

IDEnet : Inception-Based Deep Convolutional
Neural Network for Crowd Counting Estimation

Samuel Cahyawijaya

Institut Teknologi Bandung
Bandung, Indonesia

samuel.cahyawijaya@gmail.com

Bryan Wilie
Institut Teknologi Bandung

Bandung, Indonesia
brywilie25@gmail.com

Widyawardana Adiprawita
 Institut Teknologi Bandung

Bandung, Indonesia
wadiprawita@stei.itb.ac.id

Abstract— In crowd counting task, our goals are to estimate
density map and count of people from the given crowd image.
From our analysis, there are two major problems that need to
be solved in the crowd counting task, which are scale invariant
problem and inhomogeneous density problem. Many methods
have been developed to tackle these problems by designing a
dense aware model, scale adaptive model, etc. Our approach is
derived from scale invariant problem and inhomogeneous
density problem and we propose a dense aware inception based
neural network in order to tackle both problems. We introduce
our novel inception based crowd counting model called
Inception Dense Estimator network (IDEnet). Our IDEnet is
divided into 2 modules, which are Inception Dense Block (IDB)
and Dense Evaluator Unit (DEU). Some variations of IDEnet are
evaluated and analysed in order to find out the best model. We
evaluate our best model on UCF50 and ShanghaiTech dataset.
Our IDEnet outperforms the current state-of-the-art method in
ShanghaiTech part B dataset. We conclude our work with 6 key
conclusions based on our experiments and error analysis.

Keywords—crowd counting, inception network, convolutional
neural network, deep learning, dense aware, scale adaptive

I. INTRODUCTION
Crowd counting is a task to perform counting on a large

number of specified objects from the given image. In small
number object counting, a detection based approach is likely
to be used, such method works well in most low-density
(sparse) image, but usually failed on a high-density (crowd)
image[9][11][14]. In crowd counting task, model is developed to
fit the dense map of the image and output the total predicted
count from the given image. From our analysis, there are two
major problems which need to be tackled in order to get better
counting estimation. The first problem is scale invariant
problem which is caused by variety scale of an object from the
given image. The second problem is inhomogeneous density
problem which is caused by the difference density level of
each crowd image. Both problems lead to the difficulty in
choosing the right filter size for each image region.

To handle those problems we bring the idea from inception
netwok. Inception network is divided into several repeatable
kind of inception modules. Each inception module lets the
network learns the best filter to be used by providing multiple
paths of computational graph. Inception netwok first
introduced in 2014 by Szegedy, C. et al.[1] and there have been
some countinuous improvement versions of it, starting from
Inception-v1[1]; BN Inception[2]; Inception-v2 and Inception-
v3[3]; Inception-v4, Inception Resnet-v1, and Inception
Resnet-v2[4]. Inception network have been evaluated against
ILSVRC dataset and resulting in a really high accuracy.

In this paper, we introduce a novel approach based on
Inception Network v1 called Inception Dense Estimator
Network (IDEnet). There are 4 main contributions of this
works. First, in section III, we show a novel methodology to

apply Inception Network idea in counting task, especially the
modification to handle crowd counting task. Second, in
subsection IV.B, we report our alternative results that we get
when implementing some alternatives of IDEnet architecture.
Third, in subsection IV.C, we evaluate our final proposed
model with two publicly available crowd counting datasets
(UCF50 and ShanghaiTech), and bencmark our evaluation
result with other methods. Fourth, in subsection IV.D, we
conduct manual error analysis to get more understanding
about the counting estimation error.

II. RELATED WORKS
Works in the crowd counting task can be divided into 2

methods, detection-based and regression-based. We focus our
study on regression-based methods because detection-based
methods tend to severely suffer in crowd with high occlusion
level[9][11][14]. Some regression analysis approaches have been
conducted for crowd counting tasks. A texture analysis with
edge and foreground detection has been conducted[5] in 2005.
A bayesian poisson regression technique[6] has been evaluated
on a sparse crowd image in 2009. A multiple texture analysis
approach[7] has been performed by combining several texture
analysis techniques, which are head detection, fourier, wavelet
transform, interest point analysis, and GLCM.

Several regression-based methods are designed to be scale
adaptive. In order to be scale adaptive, most works implement
a multi column network[8][9][10]. In multi column network,
input image is splited into several different subnetworks,
where each subnetwork has different architecture and
hyperparameters. The output from subnetworks are then
merged to estimate the count. In another work, named
Switching CNN[11], the network divided into a switch module
and 3 different counting modules. The switch will choose
which regressor should be used for the given input image.

Some other regression-based methods utilise
spatiotemporal features by using sequence of images to
improve the counting quality. Xiong, F. et al.[12] utilise
convolution LSTM layer in order to process sequence of
images into the estimated dense map. Liu, W et al.[13] process
sequence of images with a siamese network approach where
each subnetwork will extract spatial feature from image at
time T and then combined with some temporal constraints.

Another approach called scale-adaptive CNN[14], develops
a scale adaptive single-column network by utilising pooling,
residual, and deconvolution layer. Another work, called
Pyramidal CNN[15], is estimating global and local context to
achieve better estimation. In Liu et al.[16], dense rank is
generated from image and both count and rank are estimated
to improve the quality of the model. Another work called
DecideNet[17], use an approach similar to a multi column, but
some columns interact with another column by sending their
output as one of the another column’s input.

Proceeding of EECSI 2018, Malang - Indonesia, 16-18 Oct 2018

978-1-5386-8402-3/18/$31.00 ©2018 IEEE 548

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Proceeding of the Electrical Engineering Computer Science and Informatics

https://core.ac.uk/display/296976242?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 1. IDB-v1a module as described in section III.A

III. PROPOSED METHOD
Our proposed method, Inception Dense Estimator

Network (IDEnet), consists of 2 basic building blocks, which
are Inception Dense (IDB) and Dense Evaluator Unit (DEU).
Combination of several IDBs with an additional pooling layer
in the end is called Inception Dense Group (IDG). An IDG is
the features extractor module which features will be evaluated
into a dense map by a DEU module. Several combinations
between each module have been evaluated, each combination
and the detail of the complete network architecture are
explained below:

A. Inception Dense Block (IDB)
IDB is the basic building block of IDEnet. IDB is

equivalent to inception module in Szegedy, C. et al.[1]. In
order to decide the architecture of IDB, analysis through the
UCF50 and Shanghai Tech dataset are conducted. From the
analysis, we conclude that with image resolution of
1024x1024, the minimum size of recognizeable person's head
in a photo is aroound 3 to 5 pixels, while the maximum size of
a person's head is between 150 to 200 pixels.

From the above conclusion, we design the minimum size
for the convolution filter on IDB to be 3 by 3 and 5 by 5
pixels. To reach filter size of 150 to 200 pixels, we use a 2 by
2 pooling at the end of each IDG and stack up several IDGs
so that the network satisfies the equation (1).

𝑦 = arg	max
)(+)

𝑓 𝛼 ∗ 	2(123) , 𝑦 ∈ [𝑆89:, 𝑆8;<] (1)

Where 𝛼 is an IDB filter, 𝑓 𝛼 is the size of an IDB filter, 𝛽
is the number of IDGs within the designed IDEnet, Smin is the
lower bound of the maximum head size, which is 150 pixels,
and Smax is the upper bound of the maximum head size, which
is 200 pixels.

In this paper, we conduct experimentation with two
alternatives of IDB unit. The first alternative consists of 6
different computation units, which is defined as follow: 1x1
convolution, 3x3 convolution, 5x5 convolution, 3x3
convolution with dilation of 2, 5x5 convolution with dilation
of 1, and max pooling. The second alternative is the same as
inception block on Inception V1[1]. The second alternative
consists of 4 different computational units, which is defined
as follow: 1x1 convolution, 3x3 convolution, 5x5
convolution, and max pooling. We name the first alternative
of IDB unit as IDB-v1a and the second alternative as IDB-
v1b. The illustration of our IDB-v1a and IDB-v1b are shown
in Fig.1 and Fig. 2 respectively.

Fig. 2. IDB-v1b module as described in section III.A

B. Inception Dense Group (IDG)
An IDG is a sequentially connected IDB units with an

additional pooling layer placed after the last IDB. As in the
previous analysis in subsection III.A, we design our IDG to
satisfy the equation (1). We design slightly different versions
of IDG for each version of IDB. We call this IDG as IDG-v1a
and IDG-v1b. The illustration of our IDG-v1a and IDG-v1b
are shown in Fig. 3.

Fig. 3. IDG-v1a (left) and IDG-v1b (right) module

 We also design another version of IDG which we called
IDG-v1c. When designing IDG-v1c, we start with hypothesis
that in order to be scale adaptive, each IDG have to extract
feature and perform a counting for the current filter size
simultaneously and carry the extracted features and count to
the next IDG. In order to carry the extracted features forward,
max pooling is widely known to work really well. Although
max pooling works really well for forwarding feature to the
next layer, in order to carry the count forward to the next layer
we should perform a summation pooling instead of max
pooling.

 By carrying the count forward, the next IDG and DEU
module will be able to combine the previous IDG module
count with the extracted count from the current IDG module.
There is no summation pooling layer in the framework we use
when we do our experimentation, we instead use average
pooling layer as a replacement, as average operation is
basically a summation divided by a constant number. So, from
there, we use both average pooling and max pooling at the end
of each IDG for carrying the extracted counting and extracted
feature from previous IDG layer. The illustation of IDG-v1c
is shown in Fig. 4.

Proceeding of EECSI 2018, Malang - Indonesia, 16-18 Oct 2018

549

Fig. 4. IDG-v1c: IDG module with average and max pooling

C. Dense Evaluator Unit (DEU)
DEU is simple regressor module to flatten the multi

channel image output from IDG into a single channel image,
which represent the dense map result. We flatten the multi
channel image into a single channel image by using a 1x1
convolution filter. We also apply a drop out regularization on
DEU module to prevent the model from overfitting. The
illustration of DEU module is shown in Fig 5.

Fig. 5. DEU module to regularize the model and flatten output image into a

1D channel dense map image

D. Inception Dense Estimator (IDEnet)
IDEnet consists of several IDGs and DEUs. In this work,

we conduct 3 experiments on our IDEnet model based on 3
considerations. Each experiment will compare 2 IDEnet
model and from the result of each experiment, the best
IDEnet design will be iterated for the next experimentation.

 The first consideration is single regression loss versus
multiple regression loss approach. In Inception-v1[1],
auxiliary classifiers were added into the model to improve the
convergence of very deep neural network, prevent gradient
vanishing problem, and regularize the model, while in
Inception-v3[3] the auxiliary classifiers were removed
because the auxiliary classifiers didn’t give any beneficial
impact to the model. We conduct similar experiment with the
same idea as in the Inception-v3[3]. Our first model will have
a multiple DEUs, which named IDEnet-v1a, and our second
model will have single DEU, which named IDEnet-v1b. Both
of IDEnet-v1a and IDEnet-v1b use 4 layers of IDG-v1a as the
main computational module and 4 DEUs which each DEU is
connected to each IDG-v1a. The illustration for both IDEnet-
v1a and IDEnet-v1b are shown in Fig. 6.

Fig. 6. IDEnet-v1a (left) and IDEnet-v1b (right)

 The second consideration is larger filter size with less
pooling layers versus smaller filter size with more pooling
layers. We use IDEnet-v1b for the larger filter size model, as
it turns out giving better result than IDEnet-v1a. For the
smaller filter size model, we use 5 layers of IDG-v1b as the
main computational module with single DEU. We named this
model as IDEnet-v1c.
 The third consideration is related to our own hypothesis
as explained in subsection III.B. We compare between
IDEnet-v1c and another IDEnet design which name IDEnet-
v1d. In this model, we use IDG-v1c which incorporate
average pooling and max pooling at the end of the IDG
module. The illustration of IDEnet-v1c and IDEnet-v1d are
shown in Fig. 7.

Fig. 7. IDEnet-v1c (left) and IDEnet-v1d (right)

IV. EXPERIMENTS
We conduct several experiments to evaluate our IDEnet.

Each experiment will compare two IDEnet models, and from
the result of each experiment, the best IDEnet design will be
iterated for the next experimentation. The best IDEnet model
from the experiment will then be evaluated on UCF50,
ShanghaiTech part A, and ShanghaiTech part B dataset. The
detail and result of the experiment are described below:

Proceeding of EECSI 2018, Malang - Indonesia, 16-18 Oct 2018

550

A. Experimental Protocol
We conduct 3 types of experiment for deciding the best

model of our IDEnet. Each experiment corresponds to each
consideration which as described in subsection III.D. The first
experiment compares network with single regression loss
model and network with multiple regression loss model. The
second experiment compares network with larger filter size
and less pooling layers and network with smaller filter size
and more pooling layers. The third experiment compares
network with max pooling layers and network with average
pooling and max pooling layers.

In the first experiment we compare IDEnet-v1a with
IDEnet-v1b. In the second experiment we compare IDEnet-
v1b with IDEnet-v1c. In the third experiment we compare
IDEnet-v1c with IDEnet-v1d. We quatitatively compare the
model performance by calculating the mean absolute error
(MAE) of each model with UCF50 dataset. We split the
UCF50 into 90% training set, 5% dev data, and 5% test set.
Each image is sliced into a patch of size 224x224. We perform
the evaluation to each patch image instead of a single full
image. We train each model with 10 epoch training with
decayed learning rate start from 0.01 with 0.5 decay rate per
epoch. The loss function for single regression loss network
and multiple regression losses are defined in equation (2) and
equation (3) respectively.

𝑙𝑜𝑠𝑠 = 3
B

|𝑦:9D − 𝑦′:9D|G
DHI

J
9HI

B
:HI 	 (2)

𝑙𝑜𝑠𝑠8KLM9 = 𝑊9 ∗ 𝑙𝑜𝑠𝑠9O
9HI (3)

where N is the batch size, W and H are width and height of
output dense map, Wi is the loss weight for regression on step
i, lossi is the single loss for step I, 𝑦:9D is the value of pixel
(i, j) of the nth ground truth dense map, and 𝑦′:9D is the value
of pixel (i, j) of the nth predicted dense map.

B. Experiments Result and Analysis

TABLE I. EXPERIMENT RESULT

Model Name
MAE Dataset

Training Dev Test

IDEnet-v1a 90.82 232.41 202.28

IDEnet-v1b 73.53 194.06 202.05

IDEnet-v1c 50.00 45.64 53.98

IDEnet-v1d 48.61 43.50 51.25

From the experiment result on Table. I, we could derive
the following conclusions:

1. Multiple regression loss on counting task doesn’t
improve the convergence of the network nor regularize
the network. This result gives consistent conclusion
with the removal of auxiliary classifiers as explained
on Inception-v3[3].

2. Smaller filter size with more pooling layers works
better than bigger filter size with less pooling layers.
This probably happens bacause of the redundant
counting performed on same object within the
different filter in the same IDG unit. Further analysis
is needed to explain this phenomenon.

3. For counting task, combination of average pooling and
max pooling perform slightly better than using only
max pooling. This answer our hipothesis that have
been described in subsection III.B.

From the experiment results and conclusions, we decided
to use IDEnet-v1d as our IDEnet-v1, to be evaluated and
benchmarked on UCF50 dataset, ShanghaiTech part A, and
ShanghaiTech part B dataset. The illustration of IDEnet-v1 is
shown in Fig. 8.

Fig. 8. IDEnet-v1: with DEU and 6 layers of IDG-v1c

We conduct two different preprocessing approaches
generating the density map. In the first approach we use the
density map directly from the ground truth image. In the
second approach, we modify the density map by performing
gaussian kernel normalization (GKN) to the ground truth
image. By performing GKN, the total sum of the dense image
stays the same and this method makes the network learns the
dense map better[8].

We evaluate the performance of our IDEnet-v1 by
calculatinng mean absolute error (MAE) and mean square
error (MSE). The calculation of MAE and MSE are defined
in equation (4) and equation(5) respectively.

𝑀𝐴𝐸 = 3
B

|𝑦9 − 𝑦′9|B
9HI 		 (4)

𝑀𝑆𝐸 = 3
B

|𝑦9 − 𝑦′9|B
9HI 		 (5)

where N is the number of samples in the dataset, 𝑦9 is the
ground truth count of the ith image, and 𝑦′9 is the predicted
count of the ith image.

C. Evaluation Comparison
We benchmark the performance of our work with the

other works by implementing the standard evaluation
protocol on each dataset and use the same formula to
calculate the MAE and MSE evaluation metric.

We evaluate our IDEnet-v1 with two different crowd
counting datasets. The first dataset is UCF50 from University

Proceeding of EECSI 2018, Malang - Indonesia, 16-18 Oct 2018

551

of Central Florida and the second dataset is ShanghaiTech
dataset from ShanghaiTech University. ShanghaiTech
dataset is divided into two different parts, which are called
ShanghaiTech part A and ShanghaiTech part B. The statistics
of our datasets are shown in Table II.

TABLE II. DATASET STATISTICS UCF50 AND SHANGHAITECH

Dataset
Measure

Min Max Average Total

UCF50 96 4633 1279.50 63,974

ShanghaiTech part A 33 3139 501.40 241,677

ShanghaiTech part B 9 578 123.60 88,488

UCF50 dataset contains 50 grayscale crowd images.
UCF50 dataset have various density level of the crowd image
the image size is not standardized. The statistics of UCF50
dataset is shown in Table II. Evaluation on UCF50 dataset is
conducted by performing a 5-folds cross validation on the
dataset. We compare our IDEnet-v1 with eight existing
methods [8][9][10][11][12][14][15][16]. The UCF50 dataset evaluation
result is shown in Table III.

TABLE III. EVALUATION METRIC OF THE UCF50 DATASET

Method
Evaluation Metric

MAE MSE

CrowdNet[8]
 645.00 -

MCNN[9] 377.60 509.10

Hydra CNN[10] 333.73 425.26

SaCNN[14] 314.90 424.80

Switch-CNN[11] 318.10 439.20

Pyramidal CNN[15] 295.80 320.90

ConvLSTM-nt[12] 284.50 297.10

Liu, X et al.[16] 279.60 388.90

Ours: IDEnet-v1 357.79 513.29

Ours: IDEnet-v1 + GKN 368.18 519.12

ShanghaiTech part A and ShanghaiTech part B have
several differences[2]. ShanghaiTech part A consists of 300
training data of crowd images and 182 test data of crowd
images, while ShanghaiTech part B consist of 400 training
data of crowd images and 316 test data of crowd images.
Another difference is ShanghaiTech part A has
unstandardized image size and is retrieved from the internet,
while ShanghaiTech part B has a standardized image of
1024x768 and is taken from metropolitan areas in Shanghai.

For ShanghaiTech part A, we compare our IDEnet-v1
with five existing methods [9][11][14][15][16]. The ShanghaiTech
part A evaluation result is shown in Table IV. For
ShanghaiTech part B, we compare our IDEnet-v1with seven
existing methods [9][11][13][14][15][16][17]. The ShanghaiTech part
B evaluation result is shown in Table V. Our IDEnet-v1
unable to achieve the best result in UCF50 dataset and
ShanghaiTech part A dataset, but our IDEnet-v1 with GKN
is able to outperform the state of the art method in
ShanghaiTech part B dataset.

TABLE IV. EVALUATION METRIC OF SHANGHAITECH PART A

Method
Evaluation Metric

MAE MSE

MCNN[9]
 110.20 173.20

Switch-CNN[11] 90.40 135.00

SaCNN[14] 86.80 139.20

Pyramidal CNN[15] 73.60 106.40

Liu, X et al.[16] 72.00 106.60

Ours: IDEnet-v1 102.95 158.24

Ours: IDEnet-v1 + GKN 95.81 153.08

TABLE V. EVALUATION METRIC OF SHANGHAITECH PART B

Method
Evaluation Metric

MAE MSE

MCNN[9]
 59.10 81.70

Liu, W et al.[13] 25.10 45.80

Switch-CNN[11] 21.60 33.40

DecideNet[17] 20.75 29.42

Pyramidal CNN[15] 20.10 30.10

SaCNN[14] 16.20 25.80

Liu, X et al.[16] 13.70 21.40

Ours: IDEnet-v1 15.91 22.85

Ours: IDEnet-v1 + GKN 11.32 18.45

D. Analysis

We conduct manual error analysis for UCF50 dataset and
ShanghaiTech part A dataset. From the manual error analysis,
we figure out that our IDEnet incorrectly estimates count
from the given crowd image because of the following
reasons:

1. A very small and occluded human figure
2. A crowd image which are totally different with any

other crowd image in the dataset

 The first reason is the problem with small pattern size.
Small pattern size usually gives a lot of false signal because
the same exact pattern is likely to appear in many different
places with contrasting signals. One potential solution for this
problem is to use a switching mechanism to choose different
regression unit for different type of region [11]. Another
possible solution is to use multiple regression unit and an
attention mechanism to pick the correct regression unit. Some
examples of the small pattern problem are shown in Fig. 9.

 The second problem is a data distribution problem. This
problem occurs when the image distribution of the test set is
different from the training set, probably because some images
are totally different with most of other images. We could
solve this problem by adding more similar data into the
dataset and balance the distribution of the training set,
validation set, and the test set. Further study for systematic
dataset assessment is needed to get deeper insight regarding
to the data distribution problem. Some example images with
distribution problem are shown in Fig. 10.

Proceeding of EECSI 2018, Malang - Indonesia, 16-18 Oct 2018

552

Fig. 9. Small pattern size estimation error. The left image is the input, the

center is the ground truth, the right is the prediction. The number below the
image represents the ground truth and prediction count respectively.

Fig. 10. Data distribution error. The first row shows images that are totally

different from most images on the UCF50 dataset. The other rows show
some image groups with similar representation from the UCF50 dataset

CONCLUSIONS
In this paper we propose an inception based deep learning

approach to estimate the crowd density from a crowd image,
named Inception Dense Estimator Network (IDEnet).
Inception based network is very modular so that the network
is easily adapted and modified to other image processing task.
We evaluated IDEnet in UCF50 and ShanghaiTech dataset
and our IDEnet successfully outperformed the current state-
of-the-art method in ShanghaiTech part B dataset.

From our experiments and manual error analysis we
found 6 key conclusions, which could be used as a
consideration for further research. The 6 key conclusions are
as follow:

1. Multiple regression loss on inception based network
doesn’t give any beneficial impact to the network
learning process.

2. Smaller filter size with deeper network works better
than bigger filter size with shallower network for
crowd counting task.

3. Pooling layer with a combination of average pooling
and max pooling works better than pooling layer with
only max pooling in crowd counting task.

4. Gaussian Kernel Normalization enables the network
to fit the dense map better.

5. Small pattern size and data distribution problems
need to be handled in order to achieve a better result.

6. Our IDEnet outperforms the state-of-the-art-method
in ShanghaiTech dataset part B.

ACKNOWLEDGEMENTS
The Titan XP used for this research was donated by the

NVIDIA Corporation, and this work was also supported by
Amazon Web Service (AWS) Educate, and Lembaga
Pengembangan Inovasi dan Kewirausahaan Institut
Teknologi Bandung (LPIK ITB).

REFERENCES
[1] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D.

Erhan, V. Vanhouck, A. Rabinovich, “Going deeper with
convolutions,” In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2015

[2] S. Ioffe, C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in ICML, 2015.

[3] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, “Rethinking
the inception architecture for computer vision,” In 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2016, pp 2818–2826.

[4] C. Szegedy, S. Ioffe, V. Vanhoucke, A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,”
in AAAI, 2017.

[5] D. Kong, D. Gray, H. Tao, “Counting pedestrians in crowds using
viewpoint invariant training”, in BMVC, 2005.

[6] A.B. Chan, N. Vasconcelos, “Bayesian poisson regression for crowd
counting,” in 2009 IEEE 12th International Conference on Computer
Vision, 2009, pp.545–551.

[7] A. Bansal, K.S. Venkatesh, “People counting in high density crowds
from still images,” July, 2015.

[8] L. Boominathan, S.S.S. Kruthiventi, R.V. Babu , “Crowdnet: A deep
convolutional network for dense crowd counting,” in Proceedings of
the 2016 ACM on Multimedia Conference. MM ’16, New York, NY,
USA, ACM, 2016, pp.640–644.

[9] Y. Zhang, D. Zhou, S. Chen, S. Gao, Y. Ma, “Single-image crowd
counting via multi-column convolutional neural network,” in 2016
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016, pp. 589–597.

[10] D. Oñoro-Rubio, R.J. López-Sastre, “Towards perspective-free object
counting with deep learning”, in ECCV, 2016.

[11] D.B. Sam, S. Surya, R.V Babu., “Switching convolutional neural
network for crowd counting,” in 2017 IEEE Conference on Computer
Vision and Pattern Recog- nition (CVPR), 2017, pp.4031–4039

[12] F. Xiong, X. Shi, D.Y. Yeung, “Spatiotemporal modeling for crowd
counting in videos,” in 2017 IEEE International Conference on
Computer Vision (ICCV), 2017, pp.5161–51699

[13] W. Liu, K. Lis, M. Salzmann, P. Fua, “Geometric and physical
constraints for head plane crowd density estimation in videos,” CoRR
abs/1803.08805, 2018.

[14] L. Zhang, M. Shi, Q. Chen, “Crowd counting via scale-adaptive
convolutional neural network,” 2018, pp.1113–1121

[15] V.A. Sindagi, V.M. Patel, “Generating high-quality crowd density
maps using contextual pyramid cnns,” in 2017 IEEE International
Conference on Computer Vision (ICCV), 2017, pp.1879–1888.

[16] X. Liu, J. van de Weijer, A.D. Bagdanov, “Leveraging unlabeled data
for crowd counting by learning to rank,” in CVPR, 2018.

[17] J. Liu, C. Gao, D. Meng, A.G. Hauptmann, “Decidenet: Counting
varying den- sity crowds through attention guided detection and density
estimation,” CoRR abs/1712.06679, 2017.

Proceeding of EECSI 2018, Malang - Indonesia, 16-18 Oct 2018

553

