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1. Introduction

It has been a long standing goal of theoretical particle physics to unify space-time

symmetries with the internal SU(3)×SU(2)×U(1) gauge symmetry of the standard

model. Most current research in this direction relies on string theory in higher

dimensions, hoping to derive grand unified theories as low energy limits of the full

theory, and a crucial aspect of this programme is the rôle of compact internal spaces.

Compact internal spaces were first introduced into physics in Kaluza-Klein models

where a coset space G/H with isometry group G and holonomy group H can give rise

to a gauge group G in 4-dimensional space-time. A pure Kaluza-Klein approach was

largely abandoned in the 80s due in part to the realisation that it was difficult, if not

impossible, to obtain chiral Fermions this way [1]. In this paper we take a different

approach to internal coset spaces, focusing on the holonomy group H rather than G.

We shall show that a single generation of the standard model spectrum, including a

right handed neutrino, can arise from the complex projective spaces CP2 and CP3.

The approach adopted here has the attractive feature that it is somewhat more

in tune with the spirit of general relativity than standard Kaluza-Klein theory. In the

standard approach one assumes that the coset space has a specific metric which has

isometry group G, which is somewhat contrary to the philosophy general relativity

where a particular metric is merely one solution of Einstein’s field equations and

there may be many others with smaller isometries, indeed a generic solution has

none. In the construction used here it is the holonomy group that is important and

for a complex manifold with real dimension 2n this group is generically U(n). For

4-dimensional space time equipped with a Lorentzian metric the holonomy group is

generically SO(1, 3) and general relativity can be viewed as a gauge theory of tangent

space rotations using this group. Incorporating spinors into general relativity requires
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gauging the double cover of SO(1, 3), namely Spin(1, 3) ∼= Sl(2,C). If a compact

complex internal space with real dimension 2n is added the extra holonomy group is

generically U(n) and so it seems quite natural to gauge SU(n) × U(1). Taking two

internal spaces with n = 2 and n = 3 would give SU(3)×SU(2)×U(1)×U(1) which

is not quite what is required, but is close.

To see how the standard model spectrum might arise in this way consider first a

Dirac spinor on a general compact complex manifold of real dimension 4. This has

4 components and decomposes as

(2, 1) + (1, 2) −→ 20 + (11 + 1−1) (1.1)

under Spin(4) ∼= SU(2) × SU(2) → SU(2) × U(1). Shifting the U(1) charge by −1

and rescaling the result by 1/2 gives

2
−1/2 + (10 + 1−1). (1.2)

On the other hand a compact complex manifold of real dimension 6 has 8 component

Dirac spinors which decompose as

4 + 4 −→ (31 + 1−3) + (3−1 + 13) (1.3)

under Spin(6) ∼= SU(4) → SU(3) × U(1). Taking a single chiral spinor in the 4 of

SU(4), shifting the U(1) charge by 3 and rescaling the result by 1/6, gives

(32/3 + 10). (1.4)

A single generation of the standard model spectrum, including a right-handed neu-

trino, can be obtained by tensoring (1.2) with (1.4) and simply adding the U(1)

charges. These group theory decompositions are valid on any complex manifolds

of real dimension 4 and 6 respectively and the shift in the U(1) charges may be

achieved by coupling the Fermions to U(1) gauge fields with appropriate topological

(monopole) charges. Mathematically this requires tensoring the spin bundle with

an appropriate line bundle, which may or may not be possible on any given man-

ifold depending on whether or not appropriate line bundles exist. It is shown in

section 2 that for CP2 and CP3 the required line bundles do indeed exist (indeed

for CP2 spinors cannot even be defined unless such a line bundle is introduced).

However obtaining the standard model spectrum requires introducing some natural

higher rank bundles as well. Furthermore, an index theorem analysis shows that the

representations (1.2) and (1.4) can be realised as zero modes of the Dirac operator

with precisely the correct handedness for one generation of the standard model, in-

cluding a right-handed neutrino. This is a topological statement, it is completely

independent of the choice of metric on these spaces.

Of course there is the question of generations—the construction presented here

only produces a single generation of the standard model. This point is elaborated
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on in the concluding section 3, along with some suggestions of how the construction

might fit into viable models such as type IIA superstring theory and non-commutative

geometry. Details of the index theorem on CPn, required for the analysis in the text,

are contained in an appendix, where closed form expressions for the index of the Dirac

operator coupled to topologically non-trivial SU(n) × U(1) gauge fields are derived.

2. The Particle Spectrum From CPn

In this section it will be argued that the spectrum of a single generation of the

standard model can be obtained from CP2 × CP3 by gauging the holonomy group,

U(2)×U(3), with the two U(1) factors identified in one particular combination. This

generalises the case of CP2 which gives the electroweak sector [2].

The analysis is based on the index theorem for the Dirac operator on

CPn ∼=
SU(n + 1)

U(n)
(2.1)

derived in the appendix. We are interested in zero modes of the Dirac operator,

for Fermions which are either singlets or transform under the fundamental n rep-

resentation of SU(n), when topologically non-trivial gauge fields are present (CPn

analogues of the monopole field on S2 and the SU(2) BPST instanton on S4). The

gauge group is taken to be the holonomy group U(n) of CPn. The index is the

difference between the number of positive chirality zero modes of the Dirac operator

and the number of negative chirality zero modes and, for convenience, the important

formulae from the appendix are reproduced here. For a singlet with U(1) charge

Y(n) = q, where q is an integer, the index is

νq =
1

n!
(q + 1) · · · (q + n), q ∈ Z (2.2)

corresponding to a line bundle over CPn with gauge group U(1). A Fermion in the

fundamental representation of SU(n), with a U(1) charge Y(n) = q + 1
n
, has index

νq,n =
(q + 1) · · · (q + (n − 1))(q + n + 1)

(n − 1)!
. (2.3)

We are free to rescale the U(1) charges differently for different values of n, but for a

given n the ratio of the singlet charge q to the fundamental charge q + 1
n

is fixed.

The simplest case is CP1 ∼= S2, where the holonomy group is U(1). Introducing

U(1) gauge fields and Fermions with charge q there are νq = q + 1 zero modes of

the Dirac operator. The case q = −1 gives no unpaired zero modes—generically

there are none at all but even when zero modes exist left and right-handed particles

with charge −1 occur in pairs, like an electron in QED. For q 6= −1 the theory is

necessary chiral. For example choosing the convention that positive ν corresponds to
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right-handed spinors in 4-dimensions, q = −2 would be interpreted as a left-handed

particle with hypercharge −2. However there is no place in this construction for a

right-handed particle with the same charge as this would require q = −2 and ν > 0.

This is necessarily a chiral theory for q 6= −1, and would generate a lethal gauge

anomaly in 4-dimensions.

To introduce quarks we turn to CP3—since the holonomy group of CP3 is U(3)

quarks can be introduced as triplets. For example an SU(3) triplet with q = −3

gives ν−3,3 = 1 and has U(1) charge Y(3) = −8/3. Since the overall normalisation of

the charge is at our disposal, this could represent either:

a right handed d-quark (rescale charge by 1/8), dR = 3−1/3, (2.4)

or

a right-handed u-quark (rescale charge by −1/4), uR = 32/3. (2.5)

Either possibility forces us to interpret positive chirality as corresponding to right-

handed Fermions in 4-dimensions in order to match the standard model spectrum.

It is instructive to examine the complex conjugate representations in order to un-

derstand the CPT conjugate of the spectra. In the appendix it is shown that un-

der complex conjugation of the bundles over CPn the U(1) charges transform as

Y(n) → Y (n) = −Y(n) − (n + 1) and the index as ν → ν = (−1)nν. So for the exam-

ples (2.4) and (2.5) above, with just a single SU(3) triplet on CP3 with Y(3) = −8/3,

Y (3) = −4/3 and complex conjugation flips the chirality so it maps

dR = 3
−1/3 −→ 3

−1/6 (2.6)

and

uR = 32/3 −→ 31/3 = (d)L. (2.7)

If we start with a right-handed u-quark complex conjugation forces us to introduce

the left-handed anti-d while starting with a right-handed d-quark complex conjuga-

tion forces the introduction of a state that has no place in the standard model. This

nicely illustrates the kind of constraints that CPT can place on the possible choices.

For weak interactions we bring in CP2 with holonomy group U(2). An index

theorem analysis then allows us to obtain a single generation of the electroweak

sector, including a right-handed neutrino. This is achieved by taking the following

three representations:

• An SU(2) singlet with q = 0 giving zero charge and index ν0 = +1;

• A second singlet with q = −3 giving charge Y(2) = −3 and index ν−3 = +1;

• An SU(2) doublet with q = −2 giving charge Y(2) = −3/2 and ν−2,2 = −1.
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Interpreting positive ν as giving right-handed spinors, and rescaling the charge

by 1/3, this results in a single generation of particles of the electroweak sector of the

standard model, including a right-handed neutrino:

10 = (V )R 1−1 = eR 2−1/2 =

(

VL

eL

)

(2.8)

(the normalisation is such that the electric charge is Q = I3 + Y ). Now for CP2

complex conjugation preserves the chirality and sends Y(2) → Y (2) = −Y(2) − 3, so

complex conjugation maps (2.8) to

1−1 = eR 10 = (V )R 2
−1/2 =

(

eL

VL

)

(2.9)

(for the 2 the electric charge is Q = −I3 +Y and of course the 2 is equivalent to the

2 under rotation by the Pauli matrix iσ2). The curious conclusion is that, contrary

to what one might näıvely expect, complex conjugation does not change the sign

of the hypercharge but instead interchanges the electron and neutrino, leaving the

electroweak multiplet in (2.8) invariant.

One complete generation of the quark sector of the standard model can be ob-

tained by combining (2.8) with the SU(3) triplet in (2.5), provided the total hyper-

charge is defined as a particular linear combination of the CP2 and the CP3 charges,

Y = −1
4
Y(3) + 1

3
Y(2). Taking the total chirality to be the product of the two individ-

ual chiralities, and interpreting positive chirality as right-handed, gives the particle

spectrum of the strong sector of the standard model:

(3, 1)2/3 = uR (3, 1)
−1/3 = dR (3, 2)1/6 =

(

uL

dL

)

. (2.10)

The electroweak sector can be included by combining an SU(3) singlet on CP3,

with zero charge and ν0 = 1, with (2.9):

(1, 1)0 = VR (1, 1)−1 = eR (1, 2)
−1/2 =

(

VL

eL

)

. (2.11)

Equations (2.10) and (2.11) constitute a single generation of the standard model.

Now observe that the combination Y = 1
4
Y(3) −

1
3
Y(2) does simply change sign

under complex conjugation, Y → Y = −Y . In addition the CP3 chirality changes

while that of CP2 does not so the overall chirality, which is the product of the two,

flips. The net result is that complex conjugation of (2.10) and (2.11) does indeed

reproduce the anti-particles:

(3, 1)2/3 = uR, (3, 1)
−1/3 = dR, (3, 2)1/6 =

(

uL

dL

)

(2.12)

7−→
c.c.

(3, 1)−2/3 = (u)L, (3, 1)1/3 = (d)L, (3, 2)−1/6 =

(

(u)R
(d)R

)
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and

(1, 1)0 = VR, (1, 1)−1 = eR, (1, 2)
−1/2 =

(

VL

eL

)

(2.13)

7−→
c.c.

(1, 1)0 = (V )L, (1, 1)1 = (e)L, (1, 2)1/2 =

(

(V )R
(e)R

)

.

It is interesting that the construction presented here necessarily requires the

introduction of a right-handed neutrino, as recent experimental evidence for neutrino

oscillations requires just such a state for the simplest explanation of the results [3],

[4].

In summary a single complete generation of the standard model, (2.10) and

(2.11), arises from a selection of five different bundles, three over CP2 and two over

CP3:

• Two SU(2) singlets on CP2 with q = 0 and q = −3 and an SU(2) doublet

with q = −2;

• An SU(3) singlet on CP3 with q = 0 and an SU(3) triplet with q = −3.

In terms of the Spinc structures described in the appendix these correspond to

the two bundles

on CP2 ∧0,∗TCP2 ⊗
(

1 ⊕ L3
(2) ⊕

(

F(2) ⊗ L2
(2)

))

(2.14)

on CP3 ∧0,∗TCP3 ⊗
(

1 ⊕
(

F(3) ⊗ L3
(3)

))

(2.15)

where, on CP2, L(2) is the generating line bundle and F(2) the rank 2 bundle satisfying

L(2) ⊕ F(2) = I3, while, on CP3, L(3) is the generating line bundle and F(3) the rank

3 bundle satisfying L(3) ⊕ F(3) = I4, with I3 and I4 denoting trivial bundles of rank

3 and 4 respectively.

3. Conclusions

It has been shown that a single generation of the standard model Fermion spectrum,

including a right-handed neutrino, can be obtained from the holonomy groups of CP2

and CP3 by tensoring with appropriate bundles. Physically this means introducing

background SU(3) × SU(2) × U(1) gauge fields which are topologically non-trivial,

containing analogues of monopoles and instantons. A number of questions present

themselves.

Firstly there is no obvious sign of three generations. Of course one can obtain

more generations by taking copies, but there seems no compelling reason to take

three such copies and not some other number. This may be related to the question

of what possible rôle the isometry group may play. In the introduction a virtue
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was made of the fact that the construction is not tied down to a specific metric on

CPn, but if one introduces the Fubini-Study metric one then has isometry group

SU(n+1). On CP2 one has SU(3) and, using this as a horizontal generation group,

the fundamental representation would give three generations. But then it is not

clear what the rôle of the SU(4) from CP3 would be. Alternatively it is possible

to manufacture three copies by including CP1 with q = 2, giving ν2 = 3, and then

simply ignoring the U(1) charge on CP1. For the moment we have no compelling

suggestion as to how the generations might appear and we leave this as an open

question.

Secondly there is the question of the extra U(1). The holonomy group of CP2 ×

CP3 is U(3)×U(2) ∼= SU(3)×SU(2)×U(1)×U(1) and we have taken a U(1) which

is only one particular combination of the two U(1) factors, ignoring the other one. In

fact the standard model spectrum has true group S(U(3) × U(2)), [5], and the very

fact that it is reproduced here means that the group being used is S(U(3) × U(2))

rather than the full holonomy group U(3)×U(2). There may be a deeper reason for

this, but for the moment we confine ourselves to observing that it works empirically.

How might the construction fit into realistic models? It would certainly seem

too näıve to take CP2 × CP3 as an internal space—it has real dimension 10 which

is too large for string theory and simply adding it on to 4-dimensional space-time

produces a 14-dimensional space-time which would have anomalies. It may be that

one could realise CP2 and CP3 as a brane within a brane in type IIA string theory,

which has anti-symmetric tensor fields of rank 2 and 4 in its R-R sector as well as

their hodge duals, though IIA string string theory is a non-chiral theory so the Weyl

Fermion on CP3 would have to be put in by hand. Any such interpretation would

necessarily be rather different to the standard approach, as it would not involve

grand unified theories directly. Alternatively a “fuzzy” Kaluza-Klein approach may

be of interest where the continuum manifolds of CP2 and CP3 are replaced by

non-commutative finite dimensional matrix approximations with a finite number of

degrees of freedom [2]. It would then be more appropriate to think of multiple copies

of 4-dimensional space-time rather than an internal continuous manifold, somewhat

analogous to Connes’ non-commutative geometry approach to the standard model

with two copies of space-time [6], [7]. Star-products on CPn were studied in [8] and

[9], and the spectrum of the Dirac operator was investigated in [10] and [11]. The

smallest vector space that could be used for a non-trivial matrix representation is

n + 1. For CP2 we get 3, which relates to the discussion of the generation problem

above, while CP2 ×CP3 would require 3 × 4 = 12 copies.

While these are all interesting and important problems we leave them open for

further work.
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A. The Index Theorem For CPn

For a general complex manifold X of dimension n the total Chern class is the sum

of the individual Chern classes

c(X) = 1 + c1(X) + c2(X) + · · · + cn(X). (A.1)

In line with common usage we write ck(X) for ck(TX)—the kth Chern class of the

tangent bundle. In particular cn(X) is the top form and the Gauss–Bonnet the-

orem states that evaluating cn(X) on X gives the Euler characteristic of X: i.e.

cn(X)[X] = χ(X).

For CPn the Chern classes are all generated by a single 2 dimensional class x

[12]

c(CPn) = (1 + x)n+1 = 1 + (n + 1)x +
n(n + 1)

2
x2 + · · · + (n + 1)xn. (A.2)

Note that xn+1 is a (2n+2) dimensional class and so xn+1 = 0—when x is represented

by a 2 form ω, say, this corresponds to the fact that ωn+1 = 0 on a 2n-dimensional

manifold.

The normalisation is such that
∫

CP
n

ωn = 1 (A.3)

and so, since cn(X) = (n + 1)xn ≡ (n + 1)ωn, we have

χ(CPn) = n + 1, (A.4)

which is the Euler characteristic of CPn as required by the Gauss-Bonnet theorem.

The form ω is the curvature of a line bundle L whose complex conjugate L we shall

refer to as the generating line bundle over CPn with Chern class

c(L) = 1 − x. (A.5)

Another line bundle that will be important is the canonical line bundle K which

is the maximum exterior power of the cotangent bundle T ∗X: i.e.

K = ∧nT ∗X. (A.6)

K has Chern class given by

c(K) = 1 − (n + 1)x. (A.7)

The minus sign appears because

c1(K) = c1(T
∗X) = −c1(TX). (A.8)
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We see that K is a power of the generating line bundle L; in fact we have

K = Ln+1. (A.9)

The existence of global spinors is determined by the second Stiefel–Whitney class

w2, which, on a complex manifold X, can be obtained from c1 by reducing mod 2.

One has

w2(X) = c1(X) mod 2 (X complex). (A.10)

For X = CPn we see that

w2(X) = (n + 1)x mod 2, X = CPn (A.11)

=

{

0, if n is odd

6= 0, if n is even.
(A.12)

Hence CPn admits globally defined spinors for odd n but not for even n.

When n is even it is still possible to define what is called a Spinc structure and

this gives a more general kind of spinor which comes accompanied by a line bundle

and hence a possible U(1) connection.

Moreover, when, as is the case here, X is a complex manifold both spin structures

and Spinc structures have a concrete form in terms of differential forms which goes as

follows: consider the bundle ∧0,∗TX of all forms of type (0, k)—i.e. anti-holomorphic

k forms—so we have

∧0,∗TX =
⊕

k

∧0,k T ∗X . (A.13)

Then this is the Spinc bundle Sc(X) i.e.

Sc(X) = ∧0,∗TX. (A.14)

Hence, for a complex Kähler manifold, generalised spinors are (0, k) forms and are

sections of Sc(X); the Dirac operator is then the operator ∂̄ + ∂̄∗. Now if X is not

just a Spinc manifold but also a spin manifold then it has a bundle S(X) of true

spinors given by

S(X) = Sc(X) ⊗ K1/2 (A.15)

⇒ Sc(X) = S(X) ⊗ K−1/2. (A.16)

Now the point is that the LHS of A.16 always exists but the two bundles S(X) and

K−1/2 on the RHS only exist separately when X is a spin manifold. One can still

think of sections of Sc(X) as being given ‘locally’ by sections of S(X)⊗K−1/2—hence

the interpretation of Spinc structures as being (locally) a spinor with an attendant

U(1) gauge connection.

Specialising to the case

X = CPn (A.17)
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we see that Sc(CPn) = ∧0,∗TCPn exists for all n but S(CPn) and K−1/2 exist only

for odd n.

We can construct more general U(1) bundles by adding more integral powers of

L giving

Sc(X) ⊗ L−q (A.18)

= ∧0,∗TX ⊗ L−q, X = CPn (A.19)

= S(X) ⊗ Lp, where p = −q −
n + 1

2
(A.20)

and we have used the fact that K = Ln+1; note too that p is an integer for n odd and

a half-integer for n even (the minus sign in the exponent L−q is for later convenience).

In physics language tensoring with powers of L means introducing a U(1) gauge

field and q will be related to the U(1) charge. It is analogous to a monopole charge

which is evaluated by integrating the Chern character ch(L−q) over a non-trivial

2-cycle (a 2-sphere) in CPn. Our conventions are such that

∫

S2

ch(L) =

∫

S2

c1(L) = −1, (A.21)

so
∫

S2

ch(L−q) = −q

∫

S2

c1(L) = q. (A.22)

For a given p the net number of zero modes of the Dirac operator is given by the

index theorem as ν where

ν =

∫

X

ch(Lp)Â(X), X = CPn. (A.23)

This equation can be written solely in terms of the Kähler 2-form ω: since the

Â-genus and the Chern character for CPn are given by

Â(X) =

(

ω

2 sinh(ω/2)

)n+1

and ch(Lp) = e−pω (A.24)

⇒ ch(Lp)Â(X) = e−pω

(

ω

eω/2 − e−ω/2

)n+1

, X = CPn (A.25)

= eqω

(

ω

1 − e−ω

)n+1

since p = −q −
n + 1

2
. (A.26)

Since
∫

CP
n ωn = 1 the index, which we shall denote by νq, is the coefficient of the

ωn term. This coefficient can be evaluated by integration around a small contour

enclosing the origin in the complex z-plane giving

νq =
1

2πi

∮

eqzdz

zn+1

(

z

1 − e−z

)n+1

. (A.27)
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A change of variable to t = 1 − e−z yields the answer

νq =

(

q + n

n

)

=
1

n!
(q + 1) · · · (q + n). (A.28)

This formula works for both even and odd n and for any integral q, either positive or

negative. The index for a Fermion coupled to a U(1) gauge field on CP2 was derived

in [13].

Another bundle that is of interest when n ≥ 2 is the rank n vector bundle F

that is inverse to the generating line bundle L in the sense that F ⊕ L = In+1, with

In+1 the trivial n + 1 bundle. Since F ⊕ L is trivial we find that

ch(F ⊕ L) = ch(F ) + ch(L) = n + 1 (A.29)

⇒ ch(F ) = n + 1 − ch(L). (A.30)

A second property of the Chern character that will be used below is

ch(F ⊗ L) = ch(F ) ch(L) (A.31)

⇒ ch(F ⊗ Lp) = (n + 1)ch(Lp) − ch(Lp+1) (A.32)

The bundle F has structure group U(n) and supports a curvature 2 form of a neces-

sarily topologically non-trivial Yang-Mills gauge field on CPn.

This provides sufficient information to work out the zero mode structure of the

Dirac operator for spinors transforming under SU(n) × U(1), in the fundamental

representation of SU(n) and in the background gauge field of F . More generally we

can tensor F with powers of L and determine the zero mode structure of the Dirac

operator for a spinor on CPn, in the fundamental representation of SU(n) and a

U(1) charge in the background field of F ⊗ Lp. The Dirac index is then denoted by

νq,n where

νq,n =

∫

CP
n

ch(F ) ch(Lp) Â(CPn) = (n + 1)νq − νq−1, (A.33)

where equation (A.32) has been used.

Using (A.28) in (A.33) the index for spinors transforming under the fundamental

representation of SU(n) is

νq,n = (q + n + 1)

(

q + n − 1

n − 1

)

=
(q + n + 1)(q + 1) · · · (q + (n − 1))

(n − 1)!
. (A.34)

The presence of F affects the U(1) charge because
∫

S2

ch(F ) ch(L−q) =

∫

S2

(n − c1(L) + · · ·)(1 − qc1(L) + · · ·) = nq + 1. (A.35)

Since the Chern character involves a trace, the U(1) generator in the n × n repre-

sentation is (q + 1
n
)1, where 1 is the n × n identity matrix, and the U(1) charge is

therefore (q + 1
n
).
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As different n’s are used in the text, when confusion is possible, we shall dis-

tinguish the U(1) charges for different CPn’s with a bracketed subscript n, as

Y(n) = q + 1
n
, and the different bundles likewise, as L(n) and F(n).

Equations (A.28) and (A.34) are the important results of this analysis. An imme-

diate consequence is that the index vanishes for SU(n) singlets when q = −1, · · · ,−n.

For Fermions in the fundamental representation of SU(n) the index vanishes for

q = −1, · · · ,−(n − 1) and q = −(n + 1). Generically there are no zero modes for

these charges, but even when there are they occur in pairs of opposite chirality.

Two further observations, which will be most important in the analysis in the text,

are

• Singlets of SU(n) with zero charge have index ν0 = 1, while singlets with charge

−(n + 1) have index ν
−(n+1) = (−1)n.

• In the fundamental representation of SU(n) Fermions coupled to q = −n have

charge −n + 1
n

and index ν−n,n = (−1)n+1.

Finally we evaluate the index for spinors in the complex conjugate representations—

this is relevant to the CPT theorem. For singlets, since L = L−1, taking the complex

conjugate changes the sign of p: one has p 7→ p̄ = −p, and q 7→ q̄ = −q − (n + 1),

giving

ν q =
1

n!
(q + 1) · · · (q + n) = (−1)nνq. (A.36)

Note that the U(1) charge is q = −q − (n + 1), and not just −q, so Y (n) = −Y(n) −

(n + 1).

For spinors in the complex conjugate fundamental representation n of SU(n)

one has, using F ⊕ L = In+1,

ch(F ) = n + 1 − e−c1(L) (A.37)

⇒ ν q,n = (n + 1)ν q − ν q+1. (A.38)

This implies that

ν q,n =
q(q + 2) · · · (q + n)

(n − 1)!
= (−1)nνq,n. (A.39)

The U(1) charge for n is calculated from
∫

S2

ch(F ) ch(L−q) =

∫

S2

(n + c1(L) + · · ·)(1 − qc1(L) + · · ·) (A.40)

= nq − 1, (A.41)

so, dividing by the rank of the matrices as before, the charge is q− 1
n

= −(q+n+1)− 1
n

so again Y (n) = −Y(n) − (n+1). To summarise the net effect of complex conjugation

is to preserve the chiralities if n is even and flip them if n is odd and map the charges

to Y(n) 7→ Y (n) = −Y(n) − (n + 1).
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