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Abstract—Collaborative learning is widely applied in 

education. One of the key aspects of collaborative learning is 

group formation. A challenge in group formation is to 

determine appropriate attributes and attribute types to gain 

good group results. This paper studies the use of an improved 

ant colony system (ACS), called Multi Objective Ant Colony 

System (MOACS), for group formation. Unlike ACS that 

transforms all attribute values into a single value, thus making 

any attributes are not optimally worth, MOACS tries to gain 

optimal values of all attributes simultaneously. MOACS is 

designed for various combinations of attributes and can be 

used for homogeneous, heterogeneous or mixed attributes. In 

this paper, sensing/intuitive learning styles (LSSI) and interests 

in subjects (I) are used in homogeneous group formation, while 

active/reflective learning style (LSAR) and previous knowledge 

(KL) are used for heterogeneous or mixed group formation. 

Experiments were conducted for measuring the average 

goodness of attributes (avgGA) and standard deviation of 

goodness of attributes (stdGA). The objectives of MOACS for 

homogeneous attributes were minimum avgGA and stdGA, 

while those for heterogeneous attributes were maximum 

avgGA and minimum stdGA. As a conclusion, MOACS was 

appropriate for group formation with homogeneous or mixed. 

Keywords— Collaborative learning, ACS, MOACS, group 

formation, homogenous group, heterogeneous group, mixed 

group 

I. INTRODUCTION 

The combination of learning method and social science 

has led to the development of collaborative learning in 

which students learn through group learning activities. The 

objective of group learning activities is that learners can 

individually gain knowledge by doing group work and 

interacting with peer learners. Tasks in group learning 

activities require learners to work together to solve 

problems, discover information, and complete projects [1]. 

Collaborative learning is a learning approach to improve 

social ability, practice skill, and experience, and enhance 

communication between [2][3][4]. In practicing 

collaborative learning in a class, teachers are required to 

perform a number of groups of learners.  

Group formation is a key factor for supporting the 

success of collaborative learning activity [4][5]. The main 

objective of group formation is to build fair and effective 

groups [6][7], which can be achieved by finding appropriate 

attributes and methods. Group formation is important to 

support fairness and effectiveness of collaborative learning 

[6 [5]. The fairness is related to students’ feeling of 

convenience and happiness when working in a group [6]. 

The effectiveness refers to the opportunities of students 

participating in learning activities and gaining benefits from 

the group work, such as communication skill ability, 

knowledge, etc. In group formation, several aspects such as 

psychology, sociology, philosophy and education must be 

considered. 

With the growth of information technology, 

collaborative learning is influenced by recent technologies 

of information; it is called computer-supported collaborative 

learning (CSCL). Group formation in CSCL is not a manual 

process anymore. The complexity of group formation has 

been increased because the group formation attributes and 

constraints are more and more varied. Group formation is an 

NP-Hard problem [8]. Previous research has studied various 

methods for group formation, such as rule/inference [9], 

Multi-agent [10] [11], Greedy algorithm [12], Genetic 

Algorithm [13], Hill Climbing [14], Fuzzy C-Means [15], 

Ant Colony Optimization [16] , and Semantic Web [8]. 

One of the challenges and issues in group formation 

system is how to combine learners’ attributes which are 

considered good for performing homogeneous or 

heterogeneous groups. In this study, we start our work by 

reviewing and analyzing critical design issues of group 

formation and organize them according to some 

classification schemes. So that, it can help teachers to 

develop group formation system based on their cases. The 

various criteria or attributes have been applied in group 

formation, such as knowledge or expertise in a specific 

domain [9][15], learning goal [10], learners’ performance in 

previous teamwork [10][16], personality traits [16], learning 

style [8][17][18], thinking style [13], Belbin role and 

minority [8], and preferred time slots and project [12]. 

This paper discusses our research on group formation. 

We applied the Multi Objective Ant Colony System 

(MOACS). This research accommodates different 

combinations of attributes for various objectives of grouping 

that lead to homogeneous, heterogeneous, or mixed groups. 

The remainder of this paper is organized as follows. Section 

2 discusses our study on previous research on group 

formation. Section 3 explains MOACS for group formation 

and Section 4 is about the experiments and results. Finally, 

Section 5 presents conclusions and the future work. 

II. GROUP FORMATION

There are three types of groups: heterogeneous, 

homogeneous and mixed groups [19]. Homogeneous groups 
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have members with similar levels or homogeneous values of 

learners’ attributes. Homogeneous groups, however, offer 

more advantages than heterogeneous groups when applied 

to skill exercises and guided discovery learning activities. 

On the other hand, heterogeneous groups consist of 

members with different levels, values or types of grouping 

criteria or attributes. Heterogeneous groups are appropriate 

for in-class problem solving (create journals, project, 

analysis of some cases) and long-term problem solving 

projects.  

A former study has concluded chances to gain success, 

as it offers an opportunity for learners to be more innovative 

and creative [20]. Furthermore, some research has proved 

that heterogeneous groups support learners more to achieve 

learning goals than homogeneous groups [17][18][20]. The 

heterogeneity of the members means the groups have many 

resources. Every member gains rich and various points of 

view and opinions in groups rising from different 

personalities, experience, learning styles, etc. Combining 

both types has resulted in mixed groups, which are groups 

that consist of members with a combination of 

homogeneous and heterogeneous attributes. Homogeneous 

and heterogeneous attributes are not constraints to be strictly 

separated. Groups may have both heterogeneous and 

homogeneous attributes.  

Another important attribute that must be considered is 

group size. Group size becomes an important parameter as it 

influences communication and relationships between group 

members. There is a useful point about group size, that is 

the larger the group size, the more groups can provide 

resource contribution, knowledge sharing, diversified skills 

and opportunities to meet other individuals with related 

interests. On the other hand, when group size increases, new 

problems tend to appear, such as difficulties in group 

organizational management, social loafing, free riding, 

trouble with monitoring behaviour of members, production 

blocking, evaluation apprehension, reduction in group 

ability to coordinate and collaborate, and pressure on 

individuals to conform [21]. Previous studies have revealed 

that smaller groups have promoted individual participation, 

greater satisfaction, more time for discussion, and an 

enhanced perception that contributions of members are vital 

to the success of the process [21]. Group size should not be 

based on convenience or instructor preference, but rather the 

type of tasks and the number of members required in 

accomplishing the task [21]. Slavin [4] proposed that the 

size of group formation is four persons with mixed ability 

members, for example one has high achievement, two have 

average achievement, and the other has low achievement. 

Another research [13] formed groups with three members 

each. Furthermore, another study suggested an optimal size 

of a group based on learning objectives [22], including skill 

exercises (teams of two), guided discovery Learning (teams 

of three), in-class problem solving (teams of four), and long-

term problem solving project (teams of five). 

There are a number of grouping attributes that have been 

used in previous studies. Among such group attributes, 

learning styles, thinking styles, personality types, 

personality traits and team role are the most used attributes. 

1) Learning Style 

A previous study by Liu et al. [23] used active/reflective 

dimensions of the Felder and Silverman learning style 

model to form groups [24]. They applied similar learning 

styles for doing the first task and diverse learning style for 

doing the second task. The study showed that applying 

diverse learning styles mean learners have more meaningful 

interaction and fewer disagreements in the group 

collaboration work. Another study [17] used other 

dimensions of learning styles, active-reflective, and sensing-

intuitive. It affected the quality of learners’ group work. 

Diverse learning styles make learners become aware of their 

own strengths and weaknesses, as well as their team mates’ 

strengths and weaknesses. Knowing their team mates’ 

characteristics made learners honor differences among them, 

talents and competence [25]. 

2) Thinking Style 

Thinking style refers to a way for learners to find a 

solution to their problem. A previous study [13] found that 

there is a correlation between learners’ attitudes and 

cooperation with group outcomes. Grouping considering 

thinking styles resulted in better groups in that they show 

less variance in group performance than randomly assigned 

groups do. 

3) Personality Traits 

A previous study found that learners grouped based on 

the performance level and personality attributes (traits) 

performed better than randomly-assigned or self-selected 

groups [20]. 

4) Team Role 

Groups in some cases need to assign different roles to 

their member. It has been proved that the right role 

assignment resulted in good performance in a group [8]. 

III. OUR RESEARCH: GROUP FORMATION USING MOACS 

ALGORITHM  

The idea of using Ant Colony Optimization (ACO) for 
group formation system has been proposed by [16] and [20]. 
In previous study, ACO transform all attribute’s score 
become single score, thus making any attributes are not 
optimally worth. In this study, we apply MOACS that 
enables to group learners and combine homogeneous or 
heterogeneous attributes of learners. MOACS tries to gain 
optimal score of all attributes simultaneously. MOACS 
consists of five phases, including initialization, exploitation, 
and exploration, finding the best fitness score, and local / 
global updating rule. 

A. Group Attributes and Constraints 

Grouping attributes is one key aspect to form a group 

which are gathered from learners. Instructors or teachers 

must choose the group attributes before starting group 

formation. However, MOACS can use only attributes that 

have a score range between 0 and 1 and the attribute has 

qualitative evaluation by previous literature. Learners’ 

attributes used in group formation in this research consist of: 

1) Previous knowledge level 

Previous knowledge level is learners’ expertise relevant 

to course or materials. This attribute usually is obtained 

from the grade in prerequisite course or pre-test before 
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study. The different levels of knowledge between learners in 

one group can support interaction between learners with 

high knowledge and low knowledge [20].  

2) Experience 

Experience is related to learners’ experience about 

specific cases or projects that learners have to solve it. The 

similar level of experience in one group can give each 

learner an opportunity to grow [8]. When learners have an 

opportunity to grow, learners will do the best together to 

reach the project goal. 

3) Learning style  

Learning style has four dimensions: active/reflective, 

sensing/intuitive, global/sequential, and verbal/visual. Our 

study applies two attributes, which are active/reflective and 

sensing/intuitive. Placing different learners with active and 

reflective learning style can raise meaningful interaction 

among them [20]. In contrast, placing similar learners with 

either sensing or intuitive dimension in one group will 

benefit learners [15][24][25]. 

4) Interest in a subject [26][27] 

Every learner has interests in some subjects. The 

subjects can be hobbies, knowledge, music, movie, sport, or 

others. Different interests of learners can enrich group 

members’ knowledge and experience when sharing 

knowledge or story. Similar interests of learners can 

motivate the group to engage in a higher level of interaction, 

that learners with high interest can motivate other learners 

with low interests.  

5) Thinking style in functionality dimension 

Thinking style in functionality dimension consists of 

three attributes: legislative, executive, and judicial. Learners 

with similar thinking style in functionality dimension can 

collaborate that will improve learners’ attitudes, the 

collaborative work, and group outcomes [13]. 
The type and value range of each attribute are shown in 

Tabel 1. 

Table 1 Group Formation Attributes 

Attributes Type, Range Value Normalized Labels 

Prior knowledge 

level or score of 

previous course 

or task 

Heterogeneous, 

Between 0 and 100 
[0..1] 

High/ 

Moderate/ 

Low 

Learning style in 

Active/Reflectiv

e dimension 

Heterogeneous, 

Between  -11 and 11 
[0..1] 

Active/ 

Neutral/ 

Reflective 

Learning style in 

sensing/Intuitive 

dimension 

Homogeneous,  

Between  -11 and 11 
[0..1] 

Sensing/ 

Neutral/ 

Intuitive 

Thinking style in 

functionality 

dimension 

Homogeneous,  

Between 0 and 100 
[0..1] 

Legislative/ 

Executive/ 

Judical 

Learner’s 

interest in a 

subject 

Heterogeneous, 

Between 0 and 10 
[0..1] 

Interested/ 

Medium/ 

Uninterested  

 

B. Algorithm: Multi-Objectives Ant Colony System 

Figure 1 shows how group formation is done with 
MOACS. 

 

Figure 1 Group Formation using MOACS 

 

1) Initialization Phase 
In multi-objective ant colony system (MOACS) problem, 

every solution by ant is measured according to more than one 
objective function, each of which must be minimized or 
maximized [28][29]. In group formation problem using 
MOACS, the objective function is the objective of attribute 
that must be heterogeneous (maximized) or homogeneous 
(minimized). The group formation problem is modelled as a 
complete graph that represents the closeness among learners. 
The learner’s attributes for learner -th that have  attributes 
are modelled by . The closeness 
among learners is measured according to each learner’s 
attributes using Euclidean distance and represent by 
closeness matrices . Here is the 

formula for calculating distance between two learners for the 
r-th attribute. 

 
(1) 

The proposed MOACS uses an ant to simultaneously 
optimize all objectives: the homogeneous attribute is 
minimized and heterogeneous attribute is maximized, 
because all attributes and their objectives are all important. 
All objectives share the same pheromone trails. In every 
iteration, an ant k ( , Nants is the 
number of ant in a colony that construct one feasible group 
solution and after ants have solution, the best solution will be 
chosen. The key of MOACS for group formation is how to 
determine the state transition rule (exploration and 
exploitation), group quality function, and the best solution 
evaluation and global updating rule. 

2)  Exploration and Exploitation 
Every ant does exploration and exploitation to choose 

group member. An ant selects the first member of the group 
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using an exploration formula and the second member until 
the last member in a group using an exploitation formula. If 
the targeted number of members is four, the ant will do 
exploration to the first member and then do exploitation to 
member 2 until 4. After that, for the next group, firstly, the 
ant does exploration and it continues with exploitation until 
all learners have been visited. When ant in learner  and 
selects the next member (let say learner ), the ant will use 
the exploitation formula given by: 

 

(2) 

 that represent the weight of each attribute and 

the value depends on the number of attributes r;  represents 
the relative importance of each attribute with respect to the 
pheromone trail, given by .  is defined as learner  that 

has not been chosen by ant .   is the visibility for the 

objective or maximum distance between learner  and  in 
attribute -th. In general, it is formulated in. 

 

(3) 

Homogeneity or heterogeneity is the objective of each 

attribute. The exploration and exploitation in MOACS 

correlates to the number of attributes and each attribute’s 

objective.  

When an ant does exploration, it will select the learner  

randomly from  learners (  is learners who have not 

been chosen by ant ), according to the probability 
distribution given by the following calculation. 

 

(4) 

After an ant has explored and exploited learner’s graph 
and all groups have the same number of members, an ant 
then checks . If there are still learners in , it means that 

there are orphan learners or learners who have not assigned 
to groups. So that, an ant will ignore the rule that limits the 
number of members in each group and allocate the learners 
in  to appropriate groups. This allocation will happen until 

there is no member left in . The final activity in 

exploration and exploitation is local updating rule, which is 
updating of pheromone value in the route that has been 
explored and exploited by ant . 

 (5) 

Furthermore, the initial value of pheromones  is also 
calculated using the following formula. 

 

(6) 

Where n is the number of learners in a graph,  , 

which represents the average goodness of the r-th attribute in 
the initial solution , which is generated randomly. 

3) Solution Score 
The result of an ant tour is a sequence of groups and their 

members. The quality of every attribute in each group will be 
measured by calculating the goodness of attribute score [16]. 
The goodness of attributes of solution given by ant ( ) 
for attribute -th ( ) in group -th could be computed by 
calculating the average distance ( ) of members in group -
th for the r-th attribute. 

 
(7) 

Then, the goodness of attributes will calculate by: 

 
(8) 

Where   is the learner-score of the j-th learner in 

group i-th in solution  without learner that his score 
become  and . Variable const is a 
constant number that can be set to 1, 0.01, or other. For 

example, when const is 1, the minimum value of  is 0 

and the maximum value is 1, when const is 0.01, the 

minimum value of  is 0 and the maximum value is 

100. The  indicates that the r-th attribute is in good 

heterogeneity when the score closes to the maximum value 
or in good homogeneity when the score closes to the 
minimum value. Until this phase, every group has goodness 
of attributes as much as the number of attributes ( ). 

 
(9) 

After that, the grouping result by an ant is measured by 
calculating the average goodness of attributes from each 
group and this result is called Pareto set PK. 

 
(10) 

 represent the average goodness of attribute r-th in 

solution .  

4) The Best Solution Evaluation and Global Updating 

Rule 
In each iteration, the solution of each ant is recorded to a 

Pareto set PK and it is called local non-dominated set. 
Pareto-optimal set GP is called global non-dominated set, 
which is the best solution found by ants from the beginning 
of iteration. The solution in PK will be compared with the 
solution in Pareto-optimal set GP  in order to check the better 
solution. When the solution in PK is non-dominated by GP, 
it means that PK is a new Pareto-optimal set, the value of GP 
and  is updated by GK and . Therefore, for each 
solution in  found after one iteration by all ants in one 
colony, the pheromone information is globally updated 
according to the following formula. 

 

(11) 
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 represents the average goodness of attribute -th in 

solution . 

These four steps are done in each iteration (one colony of 
ant doing tour) until the end of iteration by all colonies or 
met the targeted condition. 

IV. EXPERIMENT AND RESULTS 

This section discusses the implementation of MOACS for 

group formation with homogeneous attributes, 

heterogeneous attributes, or mixed (homogeneous and 

heterogeneous) attributes. There are three scenarios which 

apply different types of attributes: homogeneous, 

heterogeneous, and mixed. Every scenario evaluates orphan 

learners, the average goodness of attributes (avgGA), and 

standard deviation (stdGA). MOACS aims to avoid orphan 

learners, which means that all learners can be grouped. The 

targeted condition for homogeneous attributes is minimum 

average goodness of attribute (avgGA) score, while for 

heterogeneous attributes the targeted condition is the 

maximum average goodness of attribute (avgGA) score. 

Standard deviation (stdGA) is used to show the distribution 

of goodness of attribute score in every group. The more 

minimum standard deviation, the better the groups resulted. 

The minimum standard deviation shows that the group result 

has a balancing goodness of attribute among groups. 
The testing scenario was divided into three scenarios 

according to the types of attributes in group. The three 
scenarios were group formation using homogeneous for all 
attributes, group formation using heterogeneous for all 
attributes, and group formation using homogeneous in some 
attributes and heterogeneous in some attributes. In every 
scenario, MOACS was compared with two methods, which 
were a random method and ant colony by using 
homogeneous, heterogeneous, and mixed attributes. 

A. Scenario 1 – Homogeneous Attributes  

The objective of the first experiment is to measure the 
performance of MOACS for homogeneous group formation. 
MOACS was applied for group formation in Computer 
Organization and Architecture course with 42 students. It 
used homogeneous attributes for all attributes. The tasks in 
Computer Organization and Architecture are multiple choice 
and essay questions that must be solved by learners 
individually and then they discuss each solution to find 
correct answers. The attributes used are learners’ interests (I) 
and learning styles in sensing/intuitive dimension (LSSI). 
The size of groups was seven as requested by the instructor. 
The result of grouping was shown in the following chart. 

The lowest score in Figure 2 shows a good homogeneous 
score related to the attributes. MOACS is able to minimize 
learning style in Sensing/Intuitive dimension (LSSI) 
attribute. The score variation among learners tends to give a 
minimum goodness of attribute for homogeneous attribute. 
On the other hand, for interest in a subject (I) attribute, 
MOACS result is between the random method and Ant 
Colony System (ACS). The score variation among learners 
tends to give a maximum score for homogeneous attributes. 

 

 

Figure 2 Average Goodness of Attribute Score in Scenario 1 

 

 

Figure 3 Standard Deviation of Goodness of Attribute in Scenario 1 

 

The lower standard deviation score in Figure 3 shows 
good group results. MOACS is able to minimize the 
distribution of goodness of attribute scores in group 
formation which is better than other methods. The results 
show the group results have balancing goodness of attributes 
among groups. The expected result of group formation using 
homogeneous attributes is minimum avgGA and stdGA. 
Based on the average goodness of attributes in Figure 2 and 
standard deviation in Figure 3, MOACS is able to be used for 
group formation using homogeneous attributes. 

B. Scenario 2 – Heterogeneous Attribute 

The objective of the second experiment is to measure the 
performance of MOACS for heterogeneous group formation. 
MOACS was applied in a Design and Analysis Algorithm 
class with 40 students for grouping learners using 
heterogeneous attributes. The group task is to create a 
scientific essay. The attributes used are previous knowledge 
level (KL) and learning styles in active/reflective dimension 
(LSAR). The size of group is two. The result of grouping is 
presented in the figure 4. 
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Figure 4 Average Goodness of Attribute Score in Scenario 2 

 

The highest score for heterogeneous attribute in Figure 4 
is a good result. MOACS results in low score in knowledge 
level (KL) and Learning Style in Active/Reflective 
dimension (LSAR). The knowledge level score has range 
between 4, 3.5, 3, 2.5, 2 until 1 before normalized to 0-1. The 
score variation is low, thus making it difficult to gain a 
maximum goodness of attribute score. Furthermore, LSAR 
score has range between -11 to 11. Then it is normalized to 
0-1. The score variation in each learner tends to give a 
maximum goodness of attribute for heterogeneous attributes. 

 

Figure 5 Standard Deviation of Goodness of Attribute in Scenario 2 

 

The result in Figure 5 shows that MOACS is able to 
minimize the distribution of attribute in every group. 
MOACS is able to minimize the distribution of goodness of 
attributes scores in group formation. The result shows 
balanced goodness of attribute among groups. The expected 
result of group formation using heterogeneous attribute is the 
maximum avgGA and minimum stdGA. Based on the 
average goodness of attribute in Figure 4 and standard 
deviation in Figure 5, MOACS is not appropriate for group 
formation using heterogeneous attributes. 

C. Scenario 3 – Mixed Attribute 

The objective of the third experiment is to measure the 
performance of MOACS for mixed homogeneous and 
heterogeneous group formation. MOACS is used for group 
formation in a Software Analysis and Design (APPL) class 
with 38 students using heterogeneous and homogeneous 
attributes. The main task of the APPL class is document 
analysis and design. The attributes used are learning style in 

sensing/intuitive dimension (LSSI) set to homogeneous and 
learning style in active/reflective dimension (LSAR) and 
previous knowledge level (KL) set to heterogeneous. The 
size of the group was four. The result of grouping is shown 
in the following chart. 

 

Figure 6 Average Goodness of Attribute Score in Scenario 3 

 

Figure 6 shows that MOACS is able to maximize 
Learning Style in Active/Reflective dimension (LSAR) and 
minimize Learning Style in Sensing/Intuitive dimension 
(LSSI) attributes. The learning style in active/reflective 
dimension (LSAR) gives maximum avgGA, which means 
that it is good for heterogeneous attributes. On the other 
hand, learning style in sensing/intuitive dimension (LSSI) 
gives a minimum avgGA, which means that it is good for 
homogeneous attributes. The knowledge level score has 
range between 4, 3.5, 3, 2.5, 2 until 1 before it is normalized 
to 0-1. The score variation for each learner is low, thus 
making it difficult to gain  maximum goodness of attribute 
score. LSAR score has range between -11 to 11 before it is 
normalized to 0-1. The score variation for each learner tends 
to give a maximum goodness of attribute score for 
heterogeneous attribute. Similar to LSAR, LSSI score has 
range between -11 to 11, then it is normalized to 0-1. The 
score variation for each learner tends to give s minimum 
goodness of attribute score for homogeneous attributes. 

 

Figure 7 Standard Deviation of Goodness of Attribute in Scenario 3 

 

Figure 7 shows that MOACS is able to minimize the 

distribution of Knowledge Level (KL) and Learning Style in 

Sensing/Intuitive dimension (LSSI) in group results. The 

result indicates that MOACS is able to distribute members 

among groups with balanced knowledge level and learning 

style in sensing intuitive attribute scores. The expected 

results of group formation using mixed attributes are 
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maximum avgGA for heterogeneous attributes, minimum 

avgGA for homogeneous attributes, and minimum stdGA 

for all attributes. Based on the average goodness of 

attributes in Figure 6 and standard deviation in Figure 7, the 

MOACS is appropriate for group formation using mixed 

attributes. 
The experiment results show that MOACS gives 

minimum avgGA and stdGA in homogeneous group 
formation, which means that the group has member with 
similar degrees of attributes. The good result is shown in 
mixed group formation in two of three attributes related to 
avgGA. MOACS gives a maximum avgGA in learning style 
in active/reflective dimension for heterogeneous attribute and 
a minimum avgGA in learning style in sensing/intuitive 
dimension for homogeneous attribute. Furthermore, it gives a 
minimum stdGA in knowledge level and learning style in 
sensing/intuitive dimension. On the other hand, MOACS 
gives minimum avgGA and stdGA in heterogeneous group 
formation, which means MOACS is able to distribute 
members among groups with balanced attribute scores, but 
does not result in good goodness of attribute score for 
heterogeneous attributes. To conclude, MOACS is 
appropriate for group formation using mixed attributes. 

V. CONCLUSION 

We have implemented Multi Objective Ant Colony 
System (MOACS) for group formation. The group formation 
is dynamic which can be applied to various combinations of 
attributes. Attributes that can be used in group formation 
includes learning styles, thinking styles, interests, and 
learner’s knowledge. Considering collaborative learning 
requires homogeneous groups for some tasks or 
heterogeneous groups for other cases, we classify learners’ 
attributes into homogeneous or heterogeneous. We test 
MOACS for homogeneous, heterogeneous, and mixed group 
formation. The tests show that MOACS is appropriate for 
homogeneous or mixed group formation. 
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