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Abstract— In crowd counting task, our goals are to estimate 
density map and count of people from the given crowd image. 
From our analysis, there are two major problems that need to 
be solved in the crowd counting task, which are scale invariant 
problem and inhomogeneous density problem. Many methods 
have been developed to tackle these problems by designing a 
dense aware model, scale adaptive model, etc. Our approach is 
derived from scale invariant problem and inhomogeneous 
density problem and we propose a dense aware inception based 
neural network in order to tackle both problems. We introduce 
our novel inception based crowd counting model called 
Inception Dense Estimator network (IDEnet). Our IDEnet is 
divided into 2 modules, which are Inception Dense Block (IDB) 
and Dense Evaluator Unit (DEU). Some variations of IDEnet are 
evaluated and analysed in order to find out the best model. We 
evaluate our best model on UCF50 and ShanghaiTech dataset. 
Our IDEnet outperforms the current state-of-the-art method in 
ShanghaiTech part B dataset. We conclude our work with 6 key 
conclusions based on our experiments and error analysis. 

Keywords—crowd counting, inception network, convolutional 
neural network, deep learning, dense aware, scale adaptive 

I. INTRODUCTION 
Crowd counting is a task to perform counting on a large 

number of specified objects from the given image. In small 
number object counting, a detection based approach is likely 
to be used, such method works well in most low-density 
(sparse) image, but usually failed on a high-density (crowd) 
image[9][11][14]. In crowd counting task, model is developed to 
fit the dense map of the image and output the total predicted 
count from the given image. From our analysis, there are two 
major problems which need to be tackled in order to get better 
counting estimation. The first problem is scale invariant 
problem which is caused by variety scale of an object from the 
given image. The second problem is inhomogeneous density 
problem which is caused by the difference density level of 
each crowd image. Both problems lead to the difficulty in 
choosing the right filter size for each image region. 

To handle those problems we bring the idea from inception 
netwok. Inception network is divided into several repeatable 
kind of inception modules. Each inception module lets the 
network learns the best filter to be used by providing multiple 
paths of computational graph. Inception netwok first 
introduced in 2014 by Szegedy, C. et al.[1] and there have been 
some countinuous improvement versions of it, starting from 
Inception-v1[1]; BN Inception[2]; Inception-v2 and Inception-
v3[3]; Inception-v4, Inception Resnet-v1, and Inception 
Resnet-v2[4]. Inception network have been evaluated against 
ILSVRC dataset and resulting in a really high accuracy. 

In this paper, we introduce a novel approach based on 
Inception Network v1 called Inception Dense Estimator 
Network (IDEnet). There are 4 main contributions of this 
works. First, in section III, we show a novel methodology to 

apply Inception Network idea in counting task, especially the 
modification to handle crowd counting task. Second, in 
subsection IV.B, we report our alternative results that we get 
when implementing some alternatives of IDEnet architecture. 
Third, in subsection IV.C, we evaluate our final proposed 
model with two publicly available crowd counting datasets 
(UCF50 and ShanghaiTech), and bencmark our evaluation 
result with other methods. Fourth, in subsection IV.D, we 
conduct manual error analysis to get more understanding 
about the counting estimation error. 

II. RELATED WORKS 
Works in the crowd counting task can be divided into 2 

methods, detection-based and regression-based. We focus our 
study on regression-based methods because detection-based 
methods tend to severely suffer in crowd with high occlusion 
level[9][11][14]. Some regression analysis approaches have been 
conducted for crowd counting tasks. A texture analysis with 
edge and foreground detection has been conducted[5] in 2005. 
A bayesian poisson regression technique[6] has been evaluated 
on a sparse crowd image in 2009. A multiple texture analysis 
approach[7] has been performed by combining several texture 
analysis techniques, which are head detection, fourier, wavelet 
transform, interest point analysis, and GLCM. 

Several regression-based methods are designed to be scale 
adaptive. In order to be scale adaptive, most works implement 
a multi column network[8][9][10]. In multi column network, 
input image is splited into several different subnetworks, 
where each subnetwork has different architecture and 
hyperparameters.  The output from subnetworks are then 
merged to estimate the count. In another work, named 
Switching CNN[11], the network divided into a switch module 
and 3 different counting modules. The switch will choose 
which regressor should be used for the given input image.  

Some other regression-based methods utilise 
spatiotemporal features by using sequence of images to 
improve the counting quality. Xiong, F. et al.[12] utilise 
convolution LSTM layer in order to process sequence of 
images into the estimated dense map. Liu, W et al.[13] process 
sequence of images with a siamese network approach where 
each subnetwork will extract spatial feature from image at 
time T and then combined with some temporal constraints. 

Another approach called scale-adaptive CNN[14], develops 
a scale adaptive single-column network by utilising pooling, 
residual, and deconvolution layer. Another work, called 
Pyramidal CNN[15], is estimating global and local context to 
achieve better estimation. In Liu et al.[16], dense rank is 
generated from image and both count and rank are estimated 
to improve the quality of the model. Another work called 
DecideNet[17], use an approach similar to a multi column, but 
some columns interact with another column by sending their 
output as one of the another column’s input. 

Proceeding of EECSI 2018, Malang - Indonesia, 16-18 Oct 2018

978-1-5386-8402-3/18/$31.00 ©2018 IEEE 548

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Proceeding of the Electrical Engineering Computer Science  and Informatics

https://core.ac.uk/display/296976242?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
Fig. 1. IDB-v1a module as described in section III.A 

III. PROPOSED METHOD 
Our proposed method, Inception Dense Estimator 

Network (IDEnet), consists of 2 basic building blocks, which 
are Inception Dense (IDB) and Dense Evaluator Unit (DEU). 
Combination of several IDBs with an additional pooling layer 
in the end is called Inception Dense Group (IDG). An IDG is 
the features extractor module which features will be evaluated 
into a dense map by a DEU module. Several combinations 
between each module have been evaluated, each combination 
and the detail of the complete network architecture are 
explained below: 

A. Inception Dense Block (IDB)  
IDB is the basic building block of IDEnet. IDB is 

equivalent to inception module in Szegedy, C. et al.[1].  In 
order to decide the architecture of IDB, analysis through the 
UCF50 and Shanghai Tech dataset are conducted. From the 
analysis, we conclude that with image resolution of 
1024x1024, the minimum size of recognizeable person's head 
in a photo is aroound 3 to 5 pixels, while the maximum size of 
a person's head is between 150 to 200 pixels.  

From the above conclusion, we design the minimum size 
for the convolution filter on IDB to be 3 by 3 and 5 by 5 
pixels. To reach filter size of 150 to 200 pixels, we use a 2 by 
2 pooling at the end of each IDG and stack up several IDGs 
so that the network satisfies the equation (1). 

𝑦 = arg	max
)(+)

𝑓 𝛼 ∗ 	2(123) , 𝑦 ∈ [𝑆89:, 𝑆8;<]       (1) 

Where 𝛼 is an IDB filter, 𝑓 𝛼  is the size of an IDB filter, 𝛽 
is the number of IDGs within the designed IDEnet, Smin is the 
lower bound of the maximum head size, which is 150 pixels, 
and Smax is the upper bound of the maximum head size, which 
is 200 pixels. 

In this paper, we conduct experimentation with two 
alternatives of IDB unit. The first alternative consists of 6 
different computation units, which is defined as follow: 1x1 
convolution, 3x3 convolution, 5x5 convolution, 3x3 
convolution with dilation of 2, 5x5 convolution with dilation 
of 1, and max pooling. The second alternative is the same as 
inception block on Inception V1[1]. The second alternative 
consists of 4 different computational units, which is defined 
as follow: 1x1 convolution, 3x3 convolution, 5x5 
convolution, and max pooling. We name the first alternative 
of IDB unit as IDB-v1a and the second alternative as IDB-
v1b. The illustration of our IDB-v1a and IDB-v1b are shown 
in Fig.1 and Fig. 2 respectively. 

  
Fig. 2. IDB-v1b module as described in section III.A 

B. Inception Dense Group (IDG) 
An IDG is a sequentially connected IDB units with an 

additional pooling layer placed after the last IDB. As in the 
previous analysis in subsection III.A, we design our IDG to 
satisfy the equation (1). We design slightly different versions 
of IDG for each version of IDB. We call this IDG as IDG-v1a 
and IDG-v1b. The illustration of our IDG-v1a and IDG-v1b 
are shown in Fig. 3. 

  
Fig. 3. IDG-v1a (left) and IDG-v1b (right) module 

 We also design another version of IDG which we called 
IDG-v1c. When designing IDG-v1c, we start with hypothesis 
that in order to be scale adaptive, each IDG have to extract 
feature and perform a counting for the current filter size 
simultaneously and carry the extracted features and count to 
the next IDG. In order to carry the extracted features forward, 
max pooling is widely known to work really well. Although 
max pooling works really well for forwarding feature to the 
next layer, in order to carry the count forward to the next layer 
we should perform a summation pooling instead of max 
pooling. 

  By carrying the count forward, the next IDG and DEU 
module will be able to combine  the previous IDG module 
count with the extracted count from the current IDG module. 
There is no summation pooling layer in the framework we use 
when we do our experimentation, we instead use average 
pooling layer as a replacement, as average operation is 
basically a summation divided by a constant number. So, from 
there, we use both average pooling and max pooling at the end 
of each IDG for carrying the extracted counting and extracted 
feature from previous IDG layer. The illustation of IDG-v1c 
is shown in Fig. 4. 
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Fig. 4. IDG-v1c: IDG module with average and max pooling 

C. Dense Evaluator Unit (DEU) 
DEU is simple regressor module to flatten the multi 

channel image  output  from IDG into a single channel image, 
which represent the dense map result. We flatten  the multi 
channel image into a single channel image by using a 1x1 
convolution filter. We also apply a drop out regularization on 
DEU module to prevent the model from overfitting. The 
illustration of DEU module is shown in Fig 5. 

  
Fig. 5. DEU module to regularize the model and flatten output image into a 

1D channel dense map image 

D. Inception Dense Estimator (IDEnet) 
IDEnet consists of several IDGs and DEUs. In this work, 

we conduct 3 experiments on our IDEnet model based on 3 
considerations. Each experiment will compare 2 IDEnet 
model and from the result of each experiment, the best 
IDEnet design will be iterated for the next experimentation. 

 The first consideration is single regression loss versus 
multiple regression loss approach. In Inception-v1[1], 
auxiliary classifiers were added into the model to improve the 
convergence of very deep neural network, prevent gradient 
vanishing problem, and regularize the model, while in 
Inception-v3[3] the auxiliary classifiers were removed 
because the auxiliary classifiers didn’t give any beneficial 
impact to the model. We conduct similar experiment with the 
same idea as in the Inception-v3[3]. Our first model will have 
a multiple DEUs, which named IDEnet-v1a, and our second 
model will have single DEU, which named IDEnet-v1b. Both 
of IDEnet-v1a and IDEnet-v1b use 4 layers of IDG-v1a as the 
main computational module and 4 DEUs which each DEU is 
connected to each IDG-v1a. The illustration for both IDEnet-
v1a and IDEnet-v1b are shown in Fig. 6. 

   
Fig. 6. IDEnet-v1a (left) and IDEnet-v1b (right) 

 The second consideration is larger filter size with less 
pooling layers versus smaller filter size with more pooling 
layers. We use IDEnet-v1b for the larger filter size model, as 
it turns out giving better result than IDEnet-v1a. For the 
smaller filter size model, we use 5 layers of IDG-v1b as the 
main computational module with single DEU. We named this 
model as IDEnet-v1c.  
 The third consideration is related to our own hypothesis 
as explained in subsection III.B. We compare between 
IDEnet-v1c and another IDEnet design which name IDEnet-
v1d. In this model, we use IDG-v1c which incorporate 
average pooling and max pooling at the end of the IDG 
module. The illustration of IDEnet-v1c and IDEnet-v1d are 
shown in Fig. 7. 

   
Fig. 7. IDEnet-v1c (left) and IDEnet-v1d (right) 

IV. EXPERIMENTS 
We conduct several experiments to evaluate our IDEnet. 

Each experiment will compare two IDEnet models, and from 
the result of each experiment, the best IDEnet design will be 
iterated for the next experimentation. The best IDEnet model 
from the experiment will then be evaluated on UCF50, 
ShanghaiTech part A, and ShanghaiTech part B dataset. The 
detail and result of the experiment are described below: 
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A. Experimental Protocol 
We conduct 3 types of experiment for deciding the best 

model of our IDEnet. Each experiment corresponds to each 
consideration which as described in subsection III.D. The first 
experiment compares network with single regression loss 
model and network with multiple regression loss model. The 
second experiment compares network with larger filter size 
and less pooling layers and network  with smaller filter size 
and more pooling layers. The third experiment compares 
network with max pooling layers and network with average 
pooling and max pooling layers. 

In the first experiment  we compare IDEnet-v1a with 
IDEnet-v1b. In the second experiment we compare IDEnet-
v1b with IDEnet-v1c. In the third experiment we compare 
IDEnet-v1c with IDEnet-v1d. We quatitatively compare the 
model performance by calculating the mean absolute error 
(MAE) of each model with UCF50 dataset. We split the 
UCF50 into 90% training set, 5% dev data, and 5% test set. 
Each image is sliced into a patch of size 224x224. We perform 
the evaluation to each patch image instead of a single full 
image. We train each model with 10 epoch training with 
decayed learning rate start from 0.01 with 0.5 decay rate per 
epoch. The loss function for single regression loss network 
and multiple regression losses are defined in equation (2) and 
equation (3) respectively. 

𝑙𝑜𝑠𝑠 = 3
B

|𝑦:9D − 𝑦′:9D|G
DHI

J
9HI

B
:HI 	 (2)  

𝑙𝑜𝑠𝑠8KLM9 = 𝑊9 ∗ 𝑙𝑜𝑠𝑠9O
9HI    (3)  

where N is the batch size, W and H are width and height of 
output dense map, Wi is the loss weight for regression on step 
i, lossi  is the single loss for step I, 𝑦:9D is the value of pixel 
(i, j) of the nth ground truth dense map, and 𝑦′:9D is the value 
of pixel (i, j) of the nth predicted dense map. 

B. Experiments Result and Analysis 

TABLE I.  EXPERIMENT RESULT 

Model Name 
MAE Dataset 

Training Dev Test 

IDEnet-v1a 90.82 232.41 202.28 

IDEnet-v1b 73.53 194.06 202.05 

IDEnet-v1c 50.00  45.64 53.98 

IDEnet-v1d 48.61 43.50 51.25 

 

From the experiment result on Table. I, we could derive 
the following conclusions: 

1. Multiple regression loss on counting task doesn’t 
improve the convergence of the network nor regularize 
the network. This result gives consistent conclusion 
with the removal of auxiliary classifiers as explained 
on Inception-v3[3]. 

2. Smaller filter size with more pooling layers works 
better than bigger filter size with less pooling layers. 
This probably happens bacause of the redundant 
counting performed on same object within the 
different filter in the same IDG unit. Further analysis 
is needed to explain this phenomenon. 

3. For counting task, combination of average pooling and 
max pooling perform slightly better than using only 
max pooling. This answer our hipothesis that have 
been described in subsection III.B. 

From the experiment results and conclusions, we decided 
to use IDEnet-v1d as our IDEnet-v1, to be evaluated and 
benchmarked on UCF50 dataset, ShanghaiTech part A, and 
ShanghaiTech part B dataset. The illustration of IDEnet-v1 is 
shown in Fig. 8. 

 

  
Fig. 8. IDEnet-v1: with DEU and 6 layers of IDG-v1c 

We conduct two different preprocessing approaches 
generating the density map. In the first approach we use the 
density map directly from the ground truth image. In the 
second approach, we modify the density map by performing 
gaussian kernel normalization (GKN) to the ground truth 
image. By performing GKN, the total sum of the dense image 
stays the same and this method makes the network learns the 
dense map better[8]. 

We evaluate the performance of our IDEnet-v1 by 
calculatinng mean absolute error (MAE) and mean square 
error (MSE). The calculation of MAE and MSE are defined 
in equation (4) and equation(5) respectively. 

𝑀𝐴𝐸 = 3
B

|𝑦9 − 𝑦′9|B
9HI 		   (4) 

𝑀𝑆𝐸 = 3
B

|𝑦9 − 𝑦′9|B
9HI 		   (5) 

where N is the number of samples in the dataset, 𝑦9  is the 
ground truth count of the ith image, and 𝑦′9 is the predicted 
count of the ith image. 

C. Evaluation Comparison 
We benchmark the performance of our work with the 

other works by implementing the standard evaluation 
protocol on each dataset and use the same formula to 
calculate the MAE and MSE evaluation metric. 

We evaluate our IDEnet-v1 with two different crowd 
counting datasets. The first dataset is UCF50 from University 
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of Central Florida and the second dataset is ShanghaiTech 
dataset from ShanghaiTech University. ShanghaiTech 
dataset is divided into two different parts, which are called  
ShanghaiTech part A and ShanghaiTech part B. The statistics 
of our datasets are shown in Table II. 

TABLE II.  DATASET STATISTICS UCF50 AND SHANGHAITECH 

Dataset 
Measure 

Min Max Average Total 

UCF50 96 4633 1279.50 63,974 

ShanghaiTech part A 33 3139 501.40 241,677 

ShanghaiTech part B 9 578 123.60 88,488 

UCF50 dataset contains 50 grayscale crowd images. 
UCF50 dataset have various density level of the crowd image 
the image size is not standardized. The statistics of UCF50 
dataset is shown in Table II. Evaluation on UCF50 dataset is 
conducted by performing a 5-folds cross validation on the 
dataset. We compare our IDEnet-v1 with eight existing 
methods [8][9][10][11][12][14][15][16]. The UCF50 dataset evaluation 
result is shown in Table III.  

TABLE III.  EVALUATION METRIC OF THE UCF50 DATASET 

Method 
Evaluation Metric 

MAE MSE 

CrowdNet[8]
 645.00 - 

MCNN[9] 377.60 509.10 

Hydra CNN[10] 333.73 425.26 

SaCNN[14] 314.90 424.80 

Switch-CNN[11] 318.10 439.20 

Pyramidal CNN[15] 295.80 320.90 

ConvLSTM-nt[12] 284.50 297.10 

Liu, X et al.[16] 279.60 388.90 

Ours: IDEnet-v1 357.79 513.29 

Ours: IDEnet-v1 + GKN 368.18 519.12 

ShanghaiTech part A and ShanghaiTech part B have 
several differences[2].  ShanghaiTech part A  consists of 300 
training data of crowd images and 182 test data of crowd 
images, while ShanghaiTech part B consist of 400 training 
data of crowd images and 316 test data of crowd images. 
Another difference is ShanghaiTech part A has 
unstandardized image size and is retrieved from the internet, 
while ShanghaiTech part B has a standardized image of 
1024x768 and is taken from metropolitan areas in Shanghai. 

For ShanghaiTech part A, we compare our IDEnet-v1 
with five existing methods [9][11][14][15][16]. The ShanghaiTech 
part A evaluation result is shown in Table IV. For 
ShanghaiTech part B, we compare our IDEnet-v1with seven 
existing methods [9][11][13][14][15][16][17]. The ShanghaiTech part 
B evaluation result is shown in Table V. Our IDEnet-v1 
unable to achieve the best result in UCF50 dataset and 
ShanghaiTech part A dataset, but our IDEnet-v1 with GKN 
is able to outperform the state of the art method in 
ShanghaiTech part B dataset. 

TABLE IV.  EVALUATION METRIC OF SHANGHAITECH PART A 

Method 
Evaluation Metric 

MAE MSE 

MCNN[9]
 110.20 173.20 

Switch-CNN[11] 90.40 135.00 

SaCNN[14] 86.80 139.20 

Pyramidal CNN[15] 73.60 106.40 

Liu, X et al.[16] 72.00 106.60 

Ours: IDEnet-v1 102.95 158.24 

Ours: IDEnet-v1 + GKN 95.81 153.08 

TABLE V.  EVALUATION METRIC OF SHANGHAITECH PART B 

Method 
Evaluation Metric 

MAE MSE 

MCNN[9]
 59.10 81.70 

Liu, W et al.[13] 25.10 45.80 

Switch-CNN[11] 21.60 33.40 

DecideNet[17] 20.75 29.42 

Pyramidal CNN[15] 20.10 30.10 

SaCNN[14] 16.20 25.80 

Liu, X et al.[16] 13.70 21.40 

Ours: IDEnet-v1 15.91 22.85 

Ours: IDEnet-v1 + GKN 11.32 18.45 

D. Analysis 

We conduct manual error analysis for UCF50 dataset and 
ShanghaiTech part A dataset. From the manual error analysis, 
we figure out that our IDEnet incorrectly estimates count 
from the given crowd image because of the following 
reasons: 

1. A very small and occluded human figure 
2. A crowd image which are totally different with any 

other crowd image in the dataset 

 The first reason is the problem with small pattern size. 
Small pattern size usually gives a lot of false signal because 
the same exact pattern is likely to appear in many different 
places with contrasting signals. One potential solution for this 
problem is to use a switching mechanism to choose different 
regression unit for different type of region [11]. Another 
possible solution is to use multiple regression unit and an 
attention mechanism to pick the correct regression unit. Some 
examples of the small pattern problem are shown in Fig. 9. 

 The second problem is a data distribution problem. This 
problem occurs when the image distribution of the test set is 
different from the training set, probably because some images 
are totally different with most of other images. We could 
solve this problem by adding more similar data into the 
dataset and balance the distribution of the training set, 
validation set, and the test set. Further study for systematic 
dataset assessment is needed to get deeper insight regarding 
to the data distribution problem. Some example images with 
distribution problem are shown in Fig. 10. 
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Fig. 9. Small pattern size estimation error. The left image is the input, the 

center is the ground truth, the right is the prediction. The number below the 
image represents the ground truth and prediction count respectively. 

 
Fig. 10. Data distribution error. The first row shows images that are totally 

different from most images on the UCF50 dataset. The other rows show 
some image groups with similar representation from the UCF50 dataset 

CONCLUSIONS 
In this paper we propose an inception based deep learning 

approach to estimate the crowd density from a crowd image, 
named Inception Dense Estimator Network (IDEnet). 
Inception based network is very modular so that the network 
is easily adapted and modified to other image processing task. 
We evaluated IDEnet in UCF50 and ShanghaiTech dataset 
and our IDEnet successfully outperformed the current state-
of-the-art method in ShanghaiTech part B dataset. 

From our experiments and manual error analysis we 
found 6 key conclusions, which could be used as a 
consideration for further research. The 6 key conclusions are 
as follow:  

1. Multiple regression loss on inception based network 
doesn’t give any beneficial impact to the network 
learning process. 

2. Smaller filter size with deeper network works better 
than bigger filter size with shallower network for 
crowd counting task. 

3. Pooling layer with a combination of average pooling 
and max pooling works better than pooling layer with 
only max pooling in crowd counting task. 

4. Gaussian Kernel Normalization enables the network 
to fit the dense map better. 

5. Small pattern size and data distribution problems 
need to be handled in order to achieve a better result. 

6. Our IDEnet outperforms the state-of-the-art-method 
in ShanghaiTech dataset part B. 
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