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Abstract— In the recent development of MOSFET, non-

planar structure has been identified as promising structure for 

next device generation. The advanced scaling of device implies 

that more sophisticated model is required due to the limitation 

of the existing models for application in nano scale. Analytical 

model for non-planar MOSFET model is discussed in this 

paper, especially for device with pillar. The concern of channel 

shape and structure is elaborated as well. The result shows the 

shift in subthreshold characteristic due to the presence of 

recessed region in the channel with the simulated model. 

Keywords—non-planar MOSFET; nanoscale; analytical 

model; surface  potential, short channel effect 

I.  INTRODUCTION 

The rapid progress of MOSFET into nanoscale 
dimension reveals the limited option for prolonging the 
conventional bulk structure legacy, as stated by the latest 
International Technology Roadmap for Semiconductor 
(ITRS)[1]. The continuous scaling of the device dimension 
has now reached tens of nanometer size especially for the 
channel length of transistors. Several innovations for future 
devices are emerged, mainly with non-conventional 
structure, which may overcome the problem of conventional 
MOSFET device in nanoscale. Such device is non-planar 
MOSFET with a variety of pillar stuctures, as noted by many 
researchers [2-8]. The advantages of non-planar MOSFET 
are due to the relaxed-lithography in defining the channel 
length and also on its ability to obtain self-aligned double 
gate for the structure; an advantage that is hard to produce in 
conventional one.  

On the other hand, several distinct methods of fabrication 
result in different channel shape. Several techniques produce 
straight channel between source and drain, while some other 
produces channel in such a bending shape, a combination of 
vertical and recessed horizontal direction of current. 
Different channel potentials may exist due to the shape of 
source or drain as well. The recessed channel (Fig. 1(a)) has 
the L-shape geometry with the presence of corner that diverts 
the direction of current flux from drain to source. On the 
other hand, the body-tied geometry (Fig. 1(b)) offers the 
possibility of direct flux, but with the channel connected to 
the substrate potential. The other geometry, floating body 
channel (Fig. 1(c)), resembles the simple double gate 
structure, while the channel potential is isolated electrically 

from the substrate. All geometries may be found in non-
planar double gate MOSFET. 

Several models that simulate the physics of the vertical 
devices have been published recently. However, many 
authors focused on the ideal non-doped double-gate/surround 
gate MOSFET structure [9-11]. Others modeled the highly 
doped MOSFET with the help of regional model [12, 13] or 
depletion charge [14] as well as with conformal mapping 
[15]. However, the analytical model for non-ideal junction 
structure, as well as recessed channel, has not been well 
articulated in previous publications. In the conventional 
MOSFET, the recessed gate is known for its ability to 
prevent short channel effect, but in the vertical geometry, the 
recessed channel is somewhat different with that of 
conventional. The simulation of recessed gate in vertical 
MOSFET geometry has been presented in [16], but it is 
mainly concentrated for vertical surround gate, and no 
analytical model was offered. 

 

 

Fig. 1 The variation of channel geometry in non-planar DG MOSFET: (a) 
recessed, L-shape channel, (b) body-tied channel, and (c) floating-body 
channel 

 

Therefore, in order to explain the behaviour of channel 
with different shape and potential profile, it is important to 
derive the appropriate model. In addition, the continuous 
scaling of device requires applicable model in nanoscale. 
This paper elaborates the analytical model of non-planar 
MOSFET which employ the recessed channel geometry in 
the bottom part. The corner effect is elaborated extensively, 
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with the help of approach that has been provided for 
conventional model[17]. 

 

II. DEVICE MODEL 

The structure of recessed channel in non-planar 
MOSFET can be seen in Fig. 2. This typical structure is an 
ideal form of the fabricated devices. The straight channel 
potential model is derived from Poisson equation 

 
        

    
        

    
   

   
 (1) 

using generic approach as noted in several references, e.g. 

[10, 18-21]. Moreover, the presence of corner region in the 

bottom is arguably difficult to solve using two-dimensional 

Poisson equation in Cartesian system. Therefore, we divide 

the channel into two regions: first is the straight and latter is 

the corner region. We simplify the corner region as a quarter 

circle, an approach adopted from Zhang et al [17] for 

grooved gate in conventional MOSFET. However, Zhang’s 

model used trapezium-shape approach, while our model 

employs quarter-circle approach which is more realistic. 

The uniformed depletion width    is calculated using the 

following formula: 

    
  

 
 (2) 

DA is the total depletion region area as in [22], as 

simplification of depletion width towards all area mainly 

due to the gate influence.   
 

GATE

SOURCE

DRAIN

x
D

GATE

SOURCE

DRAIN

x
D

r
0




L=L

x

L=0

r
0
 + t

ox

a b

 

Fig. 2 The structure of recessed channel in vertical geometry (a), and its 
approach using two-region solution (b) 

 

The potential of channel for each region is following the 

two dimensional second-order parabolic approach of graded 

channel approximation (GCA) that originally proposed by 

Young [23]. However, for corner area, the parabolic 

approximation is adopted to the cylindrical coordinate 

system as was used in [17]. The potential for both cartesian 

and polar coordinate systems are: 

                                  (3) 

                           
  (4) 

The notation “st” stands for “straight”, to differentiate 
with “cr” for “corner”.  In solving the differential Poisson 
equation using general parabolic approach, several boundary 
conditions are set, which are applied to both regions (for 
polar coordinate, x and y should be replaced with   and r, 
respectively): 

(i) The electric field in the silicon-oxide interface is 

according to Gauss’ law [22]: 

      

  
 
   

 
   

   
            (5) 

(ii) The potential at depletion layer is equal to the substrate 

potential, for body-tied channel to the Vsub : 

                 (6) 

(iii) The electric field in the depletion layer is: 

     

  
 
    

    (7) 

All parameters are put and later the potential equation is 

rewritten as: 
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Similarly for the corner area, with inner radius    
            ,  depletion depth               and 

capacitance of cylindrical tube                  
         as derived in [24],  by borrowing quarter circle 

approach of grooved channel, solving all boundary 

conditions for corner area’s potential result in [17]: 

                
                             

     
  

                      (9) 

where    
   

   
                 .  

Eq. 9 shows that the potential          throughout the 

corner are dependent of   , which represent the length of 

recessive part of the channel. By substituting potential 

equation          of Eq. 8 back into Poisson’s equation, a 

differential equation of potential in straight channel is 

obtained: 

Proceeding of International Conference on Electrical Engineering, Computer Science and Informatics (EECSI 2014), Yogyakarta, Indonesia, 20-21 August 2014

246



 

 
   

   
 

     

  
  

       

        
 

               

     
    

       

  
                           

     
    

   
      (10) 

Similarly for corner area, the surface potential        of Eq. 

9 is substituted into Poisson’s equation for polar coordinate 

[17]: 
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which result in [17] 
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It is noteworthy that Poisson equation of both regions as 

expressed in Eqs. 10 and 12 can be rearranged in the generic 

second-order differential equation formula [25] which has 

the common form of: 

    
      

      

  
     , (straight) (13) 

    
      

      

    
    , (corner) (14) 

The boundary conditions for both regions can be 

ascribed as: 

i.  
  

                     

ii.  
  

                         

iii.                   

iv.      

  
 
    

   
    

   
 
   

      (15) 

Threshold voltage VT is determined when the value of 

minimum surface potential is twice the Fermi potential 

          . Thus, the location of the minimum potential 

along the surface in the channel obeys the expression: 

     

  
 
      

   (16) 

By solving the boundary conditions and calculating the 
location of minimum potential in each regions, the threshold 
voltage can be determined from the minima of both regions. 

 

III. RESULT AND DISCUSSION 

The structure of straight channel with no corner effect is 

simulated in the similar way of the recessed structure. In the 

body-tied structure, the body of channel outside the 

depletion region is tied to the potential of substrate,     . 

The surface potential of recessed and non-recessed channel 

are shown in Fig. 3 as a function of channel length for a 

fixed recessed length, Lrec=10 nm. Meanwhile, Fig. 4 shows 

the surface potential with the recessed channel is limited to 

around 15% of the total channel length L. It is notable that 

the minimum surface potential is located in the straight 

region for Lrec < 40% L. 

 

Fig. 3 The surface potential for recessed and non-recessed channel. the 
length recessed part are  constant (10 nm), Vds =0.1 V. tox = 3 nm, Vgs=0.1V 

 

Fig. 4 The surface potential as a function of normalized channel 

length, with the recessed region length are 15% of L. Vds =0.1 V. tox = 3 
nm, Vgs=0.1V  

The threshold voltage extraction is shown in Fig. 5 for 

Lrec = 15% L, Vds=0.1 V, NA= 10
18

 cm
-3

, tox=2 nm. The 

threshold voltage is decreased in shorter channel. The 

straight channel has lower threshold voltage than the 

recessed channel. In an environment of low VDD, as in low-

power nano IC, lower threshold voltage is preferable, for a 

safe switching and higher current at on state.  

Physically, the curved channel structure lacked the gate 

control in the corner region. The similar phenomenon is also 

found in grooved channel in planar MOSFET, as has been 

elaborated in [26, 27]. The lack of gate control produces 

decreased potential in the corner area compared to the 

straight channel. It also prevents the quick conversion into 

inversion in the channel beneath the oxide layer, with the 
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charge slowly respond to the gate voltage. As a result, 

higher threshold voltage is needed in the recessed channel.  

 
Fig. 5 The threshold voltage due to short channel effect. 

 

IV. CONCLUSION 

The structure of non-planar MOSFET with recessed 
channel has been modeled analytically using parabolic 
approach, with the help of two distict region representing 
different channel shape. The model successfully reveals the 
performance in the presence of short channel effect. The 
simulation based on the developed model shows the shift of 
threshold voltage due to the presence of the recessed part in 
the corner. The result reveals the implication of the usage of 
pillar for non-planar structure, which requires more careful 
design in the future for threshold-sensitive application . 
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