
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Jurnal Rekayasa Elektrika

https://core.ac.uk/display/296979085?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

115Jurnal Rekayasa Elektrika Vol. 10, No. 3, April 2013

Versi online (e-ISSN. 2252-620x)

A PostgreSQL/PostGIS Implementation for the

Sightseeing Tour Planning Problem

Ardiansyah1 dan Ruslan Rainis2

1Jurusan Teknik Elektro, Universitas Syiah Kuala

Jln. Tgk. Syech Abdurrauf No. 7, Banda Aceh 23111
2Geography Section, School of Humanities, Universiti Sains Malaysia

Pulau Pinang, Malaysia 11800

e-mail: razan_dad@yahoo.com

Abstract—This article discusses a procedure for inding the best multi stops route for sightseeing tour through a
road network. The procedure involves building a database containing nodes and road network in PostgreSQL,
calculating the shortest distance between a pair of nodes using pgDijkstra module, and solving the tour problem
using a function written in PL/pgSQL. The function was developed based on the Nearest Insertion Algorithm for
solving the Travelling Salesman Problem. The algorithm inserts a sightseeing attraction (node) at the best position
in the existing route, which is between a pair of nodes that yields the minimum difference between the total tour time
before and after the new node was inserted. The test result shows that the function can solve the problem within
acceptable runtime for web application for total destination nodes of 22. It is concluded that the whole procedure was
suitable for developing Web GIS application that solve the sightseeing tour planning problem.

Keywords: tour planning problem, PL/pgSQL, PostgreSQL, Web GIS

Abstrak—Artikel ini membahas prosedur untuk menemukan rute multi-hentian terbaik untuk wisata keliling
melalui jaringan jalan raya. Prosedur ini melibatkan pembangunan sebuah database yang berisi titik tujuan dan
jaringan jalan raya pada PostgreSQL, perhitungan jarak terpendek antara sepasang titik tujuan menggunakan
modul pgDijkstra, dan memecahkan masalah wisata keliling menggunakan fungsi yang ditulis dalam PL/pgSQL.
Fungsi ini dikembangkan berdasarkan Algoritma Penyisipan Terdekat untuk menyelesaikan Travelling Salesman
Problem. Algoritma tersebut menyisipkan titik tujuan wisata (simpul) pada posisi terbaik dalam jalur yang ada, yaitu
antara sepasang simpul yang menghasilkan perbedaan minimum antara waktu total wisata sebelum dan sesudah
simpul baru dimasukkan. Hasil pengujian menunjukkan bahwa fungsi tersebut dapat memecahkan masalah dalam
jangkauan waktu yang dapat diterima untuk aplikasi web dengan 22 simpul tujuan. Disimpulkan bahwa keseluruhan
prosedur sesuai untuk pengembangan aplikasi Web GIS yang memecahkan masalah perencanaan wisata keliling.

Kata kunci: masalah perencanaan wisata, PL/pgSQL, PostgreSQL, Web GIS

I. IntroductIon

A web-based Geographical Information System (GIS),

or web GIS, is GIS capabilities that are put on web sites

[1]. In a Web GIS, a map is no longer a static image, but an

interactive object that can be zoomed in or out and panned

to a location of interest. Web GIS also makes it possible

for web users to do few GIS analysis through the web

without the need of GIS software.

Among the popular GIS analyses performed in the web

is the shortest path analysis which searches the best route

to travel from one place to another via a road network.

This analysis helps people to ind the best route to travel
to a destination, but sometimes people need to arrange

the best route to visit a number of places within speciic
period of time. An example when such a problem occurs

is when a person wants to arrange a one day tour to visit

tourist attraction within a city. Even though the shortest

path analysis can be executed in Web GIS by using either

commercial or free and open source software, a web GIS

which provides function to solve the sightseeing tour

planning problem is still dificult to ind.
This article discusses a solution to the tour route

planning problem as mentioned above. An implementation

of the proposed solution using PostgreSQL is also

discussed. Since PostgreSQL is free open source software

that can serve data for web GIS, the solution will be very

economical for web GIS development.

II. Background

A. Tour Planning Problem

Generally, the problem of planning a tour route can be

viewed as a variation of the Travelling Salesman Problem

(TSP) because their objectives are similar, which is to ind
the best ordering of visiting several locations such that

the cost of the route travelled is minimized. Vaughn et.

al. categorized the problem as Travel Itinerary Planner

Problem (TIPP) [2]. They considered the problem as

116 Jurnal Rekayasa Elektrika Vol. 10, No. 3, April 2013

Versi online (e-ISSN. 2252-620x)

a Vehicle Routing and Scheduling Problem with Time

Window (VRSPTW) which is a variation of the General

Asymmetric Travelling Salesman Problem (TSP) in which

the minimum tour has ixed origin and inal destination
node, and the tour should be completed within speciied
time constrained. The imposition of the time constraints

cuts the total number of possible tours but adds the

complexity of the problem at the same time [2].

A deinition which is more speciic to sightseeing
tour planning was given by Godart [3]. He referred to the

problem as the Trip Planning Problem (TPP) which seeks

to ind a route from an origin to destination with several
stops at tourist attractions within a speciied period of
time such that the cost of activities (i.e. visiting sights),

lodging possibilities and transportation is minimized and

the attractiveness of the trip is maximized with respect to

activities and lodging.

Joest and Stille deined the problem as the Enhanced
Proitable Tour Problem (EPTP) which has the goal to
ind a route to visit nodes (tourist attractions) composing
it only once within the given time while maximizing the

prize of the nodes and arcs [4]. They simpliied Godart’s
deinition by not considering lodging possibilities. The
prize of the nodes and arcs are assigned accordingly to

relect their position in user’s preference. Besides, nodes
are also weighted by the time required to visit them, and

arcs are weighted by the distance between the nodes they

interconnect [4]. The prize of nodes and arcs can combine

the attractiveness, cost and other factor into one a single

value for each of them.

B. Approaches to Solve Tour Planning Problem

Theoretically, an exact solution to the TSP can be found

by picking the best tours after generating and evaluating

all possible tours, but this method is computationally hard

and ineficient for the TSP with many destinations [5]. If
near-optimal solution is adequate, a heuristics algorithm

can be used to signiicantly improved computational and
hence a solution can be found faster.

The problem of planning tour route inherits the

complexity of the TSP in addition to its extra constraints.

Although there are various deinitions of this problem, the
approaches to their solution are similar in principal, which

is making simpliication to the problem and applying
heuristics approach to obtain good solution in a reasonable

amount of time. The simpliication may be done by
reducing the complexity of the problem or by relaxing

some constraints.

Vaughn et. al. proposed a framework to solve the

problem which comprises three basic algorithms to select

a set of feasible destinations, provide the minimum path

between each pair of the selected destinations, and ind the
solutions to the time constrained TSP [2].

The above framework requires integration between

the algorithms and databases to support travel itinerary

planning [2]. Vaughn further speciied that the required
database includes network related data such as road links

and nodes, average speeds and speed limits on each road

link; turn penalties. In addition to those data, the database

should also contain destination related data and relevant

maps which include detailed street level maps with

addressable locations.

Another approach proposed by Joest and Stille

implemented Vaughn’s algorithm to reduce the graph size
for solving the routing problem [4]. They used Dijkstra

shortest path algorithm to ind the shortest path between
all pairs of places of interest and then used the result to

replace the original distances between places of interest.

Dijkstra algorithm is often used for searching the shortest

path between each pair of destinations in commercial car

navigation systems [7]. The nodes that do not represent

places of interest are deleted from the graph and the real

path is saved. The result is a complete graph consisting

only of places of interest and user-optimal paths between

them [4]. This reduction is important in facilitating

solution inding of the traveling salesman problem (TSP)
because the dificulty of the TSP increases as the number
of nodes grows.

Joest and Stille solved the reduced graph for the tour

route by applying an algorithm based on the insert/delete

heuristic of Mittenthal and Noon [4]. They generated

a tour by iteratively inserting the best possible node in

each step while keeping the total time within the given

constraint. They calculated the ratio of the change in cycle

prize to the change in cycle time for each node, which is

currently not in the tour, if the node is inserted between

each pair of nodes in the tour.The largest ratio indicates the

best node to be inserted at the optimal position between

a pair of node in the tour at the next step. The iteration

stops when there is no more feasible node to be inserted.

The tour obtained is then improved by considering a set of

nodes excluded from the tour while maintaining the tour

structure in everyiteration. This step is performed until

there is no further improvement gained [4].

C. PostgreSQL

PostgreSQL is an open-source object-relational

database management system (ORDBMS) derived from

POSTGRES Version 4.21. PostgreSQL supports most

of the SQL standards and offers many modern features,

such as complex queries, foreign keys, triggers, views,

transactional integrity, and multiversion concurrency

control. PostgreSQL gives lexibility for users to extend
it by adding data types, functions, operators, aggregate

functions, index methods, and procedural languages [8].

One important PostgreSQL feature is a loadable

procedural language for PostgreSQL database system.

The language, which is called PL/pgSQL, combines the

power of procedural language with the ease of use of

Structured Query Language (SQL), the standard language

for accessing and manipulating data in relational database.

PL/pgSQL can do anything that can be deined in C
language functions except for input/output conversion

and calculation functions for user-deined types. PL/

117Ardiansyah: A PostgreSQL/PostGIS Implementation for the Sightseeing Tour Planning Problem

Versi online (e-ISSN. 2252-620x)

pgSQL gives signiicant advantage in performing a group
of queries to the database. Every SQL statement must be

executed individually by the database server. Normally,

a series of query must be sent one by one from client

application to the database server. Each of them requires

certain amount of time due to interprocess communication.

Additional time for network overhead is necessary if the

server and clients located in different machine. A function

that performs a block of computation and a series of

queries inside the database server can be created by

using PL/pgSQL. Client only needs to send a single SQL
statement which invokes the function to perform a group

of queries, and thus a lot of time can be saved.

A set of functions which are combined to accomplish

certain task is called a module. An example of such module

is Pgdijkstra, which was created by Sylvain Pasche for

performing shortest path queries based on the Dijkstra

algorithm. The core of this module is a function which

computes a shortest path from a set of edges and vertices.

Capabilities of PostgreSQL can be exetended by
installing extension to the DBMS software. One example

is PostGIS, which is an extension to the PostgreSQL that

allows GIS (Geographic Information Systems) objects

to be stored in the database. It also provides supports

for spatial indexes as well as functions for analysis and

processing of GIS objects. PostGIS is necessary for

PostgreSQL to supply spatial data for a Web GIS and

requirement of PgDijkstra module.

III. Method

In general, the solution to the sightseeing or city tour

planning problem discussed in this article follows the

method of Joest and Stille [4], which starts by building

street network dataset, simplifying the network, and

solving the reduced network (graph). The difference is in

the algorithm for solving the TSP in the reduced network.

In this article, the solution to the TSP is based on the

Nearest Insertion Algorithm for solving TSP [5] with some

modiication. The algorithm is summarized below:
1. Initialize set R with the start node i and set T to contain

the candidates for destination nodes. The total time

spent in the tour (t
tot

) is equal to 0 (zero).

2. Remove a node from set T, insert it into set R and place

it after the node i.

3. Remove a node s from set T. Then for each pair of

nodes u and v in set R, calculate the change regarding

the time (or cost), Dt
suv

, if node s is inserted between

that node. Dt
suv

 is deined as:
∆t t t t
suv us sv uv

= + − ()1

where:

t
us

 is the time or cost of travelling from node u to node s

t
sv

is the time or cost of travelling from node s to node v

t
uv

 is the time or cost of travelling from node u to node

v

Record the minimum Dt
suv

 and the nodes u and v which

give the minimum value.

4. Check whether or not the following constraint is
satisied:

min() ()max∆t t t t
suv s tot

+ ≤ − 2
where:

t
us

 is the time spent at node s (node cost)

min(Dt
suv

) is the minimum Dt
suv

t
max

 is the user speciied maximum tour time
t
tot

 is the total time spent in the tour

5. If equation (2) is satisied, the node s will be inserted
between the pair of nodes u and v which gives the

minimum Dt
suv

.

Otherwise, the node s will be discarded and the process

is repeated from Step 3.

6. After adding the node s, update the total tour time (t
tot

)

by adding min(Dt
suv

) + t
s
 to the current ttot.

7. Repeat Step 3 to 7 until all the nodes in T are inserted

into set R.

The destination nodes were ranked based on their

popularity. The algorithm ensures the most attractive

destinations are included in the list as long as time permits

by picking the highest ranking node available in each

iteration.

The sightseeing or city tour problem has limited

destinations (nodes). Therefore, it is possible to calculate

the shortest time (or least cost) to travel from a node to

another using the Dijkstra algorithm and stored the result

in a table in the database. This approach actually simpliies
the road network because there are only limited number of

nodes and the shortest time for each pair of nodes which

need to be considered for solving the TSP based on the

above algorithm.

IV. IMpleMentatIon dan dIscussIons

Before implementing steps explained in the Method

section, a database which stores sightseeing attractions

(nodes) and road network data was built. There were 22

sightseeing attractions used for testing the implementation,

while the road network consisted of around 1000 line

segments. Those spatial data are shown in Figure 1.

Spatial data, such as points representing sightseeeing

attractions and lines representing the road, were prepared

using GIS software and then converted into PostgreSQL

format. Storing of spatial data in a PostgreSQL database

is possible when PostGIS extension is added to the DBMS

software.

The ranking of each sightseeing attraction relative to

the other and estimated time spent at the attraction (node

cost) were stored along with the node spatial data in a table

named node. The road spatial data of the road as well as

the attribute data, including name of roads, class of roads,

and time needed to travel through each road were stored

in other table. The road network was built from the road

data by using a function which is available in pgDijkstra

module. The shortest time to travel from an attraction to

another was then calculated by using another function

in pgDijkstra module, and the results were stored in the

118 Jurnal Rekayasa Elektrika Vol. 10, No. 3, April 2013

Versi online (e-ISSN. 2252-620x)

database in a table named path.

Implementation of the algorithm described previously

in the Method section required searching and retrieving

appropriate data from node and path tables. Those tasks

can be done quickly and easily by using SQL statement.

Since determining the best position to insert a node

requires an iterative process of inding the position that
gives the minimum cost, SQL statements which retrieve

appropriate data from the database must be executed

repeatedly. As it is discussed previously, the best way to

execute a block of computations and a series of queries

in PostgreSQL is by creating a function using PL/pgSQL

language. Such function can perform the entire algorithm

eficiently within PostGIS/PostgreSQL. Therefore, a PL/
pgSQL functions named make_route() was created inside

the database. This function generates the best route based

on user-speciied maximum tour time. The function takes
the starting node ID, the maximum tour time in minutes,

and mode of tour (one way or round trip) as the inputs. The

functions return a set of records that contains data of the

resulting route, which are node ID, time spent at a node,

and travel time between from a node to the next node.

Function make_route() checks whether or not the

resulting route violates the given maximum tour time. If

inserting a node in its best position will cause the total

tour time exceeds the maximum time, the node will not

be inserted. The function will ind another node which
can be inserted into the route without violating the given

maximum time. This function will always test all nodes in

the node table because it tries to include as many nodes as

possible into the route for the given maximum tour time.

Nodes are retrieved from the database according to their

rankings, starting from the highest ranking. No matter

what is the value of the maximum time, function make_

route() will do the iteration until all the nodes are retrieved

and tested.

The function uses three arrays to hold information of

the generated route, which is referred to as set R in the

algorithm. The irst array keeps the node ID of all nodes
that makes up the route. The second array keeps the node

cost of each node in the irst array. The node cost of the i-th

element in the irst array is the i-th element in the second

array. The third array stores the cost of travelling from a

node to the next node. The i¬-th element of this array is a

cost of travelling from the i-th node to the (i+1)-th node

in the irst array. The last element of the third array will
be 0 (zero) because the tour ends at that node (sightseeing

attraction).

In the case of one-way trip mode, the irst array is
initialized with a start node. The best position to insert a

node is determined by calculating the change regarding

the time (or cost), Dt, if the node is inserted between the

i-th and the (i+1)-th element of the array. The calculation

follows the steps given in the algorithm. Initially, the cost

of travelling from the last element of the array to the new

node is assigned as the minimum Dt, andthe index of the

last element is stored as the best position. Then, nodes are

retrieved from the node table one-by-one, starting from

the highest ranked node. Each time a node is retrieved,

two values of shortest time are retrieve from path table.

One is for traveling from the i-th element to the node (or,

to-node cost), and the other is for travelling from from the

node to the (i+1)-th element (or from-node cost). For each

pair of the i-th and (i+1)-th element of the array, the Dt is

calculated and then the result is compared to the current

minimum Dt. If the new Dt is smaller, then it replaces the

current minimum Dt. The index i is stored as the best index

(min_idx). The cost of traveling from this i-th element

to the new node is stored as the minimum to-node cost,

whereas cost of traveling from the new element to the

corresponding (i+1)-th element is stored as the minimum

from-node cost. After all the elements in the irst array are
checked, minimum Dt is used to check whether Eq. (2) is

satisied. If so, the new node is inserted into the irst array
between the min_idx-th and (min_idx+1)-th elements. The

second array is updated by inserting the node cost at the

same position as its corresponding node. The third array

is updated by replacing the min_idx-th element with the

minimum to-node cost and inserting the minimum from-

node cost after that element. Those updated arrays are then

used to determine the best position to insert the next node.

For the round trip mode, the irst array is initialized
with two elements and both of them are the start node.

This is to indicate that the tour starts and ends at the same

place. The new nodes will be inserted between these two

nodes. Initially, the minimum Dt is set to 999999. The

procedure of determining the best position and inserting

the new node is the same as in the case of one-way trip

described above.

The function was tested by executing it through an

SQL SELECT query statement in pgAdmin tools of
PostgreSQL. The query statement invokes the function

to generate one-way tour route from a selected starting

point and speciied maximum tour time. The tests were
conducted by increasing the maximum tour time gradually

while keeping the starting point the same throughout the

Figure 1. Sightseeing attractions and road data used for testing the

implementation of the algorithm

119Ardiansyah: A PostgreSQL/PostGIS Implementation for the Sightseeing Tour Planning Problem

Versi online (e-ISSN. 2252-620x)

test. The test was repeated three times for each selected

maximum tour time, and the average execution time of

the query was calculated for each case. The tests were

conducted using an NEC PowerMate PC Series with 3.0
GHz Intel Pentium® 4 CPU and 512 MB of RAM. The
test results are summarized in Table 1.

The number of available sightseeing attractions

(nodes) in the database used in the test was 22. Thus,

the test stopped at the maximum tour time of 14.5 hours

because all the nodes were visited when this values was

input. Table 1 shows that the maximum average run time

of make_route() function was 82.8 ms.

A study on Quality of Service for Web conducted by

Bouchet. al. found that the threshold where QoS as ‘Low’
is around 11 seconds [9]. Nielsen stated that users start

to feel the web is slow if the response time is longer than

1 second, while delays greater than 10 seconds cause

users to lose their focus to the operation and switch to

other task [10]. Therefore, the average run time of 82.8

ms is acceptable for Web application because it does not

add much to the web response time. The function can be

used for inding the best sightseeing or city tour route in a
Web GIS application as long as the number of sightseeing

attractions is not too many. The result shows the runtime

is still acceptable (much less than 0.1 seconds) when the

number of nodes is 22.

Even though the make_route() function always checks

all the available nodes in the database, its running time

still varies according to given maximum tour time. This

variation occurs because make_route() function traverses

two loops. The outer loop depends on the number of nodes

available in the database, while the inner loop depends

on the number of nodes which are already inserted in the

array. Less tour time allows less nodes inserted into the

array, and thus, less iteration needed for checking whether

a new node can be inserted.

V. conclusIons

This article discussed a procedure for inding the
best multi stops route for sightseeing tour through a

road network. The procedure was developed based on

the Nearest Insertion Algorithm. The algorithm inserts

a sightseeing attraction (node) at the best position in the

existing route, which is between a pair of places that yields

the minimum difference between the total tour time before

and after the new node is inserted. A node is inserted into

an existing route only if the resulting tou time does not

violate the given maximum tour time. In this case the time

spent at each node is also added up to the tour time.

The algorithm was implemented as a function written

in PL/pgSQL language ofPostgreSQL DBMS software.

The function was tested to solve sightseeing tour planning

problem with different maximum tour time, and was

able to give solution in much less than 0.1 seconds for

22 destination nodes. Since PostgreSQL can provide data

for Web GIS, adding the function, along with PostGIS

extension and pgDijkstra module, to PostgreSQL will

make it possible to develop a Web GIS application which

can provide solution to the sightseeing tour planning

problem.

references

[1] K. Zheng, T. R. Soomro, and Y. Pan, “Web GIS: Implementation

issues,” Chinese Geographical Science, vol. 10, no. 1, pp. 74–79,

Beijing, China: Science Press, 2000.

[2] K. M. Vaughn, M. A. Abdel-Aty, and R. Kitamura, “A framework

for developing a daily activity and multimodal travel planner,”

International Transactions in Operational Research, vol. 6, pp.

107–121, 1999.

[3] J. M. Godart, “Using the trip planning problem for computer-

assisted customization of sightseeing tours,” in Information and

Communication Technologies in Tourism, P. J. Sheldon, K. W.

Wober, and D. R. Fesenmaier, Eds., Montreal, Canada: Springer,
2001.

[4] M. Joest and W. Stille, “A user-aware tour proposal framework

using a hybrid optimization approach,” Int. Proc. of 10th ACM

Int’l Symp. Advances in GIS, 2003.

[5] D. S. Johnson and C. H. Papadimitriou, “Computational
complexity,” in The Traveling Salesman Problem, E. L. Lawler,

J. K. Lenstra, A. H. G. R. Kan and D. B. Shmoys, Eds. New York,

NY: John Wiley & Sons, 1985.

[6] D. S. Johnson and C. H. Papadimitriou, “Performance guarantees
for heuristics,” in The Traveling Salesman Problem, E. L. Lawler,

J. K. Lenstra, A. H. G. R. Kan and D. B. Shmoys, Eds. New York,

NY: John Wiley & Sons, 1985.

[7] A. Maruyama, N. Shibata, Y. Murata, K. Yasumoto, and M.

Ito, “A personal tourism navigation system to support traveling

multiple destinations with time restrictions,” 18th International

Conference on Advanced Information Networking and

Applications (AINA’04), 2004.

[8] The PostgreSQL Global Development Group. (Oct. 11, 2006).

PostgreSQL 8.1.4 Documentation [Online]. Avalaible: http://

www.postgresql.org/docs/manuals/.

[9] A.Bouch, A. Kuchinsky, and N. Bhatti, “Quality is in the eye of

the beholder: Meeting Users’ Requirements for Internet Quality
of Service,” Proceedings of CHI2000 Conference on Human

Factors in Computing System, 2000.

[10] J. Nielson, Usability engineering, Boston , MA:AP Professional

Press, 1994.

Table 1. Results of executing make_route() function with different

maximum tour time

No
Maximum Tour

Time (hours)

Average run time

(ms)

Number of places

visited in the route

1 1.0 21.8 2

2 1.5 35.8 3

3 3.0 40.8 5

4 5.0 49.7 7

5 8.0 67.2 12

6 10.0 76.8 15

7 12.0 77.9 18

8 14.0 82.9 21

9 14.5 82.8 22

