
A Project-Based Approach to FPGA-Aided
Teaching of Digital Systems

Fajar Suryawan
Department of Electrical Engineering
Universitas Muhammadiyah Surakarta

Surakarta, Jawa Tengah 57102, Indonesia
Email: Fajar.Suryawan@ums.ac.id

Abstract—This article shares experience and lessons learned
in teaching course on programmable logic design at Universitas
Muhammadiyah Surakarta, Indonesia. This course is part of
bachelor of engineering (electrical) degree program. Project-
based approach is chosen to strengthen these students’ un-
derstanding and practical skills. Each year’s project involves
challenges for the students to solve by implementing digital
system on an FPGA design board.

Here, background and curriculum context of the course will
be presented. The projects and their challenges will be discussed.
Finally, lessons learned and future improvement on the student
projects will be discussed.

Index Terms—project-based learning, field programmable gate
arrays, education, programmable logic design, hardware design
languages, laboratories

I. INTRODUCTION

Digital systems play a central role in our era. Digital
devices are found in mobile phones, computers, cars, mi-
crowave ovens, TVs, TV remote controls, routers, switch hubs;
practically every place where electricity exists. Generally this
technology is embedded and hidden inside appliances in the
form of integrated circuits (ICs). Given the prevalence of the
technology, it is imperative for technical higher education
institutions to have better ways to develop students’ digital
design skill.

One of the recent developments in the digital design is pro-
grammable logic, with one of its specific technologies: field-
programmable gate array or FPGA. FPGA industry began to
enter the market in 1980s and then enjoyed the explosive phase
in 1990s [34]. This technology has enabled designers (and
students) to program hardware, down to the logic block, using
hardware description languages.

Aside from becoming a full-fledged application platform,
FPGA (and other variants of programmable logic devices)
is also a prototyping platform before a design (including
design of microprocessors) is etched on ASIC (application-
specific integrated circuit) boards [26], [42], [23], [4], [6], [8],
[28], [30], [15], [40], [24]. Power electronics is also handled
by FPGA [39], [38], [18], [33]. Traditionally computing-
intensive applications have now enjoy the new platform. These
applications include robotics and control [37], [39], [12], [32],
[5], [46], signal processing and communication [35], [3], [17],
[19], [32], [36], computer vision [2], [14], [43], [7], soft

computing and artificial intelligence [44], [10], [25], numerical
computing and cryptography [11], [13], [47], [21].

One can see that the immediate applications abound. For
faculties and students, this platform’s capability opens a whole
new way to teach and learn digital system design. Several
textbooks using this approach exist [29], [31], [22], [16], [27],
[41].

While this learning concept has been in use at every
major universities in developed countries wherever electri-
cal/computer engineering bachelor program is offered, FPGA-
based digital system teaching has not reached its full potential
in Indonesia. This problem may be attributed to several factors
such as department’s lack of awareness, non-mobility of lectur-
ers, or simply lack of implementable examples. This is despite
the fact that an entry-level FPGA development/educational kit
is very affordable.

This paper attempts to promote FPGA-based digital system
education by sharing a workable practice that has been con-
ducted for three years in an Indonesian university. It is of our
opinion that FPGA-based digital system education serves not
only as a vehicle to gain understanding of the inner working of
digital systems (including a processor), but also as a training
of the technology itself. The learning by doing approach used
here has enhanced students’ involvement, and hence their
understanding of the subject. Several excellent works on this
teaching method are available [1], [9], [20].

The subject under discussion in this paper is Programmable
Logic Design, a third-year course.

II. CONTEXT AND SET-UP

Electrical engineering bachelor degree program at Univer-
sitas Muhammadiyah Surakarta (“UMS”) is a 4-year technical
education program aiming at graduating skillful students ready
for the industry. In the first and second years, all students
undertake common basic courses on electrical engineering. At
their third year of study there are two majors that students
must choose: Electrical Power Systems or Electronics and
Computer Systems. During those four years of their study,
students take courses that can be categorized into several
streams. These are Mathematics and Physics stream, Electrical
and Electronics stream, and Digital Systems stream. (There
are other courses such as English, Bahasa Indonesia, Islamic

Proc. EECSI 2017, Yogyakarta, Indonesia, 19-21 September 2017

978-1-5386-0549-3/17/$31.00 ©2017 IEEE .590

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Proceeding of the Electrical Engineering Computer Science and Informatics

https://core.ac.uk/display/296975874?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fundamentals of Electrical Engineering;
Fundamentals of Digital Systems;

C Programming

Introduction to
Microprocessors

Embedded
Systems

Data Comms. and
Computer Network

Operating Systems for
Small Microprocessors

Programmable
Logic Design (FPGA)

Interfacing
Techniques

Subjects from
other streams

Electronic Design;
Final-year Project

Computer
Architecture

1st year

2nd year

3rd year

4th year

Electric utility

Analog electronics

Digital electronics

M
athem

atics

Electric m
achines

Fig. 1: Subjects in the digital-system “stream” in an electrical
engineering bachelor degree curriculum. This is roughly what
is implemented at UMS. Our focus in this paper is “Pro-
grammable Logic Design”, a third-year subject.

Studies, and Muhammadiyah Studies, throughout the years,
which can be categorized as Life Skills stream.)

The Digital Systems stream comprises of several subjects
which includes Fundamentals of Digital Systems, Introduction
to Microprocessors, Programmable Logic Design, OS for
Small Microprocessors, Embedded Systems, and Computer
Architecture. This is depicted in Figure 1.

Students enroll to the Programmable Logic Design subject
if they choose to take the “electronics and computer systems”
concentration (the other option is “electrical power systems”
concentration). In this subject they will have the first exposure
to FPGA design. However, as can be seen from Figure 1,
this is not the first subject which presents digital world to
the students. This fact introduces both relief and challenge.
On the one hand students will have known some digital
design technique which will make the exposition easier, but
on the other hand they will also ask questions such as:
what advantage does it offer? what is the difference between
programming a microprocessor and programming an FPGA
device?

Our objectives when teaching Programmable Logic Design
(“PLD”) are hence:

• Students understand that PLD is about designing hard-
ware, and not about programming it.

• Students understand and can execute steps in digital
design.

• Students are able to design and build a digital system
using VHDL and other FPGA techniques, and then im-
plement it on an Altera DE1 board.

Since digital design using FPGA can be much effortless
compared to “74xx” approach, a number of more-technical
objectives are also imposed. They include:

• Students understand the difference between combinatorial
logic and sequential logic, and can construct both circuits
using VHDL.

• Students can implement complex counter on Altera DE1
board using VHDL.

• Students understand and can build a finite state-machine
using VHDL.

Engineering skills, most of the times, can be fully un-
derstood only when one is involved in a hands-on practice.
This project has to be sufficiently complex so the students
will be encouraged and intellectually challenged; but it should
not be too big that the students would be overwhelmed and
discouraged.

In the next two sections we will discuss the content of the
subject, including the project assignment.

III. SYLLABUS AND STRUCTURE OF DELIVERY

Since students taking the subject have already had some
background knowledge of digital systems, a lecturer can prin-
cipally skip some topics already covered in the first or second
year. However, in teaching this subject we try to rehearse some
fundamental aspects of digital systems in the first few lectures.
This is done with two objectives in mind: to reinforce the
foundation and to establish the hardware-design mindset.

The course attempts to cover the following materials (shown
here in the order of delivery)

• Principles of digital systems (sampling and quantization
of analog signals, logic levels, binary and hexadecimal
number system, digital waveforms)

• Logic gates (basic and derived logic functions, DeMorgan
theorems, gate equivalence, enable and inhibit properties
of logic gates)

• Combinatorial logic (boolean algebra, simplification of
SOP/POS expression, K-map, simplification by DeMor-
gan equivalent gates, universal properties of NAND and
NOR gates.)

• Introduction to VHDL and Quartus II (Altera’s Quartus
II, design flow in Quartus II, block diagram file, VHDL
basics, hierarchical design).

(from this point onward, most lectures will contain examples
in VHDL and block diagram file)

• Combinatorial logic functions (decoders, encoders, mul-
tiplexers, demultiplexers)

• Digital arithmetic and its circuits (signed binary numbers:
2’s complement, signed binary arithmetic, hexadecimal
arithmetic, binary adders and subtractors)

• Sequential logic (latches, NAND/NOR latches, Gated
latches, edge-triggered D flip-flops, JK flip-flops, flip-
flops in FPGA)

• Counters and shift registers (synchronous counters, binary
counters for FPGA, control options for synchronous
counters, presettable and bidirectional counters, shift reg-
isters).

• State machine design (state machines with no control
inputs, state machines with control input,).

• Memory device and systems (RAM, ROM, dynamic
RAM modules)

The main reference for the above is the excellent textbook by
Dueck [16].

Proc. EECSI 2017, Yogyakarta, Indonesia, 19-21 September 2017

591

Week Topic Lab./Assignment
1 Princ. of digital systems
2 Logic gates
3 Combinatorial logic
4 Quartus II and VHDL Lab. session starts (every week onwards)
5 Comb. logic funtions Assignment 1 out
6 Comb. logic funtions Assignment 1 due

Mid semester examination
7 Digital arithmetic
8 Sequential logic Assignment 2 out
9 Sequential logic

10 Counters, shift regs. Assignment 2 due
11 State machine Project specification out
12 State machine Mid-report due
13 Memory systems Full report due. Project demo.

Final semester examination

Control section
(combinatorial)

Memory section

(sequential)

... ... Command
lines

Status
lines

...

...

Inputs:
push
button
& toggle
switches

Outputs:
LEDs &
driver for
counter

Clock

Seq. inputs Seq. outputs

Fig. 2: Typical delivery schedule in this course. Each lecture
is about 100 minutes, and a laboratory session –starting at
week 4– takes about 120 minutes. For more details of each
topic, see text.

As noted above, in this course basic principles are rehearsed
with an emphasis on using a hardware description language.
Figure 2 depicts schedule in this course. Starting from lecture
4, VHDL examples are presented extensively in every lecture
onwards where appropriate.

Laboratory session starts from week 4, where students
will have hands-on experience of FPGA design. Lab sessions
proceed until end of semester before student vacation week.
With typically 25 students per semester taking the course, our
lab has four Altera DE1 boards [45]. See also Figure 3.

IV. PROJECT ASSIGNMENT

A. Administration

At about week 11, an FPGA project is assigned to the
students. Typically, we first explain the project’s objectives in
the class accompanied by a video of the final product expected
from the students. A website dedicated to the project is made
available where students can watch the video, download initial
code, and access links to more resources on the Internet. For
2016 class, the project website is:
http://fajar-suryawan.sites.ums.ac.id/pld-2016 .
Figure 3 shows two screen-shots of the video.

The project requires student to work with specific terms and
conditions, which include

• The team should consist of 2 or 3 members: no more, no
less. This is to encourage team work.

• The top-level-entity must be a .bdf file. The lower level
files can be in BDF or VHDL (or Verilog or SystemVer-
ilog if they want). BDF as top level entity will make
project demonstrations easier and hopefully drive students
to visualize the big picture.

• The report should contain
– explanation for the design,
– print-out of the design files,
– number of hours they put into the work,

(a) Describing possible states

(b) Describing some functionalities

Fig. 3: Two screen-shots of the video describing the project.
A link to it is provided in the text.

– list of contributions. That is, “who has done what”
(including individuals outside the team). This is
to discourage students from being “free-rider” and
encourage them to contribute as much as possible.

• Students may (but don’t have to) use the files provided
as a starting point.

Students are allowed access to laboratory to work on the
project. A week after project explanation, a mid-report is
due which contains state-machine design. A week later, a
final report is to be submitted. No change is allowed to the
final report. One or two days after report submission, project
demonstration is performed in the laboratory. Each and every
team presents their work with 15 minutes duration to the
lecturer.

B. Content

Typical project, so far, contains works on LEDs and seven-
segment displays in the DE1 board, with the push-button and
switch as the input. Internally, it involves designs of concepts
such as counter, state machine, flip-flop, interface, and other
combinatorial/sequential logic element.

In every project, students are principally asked to design
mealy-type state machine with inputs and outputs mentioned
above. Figure 4 illustrates the mealy type state machine in the
students’ project with its inputs and outputs.

Proc. EECSI 2017, Yogyakarta, Indonesia, 19-21 September 2017

592

Week Topic Lab./Assignment
1 Princ. of digital systems
2 Logic gates
3 Combinatorial logic
4 Quartus II and VHDL Lab. session starts (every week onwards)
5 Comb. logic funtions Assignment 1 out
6 Comb. logic funtions Assignment 1 due

Mid semester examination
7 Digital arithmetic
8 Sequential logic Assignment 2 out
9 Sequential logic

10 Counters, shift regs. Assignment 2 due
11 State machine Project specification out
12 State machine Mid-report due
13 Memory systems Full report due. Project demo.

Final semester examination

Control section
(combinatorial)

Memory section

(sequential)

... ... Command
lines

Status
lines

...

...

Inputs:
push
button
& toggle
switches

Outputs:
LEDs &
driver for
counter

Clock

Seq. inputs Seq. outputs

Fig. 4: State machine of mealy-type is at the heart of the design
in the student project.

S0 S1 S2 S3
c = 1 c = 1 c = 1

c = 0
v = X

c = 0
v = 0

c = 0
v = 0

c = X
v = 0

v = 1 v = 1 v = 1

S0 S1 S2 S3 S4 S5

c = 0
v = X

c = 0
v = 0

c = 0
v = 0

c = 0
v = 0

c = 0
v = 0

c = X
v = 0

c = 1 c = 1 c = 1 c = 1 c = 1

v = 1 v = 1 v = 1 v = 1 v = 1

Fig. 5: State transition diagram of the student project, to be
implemented using VHDL.

In the lecture session where we deliver the project specifi-
cation, state machine diagram is explained before the students
(see Figure 5 for an example). Students are expected to adhere
to this state machine diagram and built it using VHDL.

To help students starting their works, some initial files
are made available in the project’s website. These files are
stripped-down version of their functional counterparts. Stu-
dents may use the files, but they don’t have to. In fact, there
were teams that had better design than the initial files.

C. Example student project

In 2016 we assigned project to students in which they are
to build counter that has six speed levels: from speed 0 (not
counting) to speed 5 (fastest). The counter is sped up one step
at a time using a push button switch, and sped down using
another one. If the counter does not receive any input, it will
stay in that speed level.

These speed levels are the states, depicted in Figure 5. The
initial state is S0. There is one input (“speed up”) to advance
from S0 to S1, up to S5. To move the state the other way,
another input (“speed down”) is used.

Outside the state-transition logic, the counter can also be
paused and reset. A lapse toggle switch is also specified: to
“freeze” the display while the counting continues. The counter
should also be able to change direction, commanded by a
toggle switch. These inputs and outputs in the Altera DE1
board are depicted in Figure 6.

The 10 red LEDs are used to indicate the speed level (that
is, the state) and the direction. The 5 rightmost red LEDs are

Four 7-segment display modules

Ten red LEDs

Eight green LEDs

Four push-button
switches

Ten toggle switches
(only 2 used)

Speed up Speed down Pause Reset

Lapse
Direction

Fig. 6: DE1 inputs and outputs used in the student project.

Counting-up Counting-down

Fig. 7: Greed LEDs flashing sequence. Right half is for
‘counting-up’ and the pattern moves –in loop– faster and faster
as the state goes from S1 to S5. Left half is the flashing
sequence for ‘counting-down’ with similar explanation about
the speed.

used indicate ‘counting-up’. Starting from the innermost LED
going rightwards, if state is S1 then one LED is on. If state
is S2, two LEDs is on. And so on until S5.

Similar explanation is for the ‘counting-down’ direction,
where the 5 leftmost red LEDs are used in the same way.

The green LEDs are used to show blinking lights with
specific sequence pattern similar to turn-sign tail light of Ford
Thunderbird, which is shown in Figure 7.

The set of four 7-segment display modules is used to show
decimal number indicating the counter’s current value. When
counting up, it shows “0000” to “9999” and then rollovers,
and vice versa when counting down.

D. Exploration challenge

The projects sometimes involve notions not explicitly taught
in the class. This is done deliberately since students are
expected to be able to explore more advanced techniques on
their own. However, to help the students – especially the less
experienced ones – we disclose the challenges involved, and

Proc. EECSI 2017, Yogyakarta, Indonesia, 19-21 September 2017

593

give hints on how to address those challenges. An example
follows.

In the student project above, the state machine design is such
that the transition between those six states is controlled by only
two inputs (see Figure 5). This might pose a challenge since
if the state machine is implemented naively, it may not work
as expected. This is due to single input that drives consecutive
state transition, which will lead to “fall-through” phenomenon.
For example, when the current state is S0 and one wants to
advance to S1, he would set the corresponding input. But
instead of advancing one state only, the state “falls-through”
to S5, the last state.

We told students, in the beginning of project assignment,
that this problem will occur if they implement it as it is. We
then gave hints on how to address it.

V. DISCUSSION AND CONCLUSION

A. Lessons learned

This course is always in continuous improvement, sources
of which include students’ feedback, students’ results, techno-
logical advances, and input from peers.

From our experience, students do not immediately grasp the
idea of certain notions, especially the more abstract ones like
state-machine. Three to two year ago, most student design
reports did not include any state machine design; just a
contrivance of sequential circuitry. While the specifications are
met, it was very difficult to extend and generalize from – and
it certainly does not accord to the course objectives.

This sad truth led us to change the project assignment
strategy. When this course was first offered in 2013, the full
report was due two weeks after the assignment, without any
mid-report. In a hindsight, this might hinder students from
carefully planning their design since there is no feedback
and the design was a one-shot attempt. Beginning in 2016,
we changed the reporting scheme. Students are required to
submit an initial design, particularly the state-machine part.
We expected that students are forced to carefully design
the state-machine. Much to our delight, a couple of teams
managed to craft fully working products using proper state
machine design.

We learned that students need deliberate guidance – in this
case a mid-report submission for a specific design – when
challenged with relatively complex notion.

As discussed in the previous section, students are asked
to do a research to tackle some engineering challenges not
explicitly addressed in lecture sessions. The solution to these
challenges are expected to be not just coldly carried out but
well justified and explained. Some teams only copied from the
Internet – they could not explain the inner-workings of their
solution. But better teams indeed learned a lot by exploring
solutions and could easily explain the solution.

We conclude that students learn a lot if, in addition,
the project involves concepts not explicitly taught and they
are forced to explore for solutions. However, a lecturer
must gauge students’ capability and if necessary give hints
regarding the challenge.

As an added bonus, this challenge also makes grading
the report easier, since it highly discriminates good and bad
teams. Good designs in this project assignment are generally
lean, easy to follow, efficient, and comply with best practices.
Figure 8 shows a final .bdf top-level entity by one of our best
teams. On average, each team needs 40 hours to complete the
project.

Feedback from students have been encouraging too. One of
them stated that this course has motivated him to pursue career
in IC design.

B. Future improvement

This course attempts to familiarize students to modern
technique in digital design. The project in 2013 started simple.
As the years progress, student clubs (e.g., Student Robotics
Club) will already have knowledge-base of FPGA, and there
will be transfer of knowledge from one class to their younger
colleagues. This, and advances in the industrial world, ne-
cessitates more complex project assignments. Future projects
will involve, among others: more inputs and outputs, more
applications, and more engineering challenges.

C. Conclusion

We presented out experience in teaching a digital-design
course utilizing FPGA technology, which enables an accessible
practical approach. We believe that learning-by-doing – by
building hardware project – is the best approach for the
students to gain skills and confidence. Gibbs in his book [20]
often uses the experience → reflection → conceptualization
→ experimentation →(goes back to)→ experience cycle to
illustrate this learning process. In improving our methods, we
try our best to be a critically reflective teacher to best benefit
the students [9].

ACKNOWLEDGMENT

This work was partially funded by Universitas Muham-
madiyah Surakarta through its Doctoral Grant program, grant
number 216.8/A3-III/LPPM/X/2013. The author would like
to thank PLD lab. assistants and technicians. The author is
grateful for the students in all the PLD classes.

REFERENCES

[1] A handbook for teaching and learning in higher education: Enhancing
academic practice, 2015.

[2] U. Alqasemi, H. Li, A. Aguirre, and Q. Zhu. FPGA-based reconfigurable
processor for ultrafast interlaced ultrasound and photoacoustic imaging.
Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions
on, 59(7):1344–1353, 2012.

[3] A. Amira and S. Chandrasekaran. Power modeling and efficient
FPGA implementation of FHT for signal processing. Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, 15(3):286–295, 2007.

[4] P. J. Ashenden. Digital Design: An Embedded Systems Approach Using
VHDL. Morgan Kaufmann, 2008.

[5] T. Atalik, M. Deniz, E. Koc, C. Gercek, B. Gultekin, M. Ermis, and
I. Cadirci. Multi-DSP and -FPGA-based fully digital control system for
cascaded multilevel converters used in FACTS applications. Industrial
Informatics, IEEE Transactions on, 8(3):511–527, 2012.

[6] P. Athanas, D. Pnevmatikatos, and N. Sklavos. Embedded Systems
Design with FPGAs. Springer, 2013.

[7] D. G. Bailey. Design for Embedded Image Processing on FPGAs. IEEE,
2011.

Proc. EECSI 2017, Yogyakarta, Indonesia, 19-21 September 2017

594

Date: May 29, 2017 jos.bdf Project: Jos

Page 1 of 1 Revision: Jos

VCC
tombol_down INPUT

VCC
clk INPUT

VCC
reset INPUT

VCC
pause INPUT

VCC
balik INPUT

VCC
lapse INPUT

VCC
tombol_up INPUT

LED[7..0]OUTPUT

LED_R[4..0]OUTPUT

sev1[6..0]OUTPUT

sev2[6..0]OUTPUT

sev4[6..0]OUTPUT

sev3[6..0]OUTPUT

LED_L[4..0]OUTPUTtombol_up

tombol_down

CLK

out_up

out_down

deb_gus_n

inst

clk

up

down

reset

pause

out2[4..0]

SM_n

inst2

clk

pause

reset

balik

lapse

out2[4..0]

LED[7..0]

LED_R[4..0]

LED_L[4..0]

sev1[6..0]

sev2[6..0]

sev3[6..0]

sev4[6..0]

LEDs

inst1

PIN_T21
PIN_L1

PIN_R21

PIN_T22

PIN_L21

PIN_L22

PIN_R22

...

...

...

...

...
...

...

Fig. 8: Top level entity of one of our best student teams. Inside the blocks are hundreds of lines of vhdl code.

[8] L. E. M. Brackenbury, L. Plana, and J. Pepper. System-on-chip design
and implementation. Education, IEEE Transactions on, 53(2):272–281,
2010.

[9] S. D. Brookfield. Becoming a Critically Reflective Teacher. John Wiley
& Sons, 2nd edition, 2017.

[10] H. Caner, H. Gecim, and A. Alkar. Efficient embedded neural-network-
based license plate recognition system. Vehicular Technology, IEEE
Transactions on, 57(5):2675–2683, 2008.

[11] W. Chelton and M. Benaissa. Fast elliptic curve cryptography on fpga.
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
16(2):198–205, 2008.

[12] J. U. Cho, Q. N. Le, and J. W. Jeon. An FPGA-based multiple-axis
motion control chip. Industrial Electronics, IEEE Transactions on,
56(3):856–870, 2009.

[13] J.-P. Deschamps, G. D. Sutter, and E. Cantó. Guide to FPGA Imple-
mentation of Arithmetic Functions. Springer, 2012.

[14] J. Diaz, E. Ros, R. Carrillo, and A. Prieto. Real-time system for
high-image resolution disparity estimation. Image Processing, IEEE
Transactions on, 16(1):280–285, 2007.

[15] R. Dubey. Introduction to Embedded System Design Using Field
Programmable Gate Arrays. Springer, 2009.

[16] R. Dueck. Digital Design with CPLD Applications and VHDL. Cengage
Learning, 2nd edition, 2011.

[17] C. Erdogan, I. Myderrizi, and S. Minaei. FPGA implementation of
BASK-BFSK-BPSK digital modulators [testing ourselves]. Antennas
and Propagation Magazine, IEEE, 54(2):262–269, 2012.

[18] R. Ghosh and G. Narayanan. Control of three-phase, four-wire pwm
rectifier. Power Electronics, IEEE Transactions on, 23(1):96–106, 2008.

[19] G. Gibb, J. Lockwood, J. Naous, P. Hartke, and N. McKeown. NetFPGA
– an open platform for teaching how to build gigabit-rate network
switches and routers. Education, IEEE Transactions on, 51(3):364–369,
2008.

[20] G. Gibbs. Learning by doing: A guide to teaching and learning methods.
Oxford Centre for Staff and Learning Development, Oxford Brookes
University, 1988.

[21] M. Gokhale and P. S. Graham. Reconfigurable Computing: Accelerating
Computation with Field-Programmable Gate Arrays. Springer, 2005.

[22] I. Grout. Digital Systems Design with FPGAs and CPLDs. Newnes,
2008.

[23] D. M. Harris and S. L. Harris. Digital Design and Computer Architec-
ture. Morgan Kaufmann, 2nd edition, 2013.

[24] J. L. Hennessy and D. A. Patterson. Computer Architecture: a Quanti-
tative Approach. Morgan Kaufmann, 5th edition, 2012.

[25] S. Himavathi, D. Anitha, and A. Muthuramalingam. Feedforward neural
network implementation in FPGA using layer multiplexing for effective
resource utilization. Neural Networks, IEEE Transactions on, 18(3):880–
888, 2007.

[26] E. O. Hwang. Digital Logic and Microprocessor Design with VHDL.
Cengage Learning, 2005.

[27] S. T. Karris. Digital Circuit Analysis and Design with SIMULINKr

Modeling and Introduction to CPLDs and FPGAs. Orchard Publications,
2nd edition, 2007.

[28] C. Kellett. A project-based learning approach to programmable logic
design and computer architecture. Education, IEEE Transactions on,
55(3):378–383, 2012.

[29] W. Kleitz. Digital Electronics: a Practical Approach with VHDL.
Pearson, 9th edition, 2012.

[30] J. H. Lee, S. E. Lee, H.-C. Yu, and T. Suh. Pipelined CPU design with
FPGA in teaching computer architecture. Education, IEEE Transactions
on, 55(3):341–348, 2012.

[31] S. Lee. Advanced Digital Logic Design: Using VHDL, State Machines,
and Synthesis for FPGAs. Thomson, 2006.

[32] T. Li and Y. Fujimoto. Control system with high-speed and real-time
communication links. Industrial Electronics, IEEE Transactions on,
55(4):1548–1557, 2008.

[33] O. Lopez, J. Alvarez, J. Doval-Gandoy, F. Freijedo, A. Nogueiras,
A. Lago, and C. Penalver. Comparison of the FPGA implementation
of two multilevel space vector PWM algorithms. Industrial Electronics,
IEEE Transactions on, 55(4):1537–1547, 2008.

[34] C. Maxfield. The Design WarriorŠs Guide to FPGAs: Devices, Tools,
and Flows. Newnes, 2004.

[35] P. Meher, S. Chandrasekaran, and A. Amira. FPGA realization of FIR
filters by efficient and flexible systolization using distributed arithmetic.
Signal Processing, IEEE Transactions on, 56(7):3009–3017, 2008.

[36] U. Meyer-Baese. Digital Signal Processing with Field Programmable
Gate Arrays. Signals and Communication Technology. Springer, 3rd
edition, 2007.

[37] E. Monmasson, L. Idkhajine, and M.-w. Naouar. FPGA-based con-
trollers. Industrial Electronics Magazine, IEEE, 5(1):14–26, 2011.

[38] A. Moradewicz and M. Kazmierkowski. Contactless energy transfer
system with FPGA-controlled resonant converter. Industrial Electronics,
IEEE Transactions on, 57(9):3181–3190, 2010.

[39] M.-w. Naouar, A. Naassani, E. Monmasson, and I. Slama-Belkhodja.
FPGA-based predictive current controller for synchronous machine
speed drive. Power Electronics, IEEE Transactions on, 23(4):2115–
2126, 2008.

[40] D. A. Patterson and J. L. Hennessy. Computer Organization and Design:
the Hardware/Software Interface. Morgan Kaufmann, 3rd edition, 2005.

[41] V. A. Pedroni. Circuit Design and Simulation with VHDL. MIT Press,
2nd edition, 2010.

[42] R. S. Sandige and M. L. Sandige. Fundamentals of Digital and
Computer Design with VHDL. McGraw-Hill, 2012.

[43] N. Sudha and A. Mohan. Hardware-efficient image-based robotic path
planning in a dynamic environment and its FPGA implementation.
Industrial Electronics, IEEE Transactions on, 58(5):1907–1920, 2011.

[44] T. Sutikno, M. Facta, and G. A. Markadeh. Progress in artificial intelli-
gence techniques: from brain to emotion. TELKOMNIKA (Telecommu-
nication Computing Electronics and Control), 9(2):201–202, 2013.

[45] Terasic Incorporation. Altera DE1 Board, de1.terasic.com, ac-
cessed July 2017.

[46] A. Wills, G. Knagge, and B. Ninness. Fast linear model predictive
control via custom integrated circuit architecture. Control Systems
Technology, IEEE Transactions on, 20(1):59–71, 2012.

[47] L. Zhuo and V. Prasanna. High-performance designs for linear algebra
operations on reconfigurable hardware. Computers, IEEE Transactions
on, 57(8):1057–1071, 2008.

Proc. EECSI 2017, Yogyakarta, Indonesia, 19-21 September 2017

595

