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Abstract—Possibility theory can be used as a suitable frame-
work to build a normal behavioral model for an anomaly detector.
Based on linear and/or nonlinear systems, sub-optimal filtering
approaches based on the Extended Kalman Filter and the Un-
scented Kalman Filter are calibrated for entropy reduction and
could be a good basis to find a suitable model to build a decision
variable where, a decision process can be applied to identify
anomalous events. Sophisticated fuzzy clustering algorithms can
be used to find a set of clusters built on the decision variable,
where anomalies might happen inside a few of them. To achieve
an efficient detection step, a robust decision scheme is built, by
means of possibility distributions, to separate the clusters into
normal and abnormal spaces. We had studied the false alarm
rate vs. detection rate trade-off by means of ROC (Receiver
Operating Characteristic) curves to show the results. We validate
the approach over different realistic network traffic.

Index Terms—Extended Kalman Filter, Unscented Kalman
Filter, Fuzzy Clustering, Anomaly Detection, Possibility theory.

I. INTRODUCTION

Recently, some works, related to anomaly detection in
communication networks, have been concentrated on Linear
Kalman filtering [16], [15], [14]. However, despite its strength,
the linear Kalman filter runs well with hard difficulties. Gen-
erally, the innovation process is expected to be a Gaussian
white noise. However, in practice, this is hardly the case as
frequently the observed signals are non gaussian/nonlinear
themselves. In this work we show that a decision variable
can be made from the innovation processes and organize in
clusters where anomalies might be detected. Another difficulty
is related to the calibration of the input matrices of the linear
Kalman filter. Another problem is related to the choice of the
model type: linear or nonlinear. This is generally a challenging
task to build a good system for anomaly detection.

Our hope in this paper is to show that the sub-optimal
algorithms based on EKF and UKF can be view as valuable
and alternative tool for anomaly detection, in case when the
state and measurement processes are linear. We believe that
one should build a bank of different filters and perform a
comparative study which could have as a final hope to find
out the best model.

A. Normal behavior modeling
The framework of EKF and UKF is based on the following

difference equations:{
xt+1=f(xt) + wt

yt =h(xt) + vt
(1)

where xt ∈ Rn and yt ∈ Rm are multi-dimensional vectors
representing respectively the system state and the measure-
ment. The system is assumed to be excited by an unknown
process noise wt ∼ N(O,Qt) and the measurement are
disturbed by unknown measurement noise vt ∼ N(O,Rt).

B. How to build the Decision Variable ?

The decision variable is built using the multi-dimensional
innovation process obtained as output of the filters. The one-
dimensional decision variable (DV) process is obtained by
applying the formulas:

decisionvariable = e(t)TV e(t) (2)

where the matrix V (obtained as output of each Kalman
filter) is the inverse of the variance of the multi-dimensional
innovation process e(t), T denotes the transpose.

1) Extended Kalman Filter: We use the first order EKF
which is based on linear quadratic approximations with a
gaussian: p(xt|y1:t) = N(xt|mt, Pt). Due to lack of space,
we give the necessary equations needed to run the EKF [3],
[2]. The filter runs into two steps as a predictor-corrector
algorithm:

• prediction:{
m−

t = f(mt−1)
P−
t =Fx(mt−1)Pt−1F

T
x (mt−1) +Qt−1

(3)

• correction (update):
vt = yt − h(m−

t )
St=Hx(m

−
t )P

−
t HT

x (m
−
t ) +Rt

Kt= P−
t HT

x (m
−
t )S

−1
t

mt= m−
t +Ktvt

Pt= P−
t −KtStK

T
t

(4)

where the matrices Fx(m) and Hx(m) are the Jacobians of
the functions f and h, with elements:

[Fx(m)]t−1
jj′

=
∂fj(x,t−1)

∂x
′
j

|x=m (5)
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[Hx(m)]t
jj′

=
∂hj(x,t)

∂x
′
j

|x=m (6)

2) Unscented Kalman Filter: In the following, we derive
the prediction and update equations for the UKF based on UT
(Unscented Transformation) [11].

• prediction: computed the predicted state mean m−
t and

the predicted covariance P−
t as:

Xt−1=[mt−1 . . .mt−1] +
√
c[0

√
Pt−1 −

√
Pt−1]

X̂t = f(Xt−1)

m−
t = X̂t(wm)

P−
t = X̂tW [X̂t]

T +Qt−1

(7)

• correction (update): Compute the predicted mean µt

and covariance of the measurement St, and the cross-
covariance of the state and measurement Ct:

X−
t =[m−

t . . .m−
t ] +

√
c[0

√
P−
t −

√
P−
t ]

Y −
t = h(X−

t )
µt = Y −

t wm

St = Y −
t W [Y −

t ]T +Rt

Ct = X−
t W [Y −

t ]T

(8)

One can then compute the filter gain Kt and the updated
state mean mt and covariance Pt as: Kt= CtS

−1
t

mt=m−
t +Kt[yt − µt]

Pt= P−
t −KtStK

T
t

(9)

II. HOW TO BUILD THE NORMAL SUBSPACE ?

Once the number of clusters found, we run a two-step
approach to build the normal space formed by some clusters,
the remaining labeled as abnormal. First, since we do not
have any a priori knowledge of the clusters distribution, we
affect to each cluster a degree of possibility by means of
possibility distribution. The second step try to extract the
”normal” clusters. We believe that the degree of normalcy of
a cluster depends only of the degree of normalcy of the data
inside the cluster itself. We use the memberships from the
clustering operation to calculate the degrees of possibility of
the data themselves. A thorough analysis of the second king
of possibility distributions makes us find a threshold to apply
to a cluster’s degree of possibility to decide if it is normal.

A. Clustering operation

Here, for the purpose of efficiency and comparison , we
perform the clustering operation with five algorithms, namely:
k-means, k-medoid, fuzzy c-means (FCM) and Gustafson-
Kessel (GK)algorithms.

1) K-means and K-medoid clustering algorithms: With an
N×n dimensional data set, K-means allocates each data point
to one of c clusters to minimize the within-cluster sum of
squares defined as:

c∑
i=1

∑
k∈Ai

||Xk − vi||2, (10)

where Ai is a set of data points in the i− th cluster and vi is
the mean for that points over cluster i. In K-means clustering
vi is called the cluster prototypes, i.e the cluster centers; it is
defined by:

vi =

∑Ni

k=1 xk

Ni
, xk ∈ Ai, (11)

where Ni is the number of data points in Ai.
In K-medoid algorithm, the cluster centers are the nearest

data points to the mean in one cluster V = {vi ∈ X|1 ≤ i ≤
c}.

2) Fuzzy C-means clustering algorithm: The Fuzzy C-
means clustering algorithm is based on the minimization of
an objective function called C-means functional. It is defined
by Dunn as:

J(X;U, V ) =

c∑
i=1

N∑
k=1

(µik)
m||xk − vi||2A, (12)

where V = [v1, v2, . . . , vc], vi ∈ Rn is a vector of cluster
prototypes, which have to be determined, and the quantity:

D2
ikA = ||xk − vi||2A = (xk − vi)

TA(xk − vi), (13)

is a squared inner-product distance norm.
The equation Eq. 12 is a measure of the total variance of xk

from vi. The minimization of this quantity can be done with
the popular Picard iteration trough the first-order conditions for
stationary process of the objective function. These stationary
points can be found by means of Lagrange multipliers as:

J(X;U, V, λ) =
c∑

i=1

N∑
k=1

(µik)
mD2

ikA +
N∑

k=1

λk(
c∑

i=1

µik − 1),

(14)
and by setting the gradient of J with respect to U, V and
λ to zero. If D2

ikA > 0, ∀i, k and m > 1, then (U, V ) ∈
Mfc × Rn×c may minimize Eq. 12 only if

µik =
1∑c

j=1(DikA/D
2/(m−1)
jkA

, 1 ≤ i ≤ c, 1 ≤ k ≤ N, (15)

and

vi =

∑N
k=1 µ

m
ikxk∑N

k=1 µ
m
ik

, 1 ≤ i ≤ c, (16)
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3) Gustafson-Kessel clustering algorithm: Gustafson and
Kessel extended the standard fuzzy c-means algorithm by
employing an adaptive distance norm, in order to detect
clusters of different geometrical shapes in one data set. Each
cluster has its own norm-inducing matrix Ai, which yields the
following inner-product norm:

D2
ikA = (xk − vi)

TAi(xk − vi), 1 ≤ i ≤ c, 1 ≤ k ≤ N. (17)

The matrices Ai are used as optimization variables in the
c-means functional, allowing each cluster to adapt the dis-
tance norm to the local topological structure of the data.
If A denotes a c-tuple of the norm-inducing matrices A =
(A1, A2, . . . , Ac), then the objective functional of the GK
algorithm is defined by:

J(X;U, V,A) =

c∑
i=1

N∑
k=1

(µik)
mD2

ikAi
. (18)

We implemented in Matlab the numerically robust algorithm
described in [12].

To find the appropriate number of clusters, one can cluster
data for different values of c ∈ {2, 3, . . . , cmax}, and using
validity measures to assess the goodness of the obtained par-
titions. Different scalar validity measures have been proposed
in the literature, none of them is perfect by itself, therefor we
used several indexes in our work for the hope of comparison.

B. Optimum number of clusters

We use the following validity measures [7] as a tool to
determine the optimum number of classes in our clustering
operation.

• Partition Coefficient (PC): measures the amount of ”over-
lapping” between clusters. It is defined by Bezdek [6] as
follows:

PC(c) =
1

N

c∑
i=1

N∑
k=1

(µij)
2, (19)

where µij is the membership of data point j in cluster i.
The optimal number of cluster is at the maximum value.

• Classification Entropy (CE): it measures the fuzzyness of
the cluster partition only, which is similar to the Partition
Coefficient. It is defined as:

CE(c) = − 1

N

c∑
i=1

N∑
k=1

(µij)log(µij), (20)

• Partition Index (SC): It is defined as [7]:

SC(c) =
c∑

i=1

∑N
j=1(µij)

m||xj − vi||2

Ni

∑c
k=1 ||vk − vi||2

, (21)

SC is useful when comparing different partitions having
equal number of clusters. A lower value of SC indicates
a better partition.

• Separation Index (S): on the contrary of partition index
(SC), the separation index uses a minimum-distance
separation for partition validity [7]. It is defined as:

S(c) =

∑c
i=1

∑N
j=1(µij)

m||xj − vi||2

Nimini,k||vk − vi||2
, (22)

• Xie and Beni’s Index (XB): It is defined as [10]:

XB(c) =

∑c
i=1

∑N
j=1(µij)

m||xj − vi||2

Nimini,j ||xj − vi||2
, (23)

The optimal number of clusters should minimize the
value of the index.

• Dunn’s Index (DI): It is defined as:

DI(c) = mini∈cminj∈c,j ̸=i

minx∈Ci,y∈Cjd(x,y)

maxk∈c{maxx,y∈Cd(x, y)}
(24)

The maximum of DI gives the optimum number of
clusters.

III. BUILDING NORMAL SPACE WITH POSSIBILITY THEORY

The normal space is built into a two step-wise approach
is necessary. Dubois and Prade’ s procedure, [1], produces
the most specific possibility distribution among the ones
dominating a given probability distribution. In this paper, this
method is generalized to the case where the probabilities (of
generating the clusters) are unknown. It is proposed to char-
acterize the probabilities of generating the different clusters
by simultaneous confidence intervals with a given confidence
level 1 − α. So a procedure for constructing a possibility
distribution is described, insuring that the resulting possibility
distribution will dominate the true probability distribution in
at least 100(1− α) of the cases.
In a second phase, we will also use a procedure to computing
possibilities for data points inside a cluster in order to know
if this cluster is normal or abnormal. This can be achieved by
means of memberships of the data points, i.e the probability
of generating the data sample.

In the following, we suppose that there’s K well-
formed clusters. We consider the parameter vector p =
(p1, p2, . . . , pK) of probabilities characterizing the unknown
probability distributions of a random variable X on Ω =
{ω1, . . . ., ωK}. Let nk denotes the number of observations
of cluster k in a sample of size N . Then, the random
vector n = (n1, . . . , nK) can be considered as a multinomial
distribution with parameter p. A confidence region for p at
level 1 − α can be computed using simultaneous confidence
intervals as described in [4]. Such a confidence region can be
considered as a set of probability distributions.

A consistency principle between probability and possibility
was first stated by Zadeh, [5] in an unformal way: ”what is
probable should be possible”. This requirement is translated
via the inequality:

P (A) ≤ Π(A) ∀A ⊆ Ω (25)

where P and Π are, respectively, a probability and a possibility
measure on a domain Ω = {ω1, . . . ., ωK}. In this case, Π
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is said to dominate P . Transforming a probability measure
into a possibilistic one then amounts to choosing a possibility
measure in the set ℑ(P ) of possibility measures dominating
P . This should be done, by adding a strong order preservation
constraint, which ensures the preservation of the shape of the
distribution:

pi < pj ⇔ πi < πj ∀i, j ∈ {1, . . . ,K}, (26)

where pi = P ({ωi}) and πi = Π({ωi}), ∀i ∈ {1, . . . ,K}.
It is possible to search for the most specific possibility
distribution verifying (25) and (26) (a possibility distribution
π is more specific than π

′
if π ≤ π

′
, ∀i). The solution of this

problem exists, is unique and can be described as follows. One
can define a strict partial order P on Ω represented by a set of
compatible linear extensions Λ(P) = {lu, u = 1, L}. To each
possible linear order lu , one can associate a permutation σu

of the set {1, . . . ,K} such that:

σu(i) < σu(j) ⇔ (ωσu(i), ωσu(j)) ∈ lu, (27)

The most specific possibility distribution, compatible with p =
(p1, p2, . . . , pK) can then be obtained by taking the maximum
over all possible permutations:

πi = max
u=1,L

∑
{j|σ−1

u (j)≤σ−1
u (i)}

pj (28)

A problem arises for calculating the possibilities for the
clusters themselves, since we do not know the probabilities p.
A solution can consist to build confidence intervals for each
cluster ωi. In interval estimation, a scalar population parameter
is typically estimated as a range of possible values, namely a
confidence interval, with a given confidence level 1− α.
To construct confidence intervals for multinomial proportions,
it is possible to find simultaneous confidence intervals with
a joint confidence level 1 − α. The method attempts to
find a confidence region Cn in the parameter space p =

(p1, . . . , pK) ∈ [0; 1]K |
K∑
i=1

pi = 1 as the Cartesian product

of K intervals[p−1 , p
+
1 ]...[p

−
K , p+K ] such that we can estimate

the coverage probability with:

P(p ∈ Cn) ≥ 1− α (29)

At this moment, we can use the Goodman, [13] formulation
in a series of derivations to solve the problem of constructing
the simultaneous confidence intervals. Let

A = χ2(1− α/K, 1) +N (30)

Bi = χ2(1− α/K, 1) + 2ni, (31)

Ci =
n2
i

N
, (32)

∆i = B2
i − 4ACi, (33)

Finally, the bounds of the confidence intervals are defined as
follows:

[p−i , p
+
i ] =

[
Bi −∆

1
2
i

2A
,
Bi +∆

1
2
i

2A

]
(34)

It is now possible, based on these above interval-valued
probabilities, to compute the most possibility distributions
(degrees of the different clusters) dominating any particular
probability measure. Let P denotes the partial order induced
by the intervals [pi] = [p−i , p

+
i ]:

(ωi, ωj) ∈ P ⇔ p+i < p−j (35)

As explained above, this partial order may be represented
by the set of its compatible linear extensions Λ(P) =
{lu, u = 1, L}, or equivalently, by the set of the corresponding
permutations{σu, u = 1, L}. Then for each possible permu-
tation σu associated to each linear order in Λ(P), and each
cluster ωi, we can solve the following linear program:

πσu
i = max

p1,...,pK

∑
{j|σ−1

u (j)≤σ−1
u (i)}

pj (36)

Finally, we can take the distribution of the cluster ωi domi-
nating all the distributions πσu :

πi = max
u=1,L

πσu
i ∀i ∈ {1, . . . ,K} (37)

At this point, we propose to build a measure of possibility
distribution πnormal as a threshold, and then a cluster will be
considered as normal if its possibility distribution satisfies :

πi ≥ πnormal, (38)

Otherwise it is ranged in subspace potentially suspicious. And
our attention will be placed in this subspace for anomaly
detection.

To find the possibility distribution πnormal, we take into
account the memberships of the data points inside a cluster.
The memberships can be seen as the probability that data
point belongs to the different clusters. These memberships
are calculated with the Gustafson-Kessel clustering algorithm
which gives us, for each data point xt the probability distribu-
tion p = (p1, p2, . . . , pK) (for each data point the constraints
K∑
i=1

pi = 1 is always true.

We can use Eq. (28) to calculate the possibility distribution of
each data point xt of the sample x. We obtain a matrix πN

K of
dimension K×N (remember K is the number of components
(clusters) and N is the length of the data sample x). We
take the mean for each column (each column containing the
possibility distribution for data point xt) lying in all clusters.
Then we obtain a second matrix πN

1 and finally we use Eq.
(39) to derive the threshold πnormal :

πnormal = max(πN
1 ) (39)

A. Model Validation

1) Experimental data: Abilene and SWITCH networks:
In this work, we used a collection of data coming from the
Abilene network. The Abilene backbone has 11 Points of
Presence(PoP) and spans the continental US. The data from
this network was collected from every PoP at the granularity
of IP level flows. The Abilene backbone is composed of
Juniper routers whose traffic sampling feature was enabled.
Of all the packets entering a router, 1% are sampled at

Proceeding of International Conference on Electrical Engineering, Computer Science and Informatics (EECSI 2014), Yogyakarta, Indonesia, 20-21 August 2014

411

moenz
Text Box



5

random. Sampled packets are aggregated at the 5-tuple IP-
flow level and aggregated into intervals of 10 minute bins.
The raw IP flow level data is converted into a PoP-to-PoP
level matrix using the procedure described in [8]. Since the
Abilene backbone has 11 PoPs, this yields a traffic matrix with
121 OD flows. Each traffic matrix element corresponds to a
single OD flow, however, for each OD flow we have a seven
week long time series depicting the evolution (in 10 minute
bin increments) of that flow over the measurement period. All
the OD flows have traversed 41 links. Synthetic anomalies are
injected into the OD flows by the methods described in [8],
and this resulted in 97 detected anomalies in the OD flows.
The anomalies injected in the Abilene data are small and high
synthetic volume anomalies. We used exactly the same Abilene
data as in [9]. So for a full understanding on how the ground-
truth is obtained (based on EWMA and Fourier algorithms),
we refer the reader to [9].

2) Results and comparison: The first result of our study
is devoted to entropy reduction. The approach shows the
ability of the EKF and UKF to estimate the state of the
system under noisy measurements. We implemented these
filters in Matlab to the linear dynamical system described
in our previous work [14], [15] which is our reference to
compare the Linear Kalman Filter to the EKF and the UKF.
This means that the functions f and h are respectively set to
Ctxt and Atxt. We suppose that system state and measurement
are time invariant. To calibrate the EKF, we first need to
find the unknown parameters C, A, Q and R and also the
different Jacobian matrices. Since we consider a linear system,
the matrices C, Q and R can be obtained with the same
method we deal with in our paper referenced in [15] based
on the expectation-maximization algorithm. We run the filters
for each column timeseries and for the Abilene and Switch
networks, we use the same constant quantities Q = 10.92
and R = Q × 15 and the estimation is quite perfect. These
same values are used to run the EKF and UKF for the sake
of comparison. Additional matrices (i.e Jacobians) are needed
for EKF, that’s why it is often difficult to build a suitable
model based on this framework. But, for our study we just
specify these quantities as the values of C and A since the
data observations themselves are very simple timeseries. They
are set to F = 9.1, H = 5. By inspection of the graphs
in figure Fig. 1, it seems that EKF and UKF performs with
the same level of performance when they are calibrated with
the same parameters. The goodness of an algorithm can be
evaluated with the root mean square RMS) error defined as:√√√√ 1

N

N∑
k=1

| xk − E(xk − y1:k) |2. Table I shows the RMS error

for the EKF and UKF algorithms and it makes clear that
the UKF performs better than the EKF. This filtering results
give quite the same performance as when we used the linear
Kalman filter [14].

After filtering for the purpose of entropy reduction, our aim
is to analyze residuals for the scope of anomaly detection. We
suppose that anomalies might be rare and might happen on
a few number of clusters. We deal with the partition problem
where we want to find the appropriate number of clusters built
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Fig. 1: Real and estimated links obtained using EKF and UKF.
Abilene network.

TABLE I: Root Mean Square Error after running the EKF and
UKF filter.

Switch TCP
Link i 1 2 3 4 5

EKF 0.4021 0.4023 0.3317 0.3479 0.3107
UKF 0.3349 0.3194 0.2498 0.2655 0.2292

from the innovation process. During this optimization task,
parameters were fixed to the following values: m = 3, ϵ =
0.001, ρ = 1 for each cluster, c ∈ [2, 9] (interval in which we
would find the suitable number of clusters). The values of the
validity measures, depending on c, are plotted in figures Fig. 2
and 3 for the K-means, K-medoid, FCM and GK algorithms.
The results are shown for the Switch network. Globally, in
figure Fig. 3, the validity measures PC and CE from the FCM
algorithm does not give us reliable information to obtain the
best number of clusters. They are typically increasing (CE) and
decreasing (PC) without break (local minimum or maximum).
With the K-means, the different graphs show clearly that the
number of clusters can be set to c = 3 (maximum of the
Dunn Index). The K-medoid and more precisely the robust GK
algorithm, via the values of XB and DI, obviously confirm that
c = 3. The same analysis show that, when using the Abilene
trafic, the best number of cluster is c = 4. The analysis shows
that, one must use different clustering algorithms and validity
measures to ensure that the selection of the best number of
cluster is rigorous.

After having the optimum number of clusters, we progress
in a next step where we search for which clusters are normal
and which ones are abnormal. To this end, we affect to
each cluster a degree a possibility, as explained in section
III. The results are depicted in table Table II. And finally,
when applying our decision scheme for cluster normalcy
identification, we decide to put the label No if a cluster in
abnormal and Yes otherwise. To decide if a cluster is normal
or not, we have just to find the degree of possibility which
acts as a threshold. This threshold in calculated by using the
results in table Table III and proceed equations Eq. (38) and
Eq. (39). These results show that, in all cases, the clusters
labeled as abnormal have always a few number of data, that
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Fig. 2: Validity measures in order to find the best number
of clusters. The left 4 graphs using K-means and the right 3
graphs using K-medoid. Switch network.
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Fig. 3: Validity measures in order to find the best number of
clusters. The left 2 graphs using FCM and the right 6 graphs
with GK. Switch network.

is what we expected. After finding the abnormal clusters, we

TABLE II: Interval-valued probabilities, possibility distribu-
tions, and length of each cluster. We apply Eq. (38) and show
if a cluster is normal or not.

Abilene
cluster i 1 2 3 4

p−i 0.1741 0.2799 0.2518 0.2114
p+i 0.2122 0.3242 0.2949 0.2521
πS
i 0.4244 1.0000 1.0000 0.7165

πnormal (Eq. 39) 0.4393
Eq. (38) false true true true

cluster Normalcy No Yes Yes Yes
Length cluster i 194 304 275 233

UDP trafic
cluster i 1 2 3

p−i 0.1795 0.4101 0.3674
p+i 0.2039 0.4406 0.3974
πS
i 0.2039 1.0000 0.5899

πnormal (Eq. 39) 0.5429
Eq. (38) false true true

cluster Normalcy No Yes Yes
Length cluster i 383 851 765

just use a basic test of variance to detect anomalies. The results
are shown in the ROC curves depicted in figure Fig. 4. The
ROC curve is a convenient tool to learn about the tradeoff
between the percentage of anomalies detected (detection rate-
DR) and the false positive rate (false alarms-FPR). The results
demonstrate in our study that the UKF performs better than
the EKF, perhaps due to the fact that it is ore simple and easy
to calibrate the UKF filter than the EKF. For example, for the

TABLE III: Memberships of the data points and corresponding
possibility distributions, (α = 0.05).

TCP trafic
time t 1 2 3 . . . 2000 2001

memberships
cluster 1 0.9985 0.9985 0.2597 . . . 0.9318 0.2612
cluster 2 0.0010 0.0010 0.2303 . . . 0.0403 0.6769
cluster 3 0.0005 0.0005 0.5100 . . . 0.0279 0.0619

corresponding possibility distributions
cluster 1 1.0000 0.0015 0.0005 . . . 1.0000 0.3231
cluster 2 1.0000 0.0015 0.0005 . . . 0.0682 1.0000
cluster 3 0.4900 0.2303 0.0279 . . . 0.0.0279 0.0619

UDP trafic we gain about 80% of DR with 0% of FPR for
the UKF while the EKF produces 0.05% of FPR for the same
DR. We obtain the same interpretation for the other trafic.
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Fig. 4: ROC curve illustrating the tradeoff between the de-
tection rate and the false positive rate. The results are drown
using EKF and UKF. Left graph Switch TCP and UDP trafic
and right graph for Abilene.

IV. CONCLUSION

In this work, we have shown that the EKF and UKF can be
used to build convenient models for the purpose of anomaly
detection in communication networks. The calibration of the
UKF is more easy and the difficulty to build the Jacobian
matrices is the possible reason that EKF produces a mean
square error more important than for UKF. Based on pos-
sibility distributions, we have developed a new scheme that
allows us to build the normal and abnormal spaces. We then
analyze, by means of ROC curve, the tradeoff between the
detection rate and the false positive rate. A difficult task in
the final procedure of tracking the true anomalies is related to
the choice of the test (here test of variance) in order to reduce
considerably the false positive. All our experiences to training
the possibility theory framework use a confidence level set to
95% (corresponding to alpha = 0.05). We have runs multiple
other scenarii with confidences lying between 90% and 99%
and the results are the same.
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