
Attack Scenarios and Security Analysis of MQTT

Communication Protocol in IoT System

Syaiful Andy1, a, Budi Rahardjo2, b, Bagus Hanindhito3, c
1 2 3 Department of Electrical Engineering, School of Electrical Engineering and Informatics

Institut Teknologi Bandung, Bandung, Indonesia
a Email: syaifulandy@gmail.com, b Email: rahard@gmail.com, c Email: hanindhito@bagus.my.id

Abstract—Various communication protocols are currently

used in the Internet of Things (IoT) devices. One of the protocols

that are already standardized by ISO is MQTT protocol (ISO /

IEC 20922: 2016). Many IoT developers use this protocol because

of its minimal bandwidth requirement and low memory

consumption. Sometimes, IoT device sends confidential data that

should only be accessed by authorized people or devices.

Unfortunately, the MQTT protocol only provides authentication

for the security mechanism which, by default, does not encrypt

the data in transit thus data privacy, authentication, and data

integrity become problems in MQTT implementation. This paper

discusses several reasons on why there are many IoT system that

does not implement adequate security mechanism. Next, it also

demonstrates and analyzes how we can attack this protocol easily

using several attack scenarios. Finally, after the vulnerabilities of

this protocol have been examined, we can improve our security

awareness especially in MQTT protocol and then implement

security mechanism in our MQTT system to prevent such attack.

Keywords—attack; MQTT; protocol; scenario

I. INTRODUCTION

Internet of Things (IoT) or inter-machine communication
(M2M) over the internet is a concept that allows
communication between devices over the Internet. The number
of IoT devices is growing rapidly where Cisco IBSG predicts
the number of IoT devices will reach 50 billion by 2020 [1].
Moreover, Gartner predicts, by 2020, the internet of things
devices will be made up of 20.4 billion units [2]. IoT plays a
major role in smart city implementation like smart home, smart
transportation, and smart parking.

Nowadays, many protocols are used as a communication
protocol in the IoT devices. Five of the most prominent
protocols used for IoT is Hypertext Transfer Protocol (HTTP),
Constrained Application Protocol (CoAP), Extensible
Messaging and Presence Protocol (XMPP), Advanced Message
Queuing Protocol (AMQP), and MQ Telemetry Protocol
(MQTT) [3]. Some considerations that must be taken into
account when we choose the protocol are energy efficiency
(total consumed energy for the given execution time),
performance (total transmission time it takes to send messages
and receive their acknowledgments), resource usage (CPU,
RAM, and ROM usage), and reliability (ability to avoid packet
loss, i.e. QoS) [4]. Moreover, when advanced functionalities
(e.g. message persistence, wills, and exactly once delivery),
reliability, and ability to secure multicast message are highly
considered, MQTT protocol is one of the best options [5].

A. MQTT Protocol

MQ Telemetry Transport (MQTT) is a messaging protocol

using a publish/subscribe mechanism which is originally

designed by Andy Stanford-Clark and Arlen Nipper. It is

currently in the OASIS (Organization for the Advancement of

Structured Information Standards) standard.

Currently, the MQTT protocol also has standard defined in

ISO/IEC 20922: 2016 (Information technology - Message

Queuing Telemetry Transport (MQTT) v3.1.1). This protocol

is used widely for IoT system that has limited resources

because of several reasons: lightweight, small bandwidth

requirement, open and straightforward to be implemented [6].

Figure 1 shows the example of the usage of MQTT

protocol. Publish and subscribe operations can be analogized

like client and server models. The central server in MQTT is

named broker that acts as the recipient of the message from

the client which is, essentially, the entire node involved in the

communication process [7]. The message itself can be in the

form of publish or subscribe topic. Furthermore, all the

devices connected using this protocol can become publishers

and subscribers. Usually, in MQTT architecture, several

sensors periodically publish the results of their measurements

(i.e. payload data) to a topic address. Every device that has

been registered as a subscriber to a specific topic will receive a

message from the broker each time the topic is updated.

Fig. 1. An example of MQTT protocol use case.

B. Security Requirement and Attack Surface

Information security is also an important thing to consider
during making the decision of the protocols because some of
the communication protocols in the IoT devices do not have a
comprehensive information security mechanism. According to
a book published by ISACA [8], the object of information
security consists of three components: data confidentiality, data
integrity, and data availability. There is also access levels

Proc. EECSI 2017, Yogyakarta, Indonesia, 19-21 September 2017

978-1-5386-0549-3/17/$31.00 ©2017 IEEE .600

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Proceeding of the Electrical Engineering Computer Science and Informatics

https://core.ac.uk/display/296975884?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

security requirements such as authentication, authorization, and
access control which are explained in [9]. In fact, MQTT
protocol is one of the protocols that do not yet have overall
security mechanism because it only has authentication
mechanism without encryption capabilities.

There are various considerations for IoT developer who
wants to design security solutions in the IoT communication
protocol. Firstly, the limitation of the IoT device itself (e.g.
compute performance and low power consumption) that
require a lightweight security protocol with small code
footprint. Secondly, the heterogeneous environment where
each of connected device may use different protocol and
different security mechanism. Lastly, the reliability of network
which may forces as to use security mechanism with minimum
overhead [10].

By understanding the security requirement for IoT devices,
we can now discuss the attack surface in IoT. Attack surface is
a vulnerability that can be accessed and exploited in a system
[11]. In [9], attack surface in IoT is divided into local network
and public network. The local network is analog to internal
attack where the attacker is on the same network as the IoT
devices while the public network is analog to external attack
where the attacker might reside anywhere in the public network
to attack the IoT system [9].

Last year, a major incident related to IoT system was
reported by RSA where the hackers had hijacked many IoT
devices and provided access to compromised IoT devices and
cameras in criminal forum [12]. Moreover, there was a
distributed denial of service (DDoS) attack to
krebsonsecurity.com site performed by botnets embedded in
the IoT devices. Finally, taken from data owned by Threat
Research Akamai team [13], there were reportedly millions of
IoT devices used as proxies to route victims traffic to malicious
sites.

II. BACKGROUND

This section explains several reasons for why IoT

implementation in the world does not use security mechanism.

A. Resource Constrained Device

There are many devices categorized as a constrained device
which, according to RFC 7228 [14], is further divided into
three classes based on their RAM and ROM as follows.

TABLE I. CLASS IN CONSTRAINED DEVICE (RFC 7228)

Class RAM (Data Size) Flash (Code Size)

Class 0 << 10 KB << 100KB

Class 1 ~ 10 KB ~ 100KB

Class 2 ~ 50 KB ~250KB

 Because of the very limited computing performance, most
of the resource constrained devices, especially class 0 device,
cannot handle most of the security approaches [15], notably the
mechanism which has heavy computation such as running TLS
for transport security.

B. Vast number of devices

The significant number of connected devices appears to

create more vulnerabilities [16]. For IT department, it is

cumbersome to manage many different types of devices [17]

especially when the security mechanism is applied to IoT

system. For example, by using username and password to

authenticate, the IT department will have to put much effort to

maintain the security credentials (e.g. change the password

periodically).

C. Lack of security awareness

The lack of security awareness makes a developer may
prefer to choose functionality over security when trade-offs
must be done [18]. On the other hand, according to the
Bitdefender survey study [19] at US, Romania, Germany,
Australia, France, and UK, only less than 50% of people from
each country that aware of almost all security awareness
parameters (e.g. privacy concerns, losing control of smart
device, frequency of a software update). Another study from
HP Fortify states that 70% of devices use unencrypted network
service [20].

III. ATTACK SCENARIOS ON MQTT PROTOCOL

In this section, we will discuss how an attack can be carried
out on the MQTT protocol.

First, we assume that we do not know anything about the
victim system that we want to attack (i.e. no prior knowledge
of the infrastructure, defense mechanisms, and communication
channels). This type of assumption is called black box
penetration testing [21]. The attack is begun by performing
information gathering that can be accomplished by using
Shodan, Masscan, or NMAP [22]. For this paper, Shodan
search engine will be utilized.

By inputting string “ port:1883 “MQTT” ” in search box
inside Shodan, we perform searching on MQTT protocol on
port 1883, the default MQTT broker port that doesn’t use TLS
mechanism for security purpose, to find available broker
server. The search result provided in figure 2 shows at that
moment (April 27, 2017), there were 24998 brokers with
default port successfully indexed by Shodan.

Fig. 2. Result of MQTT broker on port 1883 in Shodan

Proc. EECSI 2017, Yogyakarta, Indonesia, 19-21 September 2017

601

Fig. 3. MQTT connection code in Shodan Page search result

Besides the result shown in Figure 2, there is also MQTT
connection code on the right of each broker that is provided in
Figure 3. All the brokers that have connection code of “0” are
easier to be attacked because this kind of broker does not use
any client authentication mechanism thus anonymous publisher
or subscriber can connect to this broker freely.

For the first scenario, we can start to subscribe to all topics
in that broker (subscribe to #) which may give us confidential
data to be analyzed later. This attack scenario is illustrated in
Figure 4.

Fig. 4. Attacker can subscribe to all topic message

Another scenario can be initiated by publishing data to the
broker who does not have authentication mechanism which is
illustrated in Figure 5. Street lamps act as subscriber where the
legal publisher can publish a message to control the street
lamps. On the other hand, since the broker does not have an
authentication mechanism, an attacker can subscribe to the
broker to get any message that is used to control the street
lamps. By analyzing the control message, the attacker can
publish his message to take over the street lights. This kind of
scenario can also be used by an attacker to publish spam data
so that both broker and subscriber get flooded and may result
in denial of service.

Fig. 5. Attack scenario from attacker’s publisher

The first and second scenarios are a generic scenario that
can be applied both in the local network and public network.
The next scenario that will be discussed has the assumption
that the attacker is connected to the same network with IoT
system (e.g. at publisher network or broker network).

 Using this assumption, the attacker can perform traffic
analysis on that network to extract valuable information from
data in-transit of MQTT protocol in the form of plain text, such
as:

a. IP broker (usually public IP address)
b. Name of topic
c. Data payload
d. Port number of MQTT that IoT system use

To demonstrate this scenario, an Espectro board (based on
ESP 8266 board) will act as a publisher and is on the same
wireless network as the attacker computer which runs Kali
Linux operating system. Meanwhile, subscriber and broker are
on the another network. Publisher device publishes to topic
“outTopic”, with message payload “hello world”, while, for
this demonstration, the subscriber will subscribe to all topic (#).

The attacker will use Wireshark and Ettercap to perform the
attack. An attacker that is in the same network with a publisher
can sniff and modify the data in transit thus he can exploit the
data privacy, authenticity, and integrity of MQTT packet.

A. Data privacy

Data privacy in MQTT message is absolutely an issue

since, by default, MQTT does not provide any data

encryption. Whether the broker system uses authentication

mechanism or not, the attacker can still sniff the data in transit

easily. Figure 6 gives a screenshot of attacker’s Wireshark

packet capture that shows the MQTT topic and message of the

data in-transit from the publisher device earlier.

Fig. 6. Published message that captured in Wireshark

B. Authentication

If the broker uses client authentication mechanism by

using username and password, the attacker could not act as

publisher or subscriber as long as the attacker does not know

the username and password (i.e. MQTT connection code will

be 5 if we don’t provide username-password, or 4 if bad

username or password is supplied). In the case of our scenario,

the attacker is in the same network with the publisher. Thus

the attacker can sniff the traffic on the network while waiting

for a “Connect” packet from the publisher is in transit so that

the username and password that are used to connect to the

broker can be revealed.

During the authentication process, there is a header in the

packet known as KeepAlive which indicates how long the IoT

device (publisher/subscriber) remains connected to the broker.

Therefore, when the KeepAlive time is expired, the device

(publisher/subscriber) will resend the “Connect” packet to

restart the connection. Figure 7 shows the “Connect” packet

from the publisher that has been sniffed by the attacker.

Proc. EECSI 2017, Yogyakarta, Indonesia, 19-21 September 2017

602

Fig. 7. Result of sniffing the MQTT Connect command packet

C. Data Integrity

Another possible attack is targeting the integrity of data in

transit. The attacker who has already known the data packets

by sniffing the traffic can modify the data in transit. In this

scenario, the attacker wants to change the topic name from

“outTopic” to “outTopuc”. To do so, the attacker makes a

filter file (named owned.filter) which will filter the packet data

in transit that has TCP port 1883 and destination address to

broker IP. After the packet that matched the filter criteria is

identified, it will also search the string “outTopic” and replace

it with “outTopuc” as seen in figure 8. Next, Etterfilter

application is used to compile “owned.filter” file which will

give an output file named “owned.ef”.

#owned.filter

if (ip.proto == TCP && tcp.dst == 1883 && ip.dst == 'IP Broker' &&

search(DATA.data, "outTopic")) {

 replace("outTopic", "outTopuc");

 msg("payload replaced\n");

}

Fig. 8. Filter file to filter MQTT packet

Finally, by using Ettercap application running at the

specific interface in which the attacker used to connect to the

internet, the attacker uses the compiled filter to modify the

packet after successfully performed ARP poisoning to make

another network connection going through the attacker

computer. This step is given in figure 9.

etterfilter owned.filter -o owned.ef

ettercap -T -q -i eth0 -F owned.ef -M ARP /// ///

Fig. 9. Command to run ettercap with specific parameter

Figure 10 shows published message topic that has been

successfully altered and has been received in subscriber

device. Because the subscriber subscribes to all topic, it still

receives the message. Furthermore, the attacker can change

the message to execute another interesting attack in this

protocol. One of the interesting scenarios happens when

attacker identifies someone who sends a link to download a

firmware update for some devices over MQTT. The attacker

can change the link in such way that the victim devices install

malicious firmware that transforms them into botnets.

Fig. 10. Result of change in topic name

D. Port Obscurity

The official IANA port number used by MQTT is 1883 for

the regular MQTT and 8883 for MQTT using SSL / TLS.

However, a broker administrator can configure to use the non-

standard port on the system. Unfortunately, if the security

mechanism only depends on the MQTT protocol itself, the

attacker can still easily observe packets that pass through the

network.

For example, the attacker can use Wireshark to sniff the

packet and apply data filtering by selecting Edit menu Find

packet … Type MQTT String and Packet Byte. This

filtering can be done because, in the MQTT, there is a variable

header containing the MQTT protocol name that is sent along

with the “Connect” packet by the client (publisher or

subscriber) to the server (broker). Figure 11 shows MQTT

data packet in port 1884 from Wireshark application.

Fig. 11. MQTT packet in port 1884

E. Botnet over MQTT

Botnet over MQTT had been presented during Defcon 24

event, which demonstrated BotMaster sent a command to bots

over MQTT protocol [23]. A botnet is a network consisting of

many bots--a new type of malware installed on a compromised

computer--which then can be controlled by BotMaster [24].

We can obtain a broker using Shodan search engine as we

have done before and transform it to become free broker

server that connects attacker to victim’s device. By using this

scenario, the attacker can hide from any investigation because

he uses the unsecured broker as an arbiter to communicate

with the botnet.

As we can see in figure 12, BotMaster acts as commander

to a botnet and uses a certain broker to control many IoT

devices (botnet) at once with only one published message in a

specific topic. BotMaster can also receive victim status and

subscribe to the status of every IoT device (botnet). This

scenario is very efficient especially if BotMaster wants to give

one command to all botnet at once (e.g. launch a DDoS attack,

send a large amount of spam or phishing emails [24]).

Proc. EECSI 2017, Yogyakarta, Indonesia, 19-21 September 2017

603

Fig. 12. Botnet command and control scenario using MQTT

IV. CONCLUSION

MQTT is one of the protocols used in IoT system where
several scenarios to attack this protocol has been discussed in
this paper. The first scenario takes places in the public network
where we can scan the network by using Shodan search engine
to search MQTT public server to make denial of service attack
to devices (clients) connected to that broker or get/send
incorrect data to its clients. This public broker can become a
good candidate to control the botnet because of the nature of
MQTT publish and subscribe. Then, from the local network, an
attacker can sniff and modify packet data from the network to
attack data privacy, data integrity, and MQTT authentication
mechanism. Moreover, using nonstandard port (port obscurity)
does not improve the security of MQTT at all.

For mitigation purpose, a security mechanism for MQTT
protocol must be implemented such as TLS, which is a good
choice if the IoT devices that are used is an unconstrained
device. Besides using TLS, Singh et.al. [25] have proposed
another security mechanism based on ECC which focuses on
data confidentiality with less resource requirement compared to
TLS. Furthermore, Mektoubi et.al [26] have performed a study
comparing RSA and ECC to protect the data confidentiality
and provide good non-repudiation. In the case of constrained
devices, Niruntasukrat et.al. [3] have tried to make a security
mechanism that focused on authentication and authorization of
the devices to broker while Katsikeas [27] uses AES
encryption that focuses on confidentiality and message
authenticity. Security mechanism of MQTT protocol,
especially for resource constrained device still need
development because each research that has been done still
have certain focus which not yet integrated.

REFERENCES

[1] D. Evans, “ The Internet of things: how the next evolution of the Internet
is changing everything,” Cisco Internet Business Solution Group White
Paper, April 2011.

[2] Gartner. (2017, February 7). Gartner Says 8.4 Billion Connected
"Things" Will Be in Use in 2017, Up 31 Percent From 2016. Available:
http://www.gartner.com/newsroom/id/3598917.

[3] A. Niruntasukrat, C. Issariyapat, P. Pongpaibool, K. Meesublak, P.
Aiumsupucgul and A. Panya, "Authorization mechanism for MQTT-
based Internet of Things," 2016 IEEE International Conference on
Communications Workshops (ICC), pp. 290-295, 2016.

[4] D. H. Mun, M. L. Dinh and Y. W. Kwon, "An Assessment of Internet of
Things Protocols for Resource-Constrained Applications," 2016 IEEE
40th Annual Computer Software and Applications Conference
(COMPSAC), pp. 555-560, 2016.

[5] N. De Caro, W. Colitti, K. Steenhaut, G. Mangino and G. Reali,
"Comparison of two lightweight protocols for smartphone-based
sensing," 2013 IEEE 20th Symposium on Communications and
Vehicular Technology in the Benelux (SCVT), 2013, pp. 1-6.

[6] Banks, A. and Gupta, R, ”MQTT version 3.1.1,” OASIS Standard, 2014.

[7] Prada, A., & dkk, “Communication with resource-constrained devices
through MQTT for control education,” 11th IFAC Symposium on
Advances in Control Education ACE, pp 150-155, Bratislava, Slovakia,
2016.

[8] ISACA Volunteer Member, “Cybersecurity Fundamentals Study
Guide,” ISACA, 2015.

[9] M. M. Hossain, M. Fotouhi and R. Hasan, "Towards an Analysis of
Security Issues, Challenges, and Open Problems in the Internet of
Things," 2015 IEEE World Congress on Services, New York City, NY,
2015, pp. 21-28.

[10] M. Iqbal and M. Bayoumi, “Secure End-to-End key establishment
protocol for resource-constrained healthcare sensors in the context of
IoT,” International Conference on High Performance Computing &
Simulation (HPCS), pp. 523-530, 2016.

[11] W. Stallings, “Cryptography and Network Security Principles and
Practice 7th Edition,” Pearson, England, 2017.

[12] S. Alasmari and M. Anwar, “Security & Privacy Challenges in IoT-
based Health Cloud,” International Conference on Computational
Science and Computational Intelligence, pp. 198-201, 2016.

[13] Caltum, E. and Segal, O, “Exploitation of IoT devices for Launching
Mass-Scale Attack Campaigns,” Akamai Threat Research, October
2016.

[14] C. Bormann, M. Ersue, and A. Keranen, “ RFC 7228 Terminology for
Constrained-Node Networks,” IETF, May 2014.

[15] J. King and A. Ismail,”Distributed Security Mechanism for Resource
Constrained IoT Device,” Informatica 40, pp 133-143, 2016.

[16] Anonym. (2016, January 15). Iot Security Awareness. InfoSec Institute
[Online]. Available: http://resources.infosecinstitute.com/iot-security-
awareness/

[17] Anonym, “IoT Security: Protecting The Networked Society,” Ericsson
White Paper, February 2017.

[18] Ernst and Young, “Mobile device security: Understanding
vulnerabilities and managing risks,” Insight on governance, risk and
compliance, January 2012.

[19] Bitdefender, “Security Awareness in the Age of Internet of Things,” A
Bitdefender Study White Paper, 2016.

[20] Anonym, “Internet of Things research study,” Hewlett Packard
Enterprise, 2015.

[21] F. Alisherov, and F. Sattarova, “ Methodology for Penetration Testing”,
International journal of Grid and Distributed Computing, Vol 2 No 2,
June 2009.

[22] L. Markowsky and G. Markowsky, “Scanning for Vulnerable Devices in
the Internet of Things,” The 8th IEEE International Conference on
Intelligent Data Acquisition and Advanced Computing System:
Technology and Applications, September 2015.

[23] L. Lundgren, “Light Weight Protocol Serious Equipment Critical
Implications”, Defcon 24, 2016.

[24] H. R. Zeidanloo and A. A. Manaf, "Botnet Command and Control
Mechanisms," 2009 Second International Conference on Computer and
Electrical Engineering, Dubai, 2009, pp. 564-568.

[25] M. Singh, M. A. Rajan, V. L. Shivraj and P. Balamuralidhar, "Secure
MQTT for Internet of Things (IoT)," 2015 Fifth International
Conference on Communication Systems and Network Technologies,
Gwalior, 2015, pp. 746-751.

[26] A. Mektoubi, H. L. Hassani, H. Belhadaoui, M. Rifi and A. Zakari,
"New approach for securing communication over MQTT protocol A
comparison between RSA and Elliptic Curve," 2016 Third International
Conference on Systems of Collaboration (SysCo), Casablanca, 2016, pp.
1-6.

[27] S.Katsikeas, “A lightweight and secure MQTT implementation for
wireless sensor node”, 2016 Technical University of Crete.

Proc. EECSI 2017, Yogyakarta, Indonesia, 19-21 September 2017

604

