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Abstract—The evaluation of photosynthetic pigments 
composition is an essential task in agricultural studies. This is 
due to the fact that pigments composition could well represent 
the plant characteristics such as age and varieties. It could also 
describe the plant conditions, for example, nutrient deficiency, 
senescence, and responses under stress. Pigment role as light 
absorber makes it visually colorful. This colorful appearance 
provides benefits to the researcher on conducting a non-
destructive analysis through a plant color digital image. In this 
research, a multispectral digital image was used to analyze three 
main photosynthetic pigments, i.e., chlorophyll, carotenoid, and 
anthocyanin in a plant leaf. Moreover, Convolutional Neural 
Network (CNN) model was developed to deliver a real-time 
analysis system. Input of the system is a plant leaf multispectral 
digital image, and the output is a content prediction of the 
pigments. It is proven that the CNN model could well recognize 
the relationship pattern between leaf digital image and pigments 
content. The best CNN architecture was found on ShallowNet 
model using Adaptive Moment Estimation (Adam) optimizer, 
batch size 30 and trained with 15 epoch. It performs satisfying 
prediction with MSE 0.0037 for in sample and 0.0060 for out 
sample prediction (actual data range -0.1 up to 2.2). 

Keywords—convolutional neural network, multispectral 
digital image, non-destructive evaluation, photosynthetic pigments 

I. INTRODUCTION 

Knowledge about photosynthetic pigments composition 
in a plant is essential due to its vital role in plant development 
stages. The pigments composition alteration is also known 
strongly represent the plant responses to internal factors and 
environmental changes [1]. Therefore, studies to develop an 
efficient method to describe pigment composition within the 
plant is one among the important topics in agriculture.  

As digital technology is proliferating, a nowadays 
efficient way in plant evaluation is commonly related to the 
concept of real time and non-destructive measurement [2]. 
Digital imaging together with artificial intelligence now 
become a popular methods to conduct a real-time and non-
destructive evaluation [3]. It is now possible to determine and 
quantify pigments within the plant through its digital image. 
Moreover, much valuable information could be provided 
automatically by implementing artificial intelligence method 
on those quantifications. Such approaches are proven 
significantly more efficient in cost and time.  

Artificial neural network (ANN) is widely used by the 
agricultural researchers to conduct classification and 

prediction on a plant. Some tasks are known to use ANN as 
the primary data analysis method, e.g, leaf area estimation 
[4], yield prediction [5], fruit weight prediction [6], leaf 
chlorophyll prediction [7], and leaf classification [8]. Plant 
digital image was used as raw data on most of those tasks. 
Prior to the learning process, the feature extraction step of the 
digital image must be done. For example: (1) Reference [7] 
created 19 features from red, green, blue components of RGB 
color space and hue, saturation, intensity components of HSI 
color space; (2) Reference [8] used 13 morphological features 
such as number of boundary pixel, geometric center, number 
of pixels of the object, etc. Indeed, the accuracy of the ANN 
model highly depends on the ability of the researcher to 
determine or create the best features. Therefore, study about 
feature extraction is one of the critical tasks in developing an 
ANN model with a digital image as the raw data. Regarding 
this difficulties, deep learning was created to automate the 
feature extraction process. It reduces the system dependency 
on the prior human knowledge and minimizes the human 
effort to design the feature [9].  

Convolutional Neural Network (CNN) is one of the most 
popular architectures of deep learning. The convolutional term 
is taken from the morphological image processing technique. 
Convolutional matrix is applied on an image for edge 
detection, blurring, sharpening, embossing, and more. In CNN 
algorithm, convolution is the primary process for each layer. 
Many CNN projects were aimed to classify digital image 
based on the object shape. However, some researcher proved 
that CNN is also superior to classify digital image based on 
the object color [10,11]. Some CCN projects on plant image 
are species classification [12,13], phenotyping [14] and 
disease detection [15]. In this research, CNN was used as the 
main tools to determine and quantify the pigments contained 
in the plant to create a novel non-destructive photosynthetic 
pigments prediction system. The system’s input is a 
multispectral digital image of a plant leaf, and the output is the 
prediction of three main photosynthetic pigments content. 
Those pigments are chlorophyll, carotenoid, and anthocyanin. 
Data of the actual pigment content were provided by 
conducting spectrophotometry on the plant leaf which the 
picture was taken by digital camera. Those data were used to 
train the CNN architecture. Three CNN models with different 
level of complexity were evaluated to determine the most 
suitable architecture for pigments content prediction. 
Moreover, two different optimizers were also compared to 
acquire the best result.    
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II. MATERIALS AND METHODS 

A. Sample Preparation 
Syzygium oleana and Piper betle L leaves were used in the 

experiment. Variation of carotenoid content was provided by 
the yellowish Piper betle L leaves, and variation of 
anthocyanin content was provided by the reddish Syzygium 
oleana leaves. There were as much as 444 leaves prepared for 
the data collection. Each leaf was chosen with the 
consideration of data variation fulfillment. Color variation, 
age, and position from the terminal bud were among the 
contemplations. This is vital concerning that the CNN 
learning process will rely upon it. Samples were divided into 
two sets, a training set, and a test set. The training set was used 
by the CNN architecture to learn the data and create the 
relationship model whereas the test set was used to evaluate 
the prediction performance of the model. Each sample will go 
through two data acquisition process. The first is multispectral 
digital image acquisition using a digital camera. The other 
data acquisition was laboratory analysis to identify and 
measure the pigments contained in each leaf using 
Spectrophotometry method. 

B. Multispectral Image Acquisition 
Photosynthetic pigments only absorb light at a specific 

wavelength and reflecting others [16], e.g., chlorophyll 
strongly absorbs the light at 650-700 nm and 400-500 nm 
wavelength and reflects the light at 560 nm wavelength. This 
characteristic is utilized in this research to quantify the 
pigments amount. Therefore, the leaf digital image was taken 
individually using Pcopixelfly 14 bit CCD camera with 
Thorlabs visible bandpass filter (Fig. 1). Ten bandpass filters 
were used in the experiment i.e. 350, 400, 450, 500, 550, 600, 
650, 700, 750 and 800 nm. Each filter will pass the light only 
in a single wavelength which reflected by the sample leaf 
being analyzed. Tungsten halogen was used as the light 
source. It provide a wide range of electromagnetic wavelength 
from 360-2400 nm.  

     

 

 
Fig. 1. Data acquisition scheme 

 

 

 

 

 

 

 

 
 

Fig. 2. Example of the leaf multispectral image  

The results are 10 images (multispectral image) as seen in 
Fig. 2. An image with bright appearance indicates that the leaf 
strongly reflects the light and vice versa. As an example, the 
image labeled 750 nm shown the brightest color, that is mean 
the sample leaf strongly reflects the light with a 750 nm 
wavelength. Image preprocessing was conducted to simplify 
the input such that CNN algorithm could run faster. Two 
preprocessing procedures were applied to each digital image, 
i.e., segmentation and resizing. Segmentation was aimed to 
extract only the leaf area because the ultimate goal of the 
experiment is to recognize the color variation. Unlike other 
common CNN implementation which is focused on the shape 
recognition, in this research shape was not important 
otherwise color structure was the most valuable feature.  
Resizing was aimed to reduce the total amount of the pixel that 
will proceed in the CNN and to equate the overall size of the 
input image at once. These images were then used as the input 
of the CNN. 

C. Pigment Content Measurement 
Chlorophyll, carotenoid, and anthocyanin content were 

measured using non-destructive spectrometer (Ocean Optic 
USB-4000). The measurement process was done 
simultaneously with the digital image acquisition (Fig. 1). A 
leaf sample is exposed to light from the light generator 
(tungsten halogen) via a probe. In the same time, the probe 
captured the reflected light and sending it to the spectrometer. 
The spectrometer then measures the intensity and send it to the 
computer for the quantification and visualization. Pigments 
content was then calculated using (1) and (2) for chlorophyll, 
(3) and (4) for carotenoid and (5) for anthocyanin [17].   

 

ሺܫܴ(݈݄ܥ௚௥௘௘௡ = ൤ோళఱబషఴబబିோరయబషరళబோఱమబషఱఴబିோరరబషరఴబ)
൨ − 1              (1) 

 
ሺܫܴ(݈݄ܥ௥௘ௗ	௘ௗ௚௘ = ൤ோళఱబషఴబబିோరయబషరళబோలఱవషళరబିோరరబషరఴబ)

൨ − 1              (2) 

௚௥௘௘௡ܫܴܥ = ሾ	ሺܴହଵ଴)ିଵ − ሺܴହହ଴ିହ଻଴)ିଵሿ ∗ ܴ଻ହ଴ି଼଴଴              (3) 

௘ௗ௚௘	௥௘ௗܫܴܥ = ሾሺܴହଵ଴)ିଵ − ሺܴ଻଴଴ି଻ଵ଴)ିଵሿ ∗ ܴ଻ହ଴ି଼଴଴              (4) 

ܫܴܣ = ሾሺܴହ଴଴ିହ଻଴)ିଵ − ሺܴ଻଴଴ି଻ଵ଴)ିଵሿ ∗ ܴ଻ହ଴ି଼଴଴              (5) 

 

(Chl)RI stands for chlorophyll reflectance index, CRI is 
carotenoid reflectance index, and ARI is anthocyanin 
reflectance index. These indices was then used as the output 
of the CNN representing the pigments content. 

350 nm 400 nm 450 nm 500 nm

550 nm 600 nm 650 nm 700 nm

750 nm 800 nm 
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Fig. 4.   AlexNet architecture

Fig. 3.   ShallowNet architecture 

Fig. 5.   VGGNet architecture

D. Dataset Preparation 
Table 1 describes the dataset structure. Each leaf digital 

image will be paired with the 5 pigment indices. From those 
pairs, 80% will be randomly selected as the training set, and 
the remaining will be the test set.   

TABLE I.  STRUCTURE OF THE DATASET 

Digital Image  leaf1.jpg … leaf391.jpg 

(Chl)RIgreen 0.45 … 0.89 
(Chl)RIrededge 1.24 … 1.45 

CRIgreen -0.11 … 0.04 
CRIrededge 0.84 … 0.03 

ARI 0.72 … 0.01 
 

E. Design of the CNN Architecture 
Three CNN models was implemented and evaluated in the 

experiment, i.e., ShallowNet, AlexNet and VGGNet. OpenCV 
library was used to preprocess the multispectral images. For 
the ShallowNet and AlexNet architectures, multispectral 
images were resized to 32x32 pixel, and for the AlexNet 
architecture, the images were resized to 120x120 pixel. 
Among those three CNN model, ShallowNet is the simplest 
model and AlexNet is the most complex model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1)  ShallowNet: Fig. 3 depicts the architecture of 
ShallowNet. There was 1 convolution layer with 32 filters in 
size 3x3 and 1 output layer with 5 nodes. Each node in the 
output utilizes LeakyRelu activation function and represents 
the pigment indices.   

2)  AlexNet: Fig. 4 depicts the architecture of AlexNet. 
There were 5 convolution layers and 3 fully connected layers. 
Design of each layer can be seen in Table II. 

TABLE II.  DETAIL OF THE ALEXNET ARCHITECTURE  

Hidden Layer Design 

C
on

vo
lu

tio
n 

1 96  filters in size 11x11 with max 
pooling in size 3x3 

2 256  filters in size 5x5 with max pooling 
in size 3x3 

3 384  filters in size 3x3 without pooling  

4 384  filters in size 3x3 without pooling 

5 256  filters in size 3x3 with max pooling 
in size 3x3 

Fu
lly

 
C

on
ne

ct
ed

 1 4096 nodes with LeakyRelu activation 
function 

2 4096 nodes with LeakyRelu activation 
function 

3 1000 nodes with LeakyRelu activation 
function 

 

3)  VGGNet: Fig. 5 depicts the architecture of VGGNet. 
There were 10 convolution layers and 3 fully connected 
layers. Design of each layer can be seen in Table III.  
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F. Implementation 
Python 3 with Tensorflow library and Keras API was used 

to develop CNN architecture. The experiment was run on the 
personal computer with 2.3 GHz Intel Core i5, RAM 8 GB 
DDR3L, and Windows 10 operating system. 

 
TABLE III.  DETAIL OF THE VGGNET ARCHITECTURE 

 
Hidden Layer Design 

C
on

vo
lu

tio
n 

1 8 filters in size 2x2 without pooling 

2 8 filters in size 2x2 with max pooling in 
size 2x2 

3 16 filters in size 2x2 without pooling 

4 16 filters in size 2x2 with max pooling in 
size 2x2 

5 32 filters in size 2x2 without pooling 
6 32 filters in size 2x2 without pooling 

7 32 filters in size 2x2 with max pooling in 
size 2x2 

8 64 filters in size 2x2 without pooling 

9 64 filters in size 2x2 without pooling 

10 64 filters in size 2x2 with max pooling in 
size 2x2 

Fu
lly

 
C

on
ne

ct
ed

 1 4096 nodes with Relu activation function 
2 4096 nodes with Relu activation function 

3 1000 nodes with Relu activation function 
4 5 nodes with LeakyRelu activation function 

 

G. Optimization Method 
The optimization algorithm was used to minimize the 

error function. This function is dependent on the internal 
parameters (weights dan bias) such that while minimizing the 
error, the internal parameters are updated as well. Gradient 
descent is a fundamental technique used to optimize the error 
function. However, because of its weaknesses, many 
researchers have developed variants of this technique. Two 
of the most recent development of gradient descent variants 
are Root Mean Square Propagation (RMSProp) [18] and 
Adaptive Moment Estimation (Adam) [19] which were used 
in this research. The RMSProp optimizer reduces the error 
function fluctuation caused by stochastic gradient descent 
technique. It also determines a learning rate value for each 
parameter automatically. Each internal parameters (߱)	are 
updated using (6), (7), and (8). Whereas ߟ is initial learning 
rate, ݒ௧  is exponential average of squares of gradients and 
݃௧	is gradient of time t along ߱௝. 

 
௧ݒ = ௧ିଵݒߩ + ሺ1 − .(ߩ ݃௧ଶ                            (6) 

△ ߱௧ = − ఎ
ඥ௩೟ାఌ

	 . ݃௧                                (7) 

߱௧ାଵ = ߱௧ +	△ ߱௧                                 (8) 

 

Adam optimizer improves the RMSProp technique. 
Rather than adjusting the learning rate by the average of the 
first moment (the mean), Adam makes utilization of the 
average of the second moments of the gradients (the 

variance). This approach makes Adam able to achieve good 
results faster. The internal parameters (߱)	are updated using 
(9), (10), and (11). Whereas ݉௧	is the mean and ݒ௧  is the 
variance of the gradient. 

 
݉௧ = ௠೟

ଵିఉభ೟
                                        (9) 

௧ݒ = ௩೟
ଵିఉమ೟

                                     (10) 

߱௧ିଵ = ߱௧ − ఎ
ඥ௩೟ାఌ

	 . ݉௧                                   (11) 
 

H. Performance Indicator 
Unlike other common CNN model which is intended to 

conduct a classification task, the CNN model in this research 
was aimed to run a prediction task. Therefore, the 
classification performance indicator such as accuracy, 
specificity, and sensitivity was not used to evaluate the 
model. Otherwise, Mean Square Error (MSE) was applied for 
the evaluation. The MSE calculation is based on (12), yi is the 
actual pigment content (represent by reflectance index), ݕො௜ is 
the prediction of the actual pigment content and n is the total 
amount of data.    

 
MSE = ଵ

௡෌ ሺݕ௜ − ො௜)ଶ௡ݕ
௜ୀଵ                     (12) 

 

III. RESULT AND DISCUSSION 

A. Data Collection 
Table IV describes the color distribution of the leaf 

samples. Yellow and yellowish green is the most challenging 
sample to collect. In the most plants, those colors will appear 
in the aging stage. Unfortunately, in the aging stage the 
structure of the leaf has started to damage as well. Therefore, 
such leaves will cause improper color variation to describe the 
pigment content. In this research the yellow and yellowish 
green samples were obtained from the fresh Piper betle L 
leaves, this kind of plant will produce yellow leaves in the 
normal stage not only in the aging stage. All samples were 
come from a several healthy plants.       

TABLE IV.  SAMPLE DISTRIBUTION 

Group of Visual Color Data Amount 
Green 97  
Red 90  

Yellow 50  
Reddish Green 147  

Yellowish Green 60  
 

Fig. 6 depicts the pigments content distribution of 
Syzygium oleana. It can be seen that the pigments content of 
each color category (green, reddish green, and red)  confirms 
the theory that the visual color of leaves could well represent 
its pigment content. The red leaves seem to have more 
anthocyanin and less chlorophyll. Otherwise, the green and 
reddish green leaves seem to have more chlorophyll and less 
anthocyanin. This data also justify that Syzygium oleana is 
suitable to provide the variation on anthocyanin content data. 
Table V describes the minimum and maximum value of the 
pigments content in Syzygium oleana.   
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Fig.6.   Pigment content distribution of Syzygium oleana 

 

TABLE V.  THE RANGE OF SYZYGIUM OLEANA PIGMENTS CONTENT 

Pigment Content 
Metric Minimum Maximum 

(Chl)RIgreen 0.407663 1.857813 
(Chl)RIred -0.107580 0.323876 
CRIgreen 0.157148 0.981661 
CRIred 0.814667 2.226155 
ARI 0.283901 1.967888 

 

Fig. 7 depicts the pigments content distribution of Piper 
betle L. As well as on Syzygium oleana, the pigments content 
of each color category (yellowish green and yellow) also 
confirms the color-pigment content relationship theory. The 
yellow leaves seem to have more carotenoid and less 
chlorophyll. All of the leaves seem to have a little amount of 
anthocyanin. This fact also justifies that Piper betle L is 
suitable to provide the variation on carotenoid content data. 
Table VI describes the minimum and maximum value of the 
pigments content in Piper betle L.   

 

 

 

 

 

 

 

 
 

Fig.7.   Pigment content distribution of Piper betle L 

 

TABLE VI.  THE RANGE OF PIPER BETLE L PIGMENTS CONTENT  

Pigment 
Content Metric Minimum Maximum 

(Chl)RIgreen -0.116920 0.793131 
(Chl)RIred -0.161180 0.161759 
CRIgreen 0.442079 1.137226 
CRIred 0.511603 1.398290 
ARI 0.065826 0.302499 

 

B. Selection of The Best CNN Architecture 
Experiments to determine the best CNN architecture were 

done by making some changes to the CNN parameters, i.e., 
optimizer type, number of batch size, and number of the 
epoch. Adaptive Moment Estimation (Adam) and Root Mean 
Square Propagation (RMSProp) were selected as variations of 
the optimizer. Batch size was tried with the size of 30, 60, and 
120 while the epoch was tested in the number of 15, 30, and 
45. 

1)  ShallowNet: Table VII and VIII summarize the 
performance of the ShallowNet architecture using MSE as the 
performance indicator. The lowest MSE (both during training 
and testing) is obtained while using the Adam optimizer with 
batch size 30 (see the grayed-out cells). The ideal number of 
the epoch is 15.  

TABLE VII.  IN SAMPLE MSE OF  SHALLOWNET ARCHITECTURE 

Epoch 

Batch Size 

30 60 120 

Adam RMSprop Adam RMSprop Ada m RMSprop 

15 0.0037 0.0433 0.0373 0.0544 0.0936 0.2938 

30 0.0094 0.0086 0.5621 0.0191 0.6551 0.0315 

45 0.0047 0.0417 0.4363 0.0164 0.5771 0.0313 

 

TABLE VIII.  OUT SAMPLE MSE OF  SHALLOWNET ARCHITECTURE 

Epoch 

Batch Size 

30 60 120 

Adam RMSprop Adam RMSprop Adam RMSprop 

15 0.0060 0.0486 0.0355 0.0661 0.1012 0.2800 

30 0.0096 0.0126 0.5380 0.0205 0.6310 0.0330 

45 0.0064 0.0417 0.4118 0.0212 0.5531 0.0355 

 

2)  AlexNet: Table IX and X summarize the performance 
of the AlexNet architecture. The same as before, it is using 
MSE as the performance indicator. The lowest MSE (both 
during training and testing) is obtained while using the Adam 
optimizer with batch size 30. The ideal number of the epoch 
is 45 (see the grayed-out cells). Compared to the ShallowNet 
architecture, the lowest MSE of AlexNet architectures is still 
greater than the ShallowNet lowest MSE.     

TABLE IX.  IN SAMPLE MSE OF  ALEXNET ARCHITECTURE 

Epoch 

Batch Size 

30 60 120 

Adam RMSprop Adam RMSprop Adam RMSprop 

15 0.1753 0.3549 0.0658 0.0795 0.1708 0.3494 

30 0.1804 0.0244 0.1699 0.3277 0.1694 0.3162 

45 0.0061 0.0178 0.0079 0.0545 0.1695 0.0712 
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TABLE X.  OUT SAMPLE MSE OF  ALEXNET ARCHITECTURE 

Epoch 

Batch Size 

30 60 120 

Adam RMSprop Adam RMSprop Adam RMSprop 

15 0.1512 0.3316 0.0677 0.0743 0.1463 0.3362 

30 0.1563 0.0219 0.1457 0.3000 0.1456 0.2918 

45 0.0074 0.0177 0.0087 0.0512 0.1455 0.0674 

 

3)  VGGNet: Tables XI and XII summarize the 
performance of the VGGNet architecture and still using MSE 
as the performance indicator. The lowest MSE (both during 
training and testing) is obtained while using the Adam 
optimizer with batch size 30 (see the grayed-out cells). The 
ideal number of the epoch is 30. Compared to the ShallowNet 
and AlexNet architecture, the lowest MSE of VGGNet 
architectures is still greater than the lowest MSE of the other 
two CNN models.   

TABLE XI.  IN SAMPLE MSE OF VGGNET ARCHITECTURE 

Epoch 

Batch Size 

30 60 120 

Adam RMSprop Adam RMSprop Adam RMSprop 

15 0.0127 0.0318 0.1269 0.1860 0.1712 0.1404 

30 0.0086 0.0174 0.0075 0.1107 0.1692 0.1767 

45 0.1696 0.0218 0.1692 0.0281 0.1692 0.1924 

TABLE XII.  OUT SAMPLE MSE OF VGGNET ARCHITECTURE 

Epoch 

Batch Size 

30 60 120 

Adam RMSprop Adam RMSprop Adam RMSprop 

15 0.0145 0.0306 0.1104 0.1761 0.1472 0.1268 

30 0.0099 0.0174 0.0085 0.1066 0.1452 0.1582 

45 0.1459 0.0227 0.1451 0.0245 0.1452 0.1680 

 

IV. CONCLUSION 
The CNN model is proven to be able to find the best color 

features of leaf multispectral digital images and successfully 
used it to predict the photosynthetic pigment content. From all 
experiments with 3 different types of CNN model 
(ShallowNet, AlexNet, and VGGNet), it was determined that 
ShallowNet-based architecture be the best architecture for 
photosynthetic pigment prediction. The architecture reaches 
lowest MSE while using Adam optimizer and trained with 
batch size 30 and number of epoch 15 (i.e., 0.0037 for in 
sample and 0.0060 for out sample). In this case, as the 
complexity of the CNN architecture is increasing the 
prediction performance is decreasing. The most 
straightforward CNN architecture, i.e., ShallowNet was able 
to model the relationship between visual colors recorded on 
multispectral digital image and pigments content better than 
AlexNet and VGGNet. 
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