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Abstract. Long Term Evolution (LTE) network provides a high throughput with low latency 

which make it suitable for multicast and broadcast services. In Conventional Multicast Scheme 

(CMS), data is transmitted according to the user with worst channel condition which results in 

wasting network resources. To overcome the drawback of CMS, a new subgrouping 

mechanism is proposed to split the multicast group into several subgroups based on users 

channel quality. The performance of the proposed mechanism has been evaluated using LTE 

simulator. The simulation results show that the proposed mechanism increase the multicast 

performance compared to CMS in term of goodput and spectrum efficiency, while maintain 

fairness index of users in an acceptable level. 

Keywords: E-MBMS, Modulation and Coding Schema, multirate, multicast 

1. Introduction 

Long Term Evolution (LTE) network was introduced by the Third-Generation Partnership Project 

(3GPP) and was considered as the latest step towards the 4th generation of radio technologies. LTE 

offers a high throughput with low latency which make it the best choice for Multimedia Service. LTE 

network exploits the benefits of Orthogonal Frequency Division Multiple Access (OFDMA), in which 

various users data is multiplexed in frequency and time domains [1]. In OFDMA, the full frequency 

bandwidth is divided into orthogonal subcarriers, where each subcarrier is allocated 15 kHz. The LTE 

frame consists of 12 consecutive subcarriers and 10ms duration. Each frame consists of 10 subframes; 

each subframe is 1ms, which is equal to the Transmission Time Interval (TTI); and then each subframe 

is equal to two time slots, where each slot is 0.5ms in the time domain and 12 subcarriers in the 

frequency domain. However, each slot is composed of a resource block (RB), which is the minimal 

radio resource allocation unit in the LTE. Each RB consists of seven symbols when the normal Cycle 

Prefix (CP) is used or six symbols when the extended CP is used, as used in E-MBMS subframe [1].  

Recently, mobile devices are equipped with large screen with high resolution which requires high 

data rate for video and has the ability to transmit and received data with higher bit rate. In addition, the 

http://creativecommons.org/licenses/by/3.0
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using of these devices is no longer limited only on making voice calls but they are also used to browse 

the Internet, watch video, watching news, play online game, and watching TV. Thus, beside the 

bandwidth scarcity, will increase the demand on network resources and then force the network 

operators to efficiently utilize the network resources. A group-oriented services, such as multicast and 

broadcast, are an efficient way for utilizing the network resources. The increasing demand of the 

group-oriented services has resulted in defined and standardized a new service called Multimedia 

Broadcast Multicast service (MBMS), which was introduced by the 3GPP [2,3] in 2005 over the 

UMTS Release 6 [4]. Since 2005, many enhancements have been made to the MBMS standard which 

evolved into enhanced MBMS (E-MBMS) that developed over the 3GPP LTE standard network 

Release 9 [5].  

In E-MBMS, the same data is sent to Users Equipment (UEs), whose belong to the same Multicast 

Group (MG), using the same channel result in efficient sharing and usage of radio network resources. 

On other side, it is a challenge to select the Modulation and Coding Schema (MCS) which can satisfy 

all UEs belong to the same group. The cell center of UEs can receive the data with high bit rate, 

whereas, the cell edge UEs suffer a poor channels condition. Therefore, they can receive the data only 

with low MCS level which result in wasting the network resources. In CMS, a single data rate is 

selected to transmit the data to all UEs in each MG. The data rate is selected according to the user with 

worst channel gain (WCG) [6,7,8]. The CMS is a reliable multicast transmission schema to deliver the 

data with high fairness. In contrast, the CMS reduces the system performance by forcing the users with 

high channel gain (HCG) to receive the data with low MCS corresponding to the users with WCG. 

Several studies have been carried out to improve the multicast performance by overcome the 

limitations of the CMS. For example, in [9], the authors proposed a resources allocation approach 

called Opportunistic Multicast Scheduling (OMS), which exploits the multiuser diversity by only 

selects the users with HCG to be served in a time slot. In [10], the MG is split into two subgroups (cell 

center and cell edge subgroups), and split the data stream into two layers (base and enhanced layer). 

The based stream is received by both subgroups while the enhanced stream is only received by cell 

center subgroup. Another interesting study was proposed by [5, 11], in which the UEs in each MG are 

split into several subgroups depending on users channel gain. Then each subgroup are served with 

MCS level corresponding to the user with WCG. Tan et al. in [i12], proposed a schema in which the 

multicast groups are divided into a set of subgroups dynamically using a coalition game theory. 

However, most previous works consider a single group which not always happens in the real system. 

Moreover, in a multi-groups system, splitting each group to several subgroups will results in high 

number of subgroups which required more radio resources and reduce the spectrum efficiency (SE). 

Consequently, determining the number of subgroups and the amount of radio resources that should be 

allocated to each subgroup are still an open issue and need to be properly selected. 

In this paper, an innovative Radio Resource Management (RRM) mechanism is proposed to increase 

the E-MBMS performance. The proposed RRM efficiently splits each group to three subgroups and 

allocated the resource to each subgroup. It uses two thresholds to split the MG to three subgroups 

(upper, lower, and medium subgroups). These thresholds are selected according to the Standard 

Deviation (StD) and the average of users channel quality. 

2. System Modeling and Problem Formulation 

In LTE network, there are 15 levels of CQI, each level associated with an MCS level. Let L=15 is the 

CQI levels, then CQIl=l,  where l={1,2,...,L}. Thus, MCSi is the MCS associated with the CQIl. Any 

user sent a CQIl feedback to its eNodeB, can successfully receive and decode the transmitted data 

which is transmitted with the MCSi level where i ≤ l. 

Let consider K users belong to G groups that receiving the data using 𝑁 subcarriers over a single 

eNodeB as illustrated in Figure 1. The set of users, groups, and subcarriers are represents by 𝒦, 𝒢, 𝒩 

respectively. The system bandwidth 𝑊 is equally shared between all subcarriers, so the bandwidth of 

subcarrier 𝑛 is 𝐵𝑛 =
𝑊

𝑁
. For simplicity, we assume each subcarrier 𝑛 have equal power 𝑃𝑛. Assume a 

perfect orthogonality preserved, and perfect synchronization, so there is no inter symbol interference 
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and no inter-carrier interference. All users receive transmitted data over one or more subcarriers 

without any interference. It is also assumed that the eNodeB uses reliable feedback channels to receive 

CQI report from each user without any delay. Let 𝒦𝑔 denotes the 𝑔 users group set, and the cardinality 

∥ 𝒦𝑔 ∥ denotes the number of users in group 𝑔, where 𝑔 = {1,2, . . . , 𝐺}. Thus, for multicast ∥ 𝒦𝑔 ∥≥

2, and ∥ 𝒦𝑔 ∥= 1 in unicast. Moreover, ∑𝐺
𝑖=1 ∥ 𝒦𝑔 ∥= 𝐾, 𝒦 = ⋃𝐺

𝑔=1 𝒦𝑔 = 𝒦1 ∪ 𝒦2 ∪ ⋯ ∪ 𝒦𝐺. Let 

𝑀𝐶𝑆𝑔
𝑣 represents the MCS vector of users in group g, where 𝑀𝐶𝑆𝑔

𝑣 = {𝑀𝐶𝑆1, 𝑀𝐶𝑆2, ⋯ , 𝑀𝐶𝑆𝑀}, 𝑀 =

∥ 𝒦𝑔 ∥. 

  
Figure 1. Subgrouping formation schema. Figure 2. Upper/ lower thresholds in group 𝑔. 

 
Let consider 𝑟𝑘,𝑛 is the data rate of user k on subcarrier n. Then the data rate of user k can be 

expressed by equation (1). 

𝑅𝑘 = ∑𝑁
𝑛=1 𝑟𝑘,𝑛𝜔𝑘,𝑛                                                                 (1) 

 

where 𝜔𝑘,𝑛 is a subcarrier indicator to show whether the subcarrier n is used by user k or not. is 

formulated as equation (2). 

𝜔𝑘,𝑛 = (
1, 𝑖𝑓 𝑠𝑢𝑏𝑐𝑎𝑟𝑟𝑖𝑒𝑟 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑢𝑠𝑒𝑟 𝑘;
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

                              (2) 

In CMS, the transmission data rate of a group is selected according to the user with WCG. Let 

consider 𝑟𝑔,𝑛is the worst channel gain for group g on subcarrier n. The aggregate data rate (ADR) of 

group g can be calculated as in equation (3). 

𝑅𝑔 =∥ 𝒦𝑔 ∥ ∑𝑁
𝑛=1 𝑟𝑔,𝑛𝜔𝑔,𝑛                                                            (3) 

where 𝜔𝑘,𝑛 indicates either the subcarrier was utilized by group g or not. The total ADR of all groups 

in 𝒦can be obtained as equation (4). 

𝑅𝑇 = ∑𝐺
𝑔=1 𝑅𝑔 = ∑𝐺

𝑔=1 ∑𝑁
𝑛=1 ∥ 𝒦𝑔 ∥ 𝑟𝑔,𝑛𝜔𝑔,𝑛                             (4) 

The RRM allocates the system subcarriers to all groups in a way that can maximize the system 

throughput while keep the fairness between UEs in acceptable level. According to [13], CMS 

throughput is bounded by the users with WCG, and will saturate when the UEs number increases in 

Rayleigh and Ricean fading environments. As aforementioned, the MMS techniques were emerged to 

overcome the limitations of the CMS. The MSF maximize the multicast throughput by split the 𝐺 

groups into 𝑆 subgroups with set 𝒮, where 𝒮 = {1,2, … , 𝑆}𝑎𝑛𝑑  𝐺 ≤ 𝑆 ≤ 𝐾. In details, each group g 

can be splitted into 𝒮𝑔 subgroups, where 𝒮𝑔 = 𝒮g
1 ∪ 𝒮g

2 ∪ … ∪ 𝒮g
l , and 1 ≤ 𝑙 ≤ 15. Indeed, each group 

g can be splitted to 15 subgroup as maximum which equal to the number of MCS level in LTE 

network. Then transmit the data to each subgroup using a WCG rate. To efficiently utilize the 

multiuser diversity, the MG users are splitted according to their channel gains. Thus, each subgroup 𝑆𝑔
𝑙  

contains a set of users with same or close channel gains. 
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𝑚𝑎𝑥 ∑𝑆
𝑠=1 ∑𝑁

𝑛=1 ∑𝐾
𝑘=1 𝑟𝑠,𝑛𝜔𝑠,𝑛𝛼𝑠,𝑘                                                    (5) 

 

𝜔𝑠,𝑛, 𝛼𝑠,𝑘 ∈ {𝑜, 1}, ∀𝑠 ∈ 𝒮, ∀𝑘 ∈ 𝒦, ∀𝑛 ∈ 𝒩                       (6) 

 

∑S
𝑠=1 𝜔𝑠,𝑛 = 1, ∑S

𝑠=1 , 𝛼𝑠,𝑘 = 1, ∀𝑠 ∈ 𝒮, ∀𝑛 ∈ 𝒩, ∀𝑔 ∈ 𝒢                 (7) 

 

where 𝜔𝑠,𝑛, 𝛼𝑔,𝑠,𝑘 are binary indicators, which indicate either subcarrier n and user k belong to 

subgroup s or not. 

The RRC has to assign subcarriers and users to proper subgroups in order to maximize the total 

throughput. Thus, the problem described in equations (5)-(7) is considered as NP-Hard problem (non-

deterministic polynomial-time) which does not have an optimal solution. Indeed, there is a solution for 

this problem by using exhaustive search algorithm, but it is usually a high complex and time-

consuming computations [14]. Moreover, the complexity of NP-Hard increases exponentially with the 

number of subcarriers, subgroups, and groups which make it unrealistic to practical used. Furthermore, 

there are 𝑆𝑁 solutions for scheduling radio resources between all subgroups 𝑆 [9, 15]. Thus, it is 

necessary to find a suboptimal solution which can be used in real system. This paper introduces the use 

of StD of users’ SINR to split each group to three subgroups; worst, best, and medium subgroups. The 

worst subgroup will contain all cell edge UEs whose MCSs are extremely low. The best subgroup will 

contain the cell center UEs whose MCSs are extremely high, whereas the medium subgroup will 

contain the remain UEs. 

3. System Modeling and Problem Formulation 

The proposed subgrouping mechanism uses the StD to show how the users MCS levels are distribute 

and deviated from the average value of all users’ MCS level values. The StD with small value means 

that MCSs of all users are closed to each other, whereas, the big StD value means that all users are far 

from each other. However, in case of the users’ MCSs standard deviation value is small enough, the 

MCS level of worst user case will be suitable for all users. The StD and average of users’ MCSs will 

be used to divide the multicast users into several categories or subgroups by using upper and lower 

thresholds, as shown in Figure 2. These thresholds will be used to split each group 𝑔 into three 

subgroups. Nevertheless, several steps should initially be performed in order to calculate the upper and 

lower MCS thresholds for each group 𝑔. The following steps are repeated for each group 𝑔 in the 𝒦 

groups set:   

   • Step 1: Users have to measure the SINR for received signal. The SINR for each subcarrier can be 

calculated using equations (8) and (9) [5,16].  

𝑆𝐼𝑁𝑅(𝑚) =
∑𝐴

𝑖=1 ∑𝐵
𝑗=1

𝑤(𝜏𝑖(𝑚)+𝛿𝑖)𝑃𝑗

𝑞𝑖(𝑚)

∑𝐴
𝑖=1 ∑𝐵

𝑗=1

(1+𝑤(𝜏𝑖(𝑚)+𝛿𝑖))𝑃𝑗

𝑞𝑖(𝑚)
+𝑁0

                                             (8) 

 with 

𝑤(𝜏) = (

1 0 ≤ 𝜏 ≤ 𝑇𝐶𝑃

1 −
𝜏−𝑇𝐶𝑃

𝑇𝑢
𝑇𝐶𝑃 ≤ 𝜏 ≤ 𝑇𝐶𝑃 + 𝑇𝑢

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                         (9) 

 

where 𝑃𝑗  is the average power associated with the 𝑗 path, 𝜏𝑖(𝑚) the propagation delay from eNodeB 𝑖, 

𝛿𝑗 the additional delay added by path 𝑗, 𝑞𝑖(𝑚) the path loss from eNodeB 𝑖, 𝑇𝑐𝑝 the length of the CP 

and 𝑇𝑢 the length of the useful signal frame, 𝑁0 the noise power.   

  • Step 2: mapping the SINRs of a user subcarriers into one effective SINR, (so-called Exponential 

Effective SINR Mapping (EESM)), using the following equation (10) as stated in [6, 17].  

𝑆𝐼𝑁𝑅𝑒𝑓𝑓 = −𝛽. ln (
1

𝑅𝐵
∑𝑁

𝑚=1 𝑒
−

𝑆𝐼𝑁𝑅𝑚
𝛽 )                                         (10) 
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where 𝑆𝐼𝑁𝑅𝑚 is the 𝑆𝐼𝑁𝑅 of the 𝑚𝑡ℎ resource block assigned to the user; 𝛽 is a factor which can be 

amended to match the 𝑆𝐼𝑁𝑅𝑒𝑓𝑓 to a specific MCS. 𝑅𝐵 is the number of resource blocks assigned to 

the user. 

  • Step 3: map the obtained SINReff to the corresponding CQI value which is achieved by a BLER less 

than 10% in Single Input Single Output transmission mode (SISO) over Additive White Gaussian 

Noise (AWGN) channel.  

  • Step 4: user will send the obtained CQI to its eNodeB which is responsible for selecting the 

corresponding 𝑀𝐶𝑆 level, as listed in Table 1.  

  • Step 5: calculate the average 𝑀𝐶𝑆𝑔
𝑣 value of all the g-th group where 𝑀𝐶𝑆𝑔

𝑣 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑀𝐶𝑆𝑔
𝑣). 

Then, calculate the standard deviation 𝜎 of MCSs values of all users using equation (11).  

𝜎𝑔 = √
1

𝑛
∑𝑛

𝑖=1 (𝑀𝐶𝑆𝑖 − 𝑀𝐶𝑆𝑔
𝑣)2                                               (11) 

  • Step 6: calculate the upper threshold 𝑇𝑢𝑝 and the lower threshold 𝑇𝑙𝑜𝑤 for all users using equations  

(12) and (13).   

𝑇𝑢𝑝
𝑔

= 𝑀𝐶𝑆𝑔
𝑣 + 𝜎𝑔                                 (12) 

𝑇𝑙𝑜𝑤
𝑔

= 𝑀𝐶𝑆𝑔
𝑣 − 𝜎𝑔                                    (13) 

The 𝑇𝑢𝑝
𝑔

 and 𝑇𝑙𝑜𝑤
𝑔

 values will be used to select users with abnormal MCS level who are deviated away 

from the average of users’ MCS.   

  • Step 7: each group 𝑔 in 𝒦 set will be splitted into three subgroups (𝑆𝑔
𝑏, 𝑆𝑔

𝑚 , 𝑆𝑔
𝑤), where  

𝑆𝑤
𝑔

= {𝑀𝐶𝑆𝑖|  ∀ 𝑀𝐶𝑆𝑖 < 𝑇𝑙𝑜𝑤
𝑔

}, 

𝑆𝑏
𝑔

= {𝑀𝐶𝑆𝑖|  ∀ 𝑀𝐶𝑆𝑖 > 𝑇𝑢𝑝
𝑔

}, 

𝑆𝑚
𝑔

= {𝑀𝐶𝑆𝑖|  ∀ 𝑀𝐶𝑆𝑖 ≤ 𝑇𝑙𝑜𝑤
𝑔

, 𝑀𝐶𝑆𝑖 ≤ 𝑇𝑢𝑝
𝑔

}, 

Table 1. CQI and their interpretations. Table 2. Simulation parameters. 

CQI 

Index 

Modul-

ation 

Code rate 

x1024 

SE 

[bit/s/Hz] 

1 QPSK 78 0.1523 

2 QPSK 120 0.2344 

3 QPSK 193 0.3770 

4 QPSK 308 0.6016 

5 QPSK 449 0.8770 

6 QPSK 602 1.1758 

7 16QAM 378 1.4766 

8 16QAM 490 1.9141 

9 16QAM 616 2.4063 

10 64QAM 466 2.7305 

11 64QAM 567 3.3223 

12 64QAM 666 3.9023 

13 64QAM 772 4.5234 

14 64QAM 873 5.1152 

15 64QAM 948 5.5547 
 

Parameter 

 

Value 

 

Carrier Frequency 2GHz  

Path loss 
PL(db)=128.1+37.6 

 *log10d 

Thermal noise –174 dBm /Hz 

Downlink Bandwidth 3 MHz 

Symbols for TTI 12 

Sub-Frame Length 1 ms 

Frame Type FDD 

eNodeB radius 1 km 

eNodeB Power transmission 43 dBm 

Modulation Schemes 
QPSK, 16QAM,  

64QAM (dynamic) 

No. of users 20-100 UEs 

No. of E-MBMS group 1 

User transmission power 23 dBm 

User distribution 
Randomly and  

uniformly distributed 

User speed 3 km/h 

User mobility model Random direction  

CQI scheme Full Bandwidth 

Application flows Video 

Video rate 440 kbps 

Simulation time 20 Second 
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4. Simulation and Results 

LTE simulator (LTE-Sim) has been used to evaluate the proposed mechanisms after an extremely 

modifications and extensions of its functions and classes to support E-MBMS network. LTE-Sim is an 

open source framework simulator developed by G. Piro and F. Capozzi [18]. 

4.1. Simulation scenario 

The proposed RRM mechanism has been compared to the CMS in term of cumulative goodput, 

fairness, and spectrum efficiency (SE). For simplicity, only E-MBMS has been activated in the 

simulation. Thus, the whole bandwidth was assigned to the E-MBMS. For more accurate, each 

scenario was performed with different number of UEs who uniformly distributed. Each scenario was 

repeated 20 times, then the average value was calculated. A realistic video trace files with 440 Kbit/s 

was used, which is available in [19]. The main simulation parameters are listed in Table 2. 

4.2. Simulation results 

The first evaluation metric experimented is cumulative goodput and the results are shown in Figure 3. 

The proposed subgrouping mechanism increases the system performance in term of goodput. 

Simulation results demonstrate that the cumulative goodput of the proposed mechanism is better than 

the cumulative goodput of the CMS. This gain due to the using of subgroup technique which is no 

more limited by the WCG as in the CMS. 

The second evaluation metric is the fairness index (FI) of all UEs [20]. The FI is defined by 

equation (14). 

𝐹𝐼 =
(∑K

𝑘=1 𝑟𝑘)2

𝐾 ∑K
𝑘=1 (𝑟𝑘)2                                           (14) 

where 𝑟𝑘 denotes the goodput of the kth user, and 𝐹𝐼 value is variance between (1/𝐾) ≤ 𝐹𝐼 ≤ 1. 

 The maximum FI (FI=1) can be obtained when all user are served with the same rate. As shown in 

Figure 4, the maximum fairness is achieved by CMS. The FI of the proposed subgrouping mechanism 

is less than the FI of the CMS. The FI of the proposed subgrouping mechanism decreased as the 

number of UEs increased, because the subgroups size increases as the UEs increase. Nevertheless, the 

FI of proposed mechanism is close the optimal value because each group was split to only three 

subgroups, which means three different rates available for all UEs group. 

 

 
Figure 3. Cumulative Goodput difference 

between proposed mechanism and the CMS. 

Figure 4. Fairness Index difference between 

proposed mechanism and CMS. 

5. Conclusion 
In this paper, an efficient and low complex subgrouping mechanism was proposed to improve the 

performance of the E-MBMS. The SINR of a group UEs have been used to split the UEs into several 

subgroups. The StD and average of the UEs SINR were used as a criteria to classify the UEs according 

to their SINR. The simulation results showed that the proposed subgrouping mechanism improves the 

goodput of the E-MBMS compared to the Conventional Multicast Scheme, while keeping the fairness 

between all UEs in acceptable level. 
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