead reckoning threshold is
exceeded by this user, a set of points is obtained that
provides an average piecewise linear model of a user’s
trajectory – see Figure 1.

The piecewise linear model is then combined with the
error threshold values which defines bands on both sides
of the model to describe a polygon shape known as a
“strategy polygon”. An entity located within the strategy
polygon is deemed to be following that particular strategy.

The first step in the creation of the strategy polygon is
the definition of the polygon edges. Each edge consists of
a line parallel to a segment of the piecewise linear curve.
The distance between an edge and the appropriate
segment of the curve is the required error threshold – see
Figure 2a. Next, the end points of the segments need to be
joined so as to provide a closed polygon. If this is
implemented incorrectly, the resulting polygon could be
distorted, leading to erroneous assumptions about the
entity’s behaviour. Again, see Figure 2a.

The problem is avoided by considering two contiguous
segments of the piecewise linear curve in order to define
the strategy polygon vertices. The parallel segments are
created as detailed above. However, the vertices of the
strategy polygon are given by the locations where the
newly generated parallel segments intersect. Examples of
such intersections are detailed in Figure 2b. Repeated
application of this technique to all the segments of the

piecewise linear curve results in a group of vertices that
describes the strategy polygon.

This process can be used in order to define multiple

strategy models. Initially, the required number of
strategies is created. For the purposes of this paper, the
newly created strategies are always parallel to that of the
original piecewise linear curve. Therefore, the process by
which the polygon edges are created can be used to define
each individual strategy. The parallel distance between
each curve is the required distance between strategies as
detailed in Figure 3.

Next, each curve is converted into a full strategy

polygon, using the required error threshold. This threshold
is always set to a value greater than half the distance
between strategies in order to provide an overlap between
models, and therefore avoid unnecessary updates due to
excessive switching between models.

With multiple models, it becomes important to
determine which model, if any, the entity’s current
position resides in. The ‘point containment test’ is used to
do this [7]. This test is used extensively in computer
games in a process known as polygon filling [8]. It works
by extending a horizontal line from the current entity
position and counting the number of intersections between
this line and the edges of the polygon. An odd number of
intersections indicates that the position is inside the
polygon. Otherwise the position is outside it. The

Error Threshold

Distance between
strategies
 Figure 1 A sample piecewise linear model.

Dead Reckoning
Updates

User Trajectory

Piecewise linear
curve Y- axis

X- axis
Figure 3 Multiple hybrid strategy-based models

Figure 2(a) Distortion can occur when creating the
strategy polygon (b) The polygon distortion is resolved
using the intersection points of parallel segments

Piecewise Linear
Curve

Strategy Polygon
Edge

Intersection
Point

Error
Threshold
 (a) (b)

a

b

c

Overlap
between
strategies

Piecewise
linear curves

f

decision to make the switch between models is taken when
an update from the currently employed model is required.

The strategy model approach was implemented in
Torque using the algorithms described in this section,
along with a first order dead-reckoning algorithm. The
engine was also modified so that user trajectories could be
recorded and steady state strategies identified. The
following section details the experiments performed using
these models.

3. Experimental Simulations

The experimental test platform was implemented using
the Torque game engine and a full client-server
architecture was employed. Each simulation was carried
out in a game environment that consisted of a unique route
from a start to a target position. These positions remained
invariant throughout. The user’ s goal was to navigate from
the start to the target position in the shortest time possible
[6]. The application simulated the number of packets
transmitted in order to maintain global consistency within
a certain threshold error tolerance. The error thresholds
and separation distance between the strategies is defined
in Torque game units. Each game unit corresponds to a
meter in distance within the virtual environment.

The first set of experiments measured the number of
packets transmitted as the number of strategies was
increased and a constant error threshold was maintained.
The second group of experiments focused on increasing
the density of strategies within the same area of the
environment. This was achieved by beginning with a
single strategy with a large error threshold. This defined
the area, and encompassed all recorded user trajectories.
The error threshold was then decreased and the number of
strategies increased so that the strategy models always
covered the same area.

A total of six subjects participated in the experiments.
All user trajectories were recorded. The application then
employed this data to simulate the generation of update
packets under various experimental conditions. The
simulated entity navigated the test level using the
positional data recorded from each participant. When the
target position was reached, the following data was
recorded to disk: type of update, the position where the
update occurred, the total number of updates transmitted
for that attempt, the actual entity position, the modelled
position and the strategy polygon vertices.

4. Results

Here, results are presented for the two sets of
experiments outlined in the previous section. In all
experiments, both the Hybrid Strategy-Based Model (H),

and Dead Reckoning (D), are considered. In every case,
Un denotes a test user.

4.1 Constant Error Threshold

As discussed in section 3, the first set of experiments
concentrated on the comparison of pure dead reckoning
with the hybrid strategy-based model approach as the
number of strategies increased and the error threshold was
maintained constant. Table 1 details results from two test
users who are representative of all users. In this case an
error threshold of 6 game units for both dead reckoning
and the strategy model, and a distance of 9 game units
between strategies, is employed.

From this table we can see that as the user converges to

a steady state trajectory, there is a significant reduction in
packets when compared to pure dead reckoning. We can
also note a reduction in packets sent as the number of
available models increases. When a user first enters the
environment, as exemplified in trial attempts 1 and 2 of
both users, they are following an exploratory or transient
trajectory. In these cases, the user is exploring the
environment, and dead reckoning is used extensively.
With the transient trajectories, as the number of models
increases, the number of strategy packets also increases.
This occurs because there are more models available and
there is increased likelihood that the entity will cross back
and forth across them in getting to know the environment
and accomplish the goal.

Once the user has become more familiar with the test
level, as seen in trial 3, trajectories close to that of the
steady state strategy are adopted. This leads to a notable
reduction in updates, and overall better performance from
the hybrid model in comparison to dead reckoning. When
a steady state trajectory is adopted, the addition of models
above a certain quantity has little or no effect on packet
update rates. In these cases, the optimum number of
models for that trajectory has been found. This can be
seen in trials 4 and 5 in both tables, where minimal packet
reduction is noted after the use of 3 strategy models. In the
final attempts of both users dead reckoning is made
completely redundant.

A series of experiments were also conducted featuring
an error threshold of 9 game units, and a distance of 12

Trial DR 1 Model 3 Models 5 Models
 U1 U2 U1 U2 U1 U2 U1 U2
 D D H H H H H H

1 20 30 16 28 16 29 16 31
2 17 30 11 28 12 29 12 31
3 12 19 9 17 5 16 5 15
4 12 11 6 8 5 9 5 10
5 12 12 5 1 5 1 5 1

Table 1 Error Threshold 6 Strategy Width 9

game units between strategies. Results similar to that of
table 1 were noted. Due to space restrictions, however,
they are not presented here.

4.2 Variable Error Threshold

The next set of results focuses on an increasing spatial
density of strategy models – see Table 2. In this case, we
initially start with a single large model with an error
threshold of 36, and progressively increase the number of
models found within the area occupied by that model.

Table 2 reinforces the fact that the hybrid strategy-
based model performs better than pure dead reckoning.
As would be expected, the number of pure dead reckoning
packets increases as the error threshold decreases. At
least one packet will be required regardless of the model
used; trials 4 and 5 indicate this for the hybrid model. The
packet transmitted in these trials refers to the long-term
strategy model.

In trial 2 of Table 2, we can see that, as the threshold

decreases, an increase in the spatial density of models
occurs, and switching between strategies becomes more
likely. This accounts for the increasing number of packets
as the density of models increases.

The results indicate that when a single model is used it
covers all steady-state trajectories as shown by the single
packet transmitted in trials 3 to 5 in Table 2. However,
the threshold is very high and consequently consistency is
low. By increasing the number of models within the same
space, the value of the threshold decreases without
incurring a significant increase in packets sent. Trials 4
and 5 clearly illustrate this. A tighter threshold provides
greater consistency. This is a clear illustration of the
consistency-throughput tradeoff [4].

6. Conclusions and Future Work

In this paper we have described a novel method for
constructing multiple user strategies using dead reckoning
and polygons in a realistic DIA known as Torque. This
was carried out in order to provide a real world
implementation of the hybrid strategy-based model, and to
test the effects of varying spatial density on the amount of
packets needed to maintain consistency of a DIA.

Using this approach, we have shown that the hybrid
strategy-based model performs better than pure dead
reckoning. As the number of models increases, there is a
reduction in the number of packets needed for steady state
trajectories. In these cases, an increase in the number of
models above a certain quantity has a negligible effect on
packet reduction. The point at which this occurs is the
optimum number of models. The actual optimum value
will vary with the application and the route represented by
the steady state strategy.

An increase in the density of strategies in one area
results in the minimisation of dead reckoning packets.
When the trajectories have converged to a steady state, the
hybrid strategy-based model can provide increased
consistency using fewer packets than dead reckoning
alone.

Future work will involve the examination of the
psycho-perceptual effects of latency on users of
Distributed Interactive Applications to establish criteria
for choosing error threshold values.

REFERENCES

[1] Humble, R., Inside EVERQUEST, in Game Developer. May
2004. p. 18-23.
[2] Bondi, A.B. (2000). "Characteristics of Scalability and
Their Impact on
Performance".In Second international workshop on Software
and Performance, (Ottawa, Ontario, Canada, 2000), ACM
Press, New York, NY, USA, 195 - 203.
[3] Bassiouni, M.A., M.H. Chiu, M. Loper, M. Garnsey, and J.
Williams, Performance and reliability analysis of relevance
filtering for scalable distributed interactive simulation. ACM
Transactions on modeling and computer simulation, 1997. 7(3):
p. 293-331.
[4] Singhal, S.K. and M. Zyda, Networked Virtual
Environments, ed. S. Spencer. 1999, New York: ACM Press,
New York, New York.
[5] Delaney, D., T. Ward, and S. Mc Loone (2003). "Reducing
Update Packets in Distributed Interactive Applications using a
Hybrid Model".In 16th International Conference on Parallel
and Distributed Computing Systems, August 13-15, (Reno,
USA, August 13-15), 417-422.
[6] Marshall, D., A. McCoy, D. Delaney, S. McLoone, and T.
Ward (2004). "A Realistic Distributed Interactive Application
Testbed for Static and Dynamic Entity State Data
Acquisition".In Irish Systems and Signals Conference, (Belfast,
Ireland, 30 June - 2 July), IEE, 83-88.
[7] Mortenson, M.E., An Introduction to the Mathematics and
Geometry of Computer Graphics. 1989: Heinemann Newnes,
Jordan Hill, Oxford.
[8] Jenq, J.J. (1999). "Parallel Polygon Scan Conversion
on Hypercube Multiprocessors".In ACM symposium on Applied
computing, (San Antonio, Texas, United States, February 28 -
March 02), 110 - 114.

Trial 1 Model 3 Models 5 Models

 D H D H D H

1 10 6 20 10 24 16

2 8 8 16 14 18 18

3 5 1 11 5 15 7
4 5 1 8 3 11 5
5 4 1 6 1 9 1

Table 2 Variable Error Threshold Results for 1 User

