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Abstract. Disturbance compensation is a challenging problem in quadrotor control, especially 

in nonzero set point regulation. This paper presents proportional-derivative regulation for 

nonzero set point on SO(3) with disturbance compensation for quadrotor UAV. Quadrotor 

nonlinear kinematics and dynamics model in SO(3) are used to design the control law. 

Disturbance compensation is added to the control law by using the upper bound of the 

disturbance. The numerical simulation shows that the disturbance compensation is able to 
counter the disturbance effect and improve the bound of the state variables. 

1. Introduction 

Unmanned Aerial Vehicle (UAV) is popular flying machine for commercial, military, and academic 

purposes. Quadrotor is a famous UAV type because its mechanical structure is simple. In contrast to 

common single-rotor helicopter, quadrotor does not need complex swashplate to change the 

orientation rotor plane. Quadrotor controls its orientation in the air by manipulating the rotational 

speed of its four rotors. Because of this, quadrotor needs special control algorithm to control its rotors 

[1]. 

Generally, quadrotor attitude control can be divided into two approaches. The first approach, 

namely separate control, controls roll, pitch, and yaw (RPY) angles separately, while the second 

approach uses SO(3) control [2]. A drawback of the first approach (the separate control) is that it can 

not evade singularities of attitude representation. In the case of RPY angles, singularity occur when 

the pitch angle of UAV is 90 degrees [3]. 

The second approach considers quadrotor's motion in SO(3). Simply stated, SO(3) group is a 

mathematical group consisting of rotation matrices. In contrast to RPY representation, which 

represents a rotation by 3 consecutive rotations, SO(3) group uses single arbitrary axis in 3-dimension 

space. Some works that used this approach were the work of Yun Yu [2] and Yushu Yu [3]. Different 

from RPY representation that possesses singularity, SO(3) representation can avoid singularity. 

Creating a control law that can neutralize disturbance is a challenging problem [4], especially in 

nonzero set point regulation. Some works modeled disturbance by calculating wind effects on 

quadrotor. The example of works that used this approach were conducted by Sydney [5] and Tran [6]. 

Sydney conducted wind effect estimation on quadrotor and used it to design a control law capable of 

countering disturbance. Tran modelled the studyied propeller-wind interaction, but made no 

http://creativecommons.org/licenses/by/3.0
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disturbance compensation. Huang [7] considered aerodynamic effect in making a control law 

aggressively maneuvering quadrotor. He approached this problem by carefully considering blade 

flapping. However, all of them used separate roll, pitch, yaw control. Recent work that used control on 

SO(3) and taking disturbance into account was conducted by Fernando [8]. He used the upper bound 

of the disturbance to design disturbance compensation in the control law. 

This research uses the form of disturbance compensation used in [8] and modifies it for regulation 

using nonzero setpoint. Using similar approach, the upper bound of disturbance magnitude is used to 

compensate the disturbance. The remainder of this paper is organized as follows. Section II explains 

quadrotor model in SO(3). This is continued by section III that describes proportional-derivative (PD) 

control with disturbance compensation. Next, the numerical simulation and analysis are presented in 

section IV. This paper ends with conclusion in section V. 

2. Quadrotor Equations in SO(3) 

This section explains the derivation of state-space equation based on [9], [10], and [11]. In exponential 

coordinates representation, the attitude representation is ζ = [ζ1  ζ2  ζ3]T, where ζ is the logarithm of the 

rotation matrix . The angular velocity is described in body frame axes, denoted as ωb = [p  q  r]T. The 

inertia matrix of the quadrotor is diagonal. The quadrotor’s dynamics is defined by Euler 

equation: 

 
τJωωωJ  bbb


 (1) 

The quadrotor kinematics is written in terms of the angle ζ = log(R)˅ [11]: 
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where      2cot2 ζζζ  . Therefore, the second order system of quadrotor UAV in SO(3) is 
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Equation 2 shows the benefit of using SO(3) for regulation since onversion from ωb, which is obtained 

from gyroscope sensor, to ζ  does not suffer from singularity. This is due to   0lim 


ζ
0ζ
  and 

  0ˆlim
22 




ζζ

0ζ
. On the other hand, in RPY representation, conversion from ωb to Θ  suffers from 

singularity when θ = π/2 (see [10] or [9] for details). 

3. PD Control with Disturbance Compensation 

Before disturbance compensation is taken into consideration, the simpler proportional-derivative (PD) 

control under no disturbance is explained. This control law uses the the result made by Bullo [11]. The 

control law to regulate the quadrotor to a nonzero set point ζd is 

   bddpbb ωKζζKJωωτ  . (4) 

where Kp and Kd are positive definite matrices. This control law is a modificatioin from [11]; the 

original control law uses zero set point. The proof of the control law’s stabilizing ability, which 

invokes Lyapunov stability theorem, can be read at [11]. 
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In reality, quadrotor flight encounters disturbance, which may be caused by parameter 

uncertainties, approximation or inaccuracy in aerodynamic effects modelling, and wind. The 

disturbance can be modelled by adding g into dynamics equation in the system: 

 gτJωωωJ  bbb
 . (5) 

The magnitude of g has an upper bound of δ, where δ is a nonzero positive scalar. Under the 

influence of the disturbance, the closed-loop system dynamics becomes 

   gJKJζζKJω
111   ddpb

 . (6) 

The disturbance compensation u is added to the control law: 

 uωKζKJωωτ  bdpbb . (7) 

With the compensation, the closed-loop system dynamics becomes  

 uJgJKJζKJω
1111   dpb

 . (8) 

The disturbance compensation u is 
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where k1 and k2 are positive constants. This compensation is modifed from [8]. 

4. Numerical Simulation and Analysis 
The simulation is conducted by adding random disturbance to the system. The quadrotor model is 

based on [9] and [12]. The elements of the inertia matrix are Jxx = 0.082 kg m2, Jyy = 0.0845 kg m2, and 

Jzz = 0.1377 kg m2. The initial condition of angle ζ(0) and body angular velocity ωb(0) are, 

respectively,    T006/0 ζ  and      TT

b rqp 0000 ω . The set point is ζd = (π/18)[1  1  

1]T, which is equivalent to 10°. The proportionality and derivative constant matrix are written in form 

of Kp = kpI3×3 and Kp = kdI3×3, respectively, with kp = 8 and kd = 5. The upper bound of disturbance is δ 

= 2.18.  

Figure 1 shows the angle ζ with the control law without compensation, while Figure 2 shows the 

angle ζ under compensation effect. In Figure 1, after about 2 seconds, the angle values’ divergence 

from the set point is close to 5°. In figure 2, the angle values after approximately 2 second does not 

diverge close to 5° (the divergence is well below 5°). The fluctuation of angle values in Figure 2 is 

smoother than it is in figure 2. It is apparent that, under disturbance influence, the disturbance 

compensation reduces the bound of state variables around the set point ζd, whose all elements equal 

10°. 

Possible future works following this research can be conducted in some areas. For example, it will 

be necessary to test the control algorithm in physical experiment. It may be also possible to make 

adaptive control law or design backstepping control law on SO(3) that can encounter disturbance.  
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Figure 1. ζ without compensation. Set point for 

ζ1, ζ2, ζ3 is 10°. 

 
Figure 2. ζ with compensation. Set point for ζ1, 

ζ2, ζ3 is 10°. 

5. Conclusion 
The disturbance compensation reduces the bound of state variables. The bound of state variables is 

smaller with the compensation than it is without the compensation. The compensated control law can 

handle constant disturbance better than the uncompensated control law can. 
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