
Automatic Human Joint Detection Using Microsoft
Kinect

Samuel Cahyawijaya
Informatics Engineering

Institut Teknologi Bandung
Bandung, Indonesia

samuel.cahyawijaya@gmail.com

Iping Supriana Suwardi
Informatics Engineering

Institut Teknologi Bandung
Bandung, Indonesia

iping@informatika.org

Abstract—Automatic human joint detection has been used in
many application nowadays. In this paper, we propose an
approach to detect full body human joint method using depth
and color image. The proposed solution is divided into 3 stage,
which is image preprocess stage, distance transform stage, and
anthropometric constraint analysis stage. The output of our
solution is a stickman model with the same pose as in the given
input image. Our implementation is done by using a Microsoft
Kinect RGB and depth camera with 480x640 image resolution.
The performance of this solution is demonstrated on several
human posture.

Keywords— Microsoft Kinect, human joint, anthropometry,
depth image, body measure

I. INTRODUCTION
Human joint detection is an important task in computer

vision. Many applications have implemented joint detection
for various kind of task, such as human motion analysis,
action recognition, surveillance, etc. There are many method
has been implemented to do human joint detection, one is
done by manually set the joint on the image which is a slow
method to be performed. Other method uses optical marker on
the subject which lead to expensive but faster method. Other
method is done without using marker on RGB image, but
there is an accuracy problem with this method.

Recently, due to emersion of low-cost depth camera sensor
markerless approach of human joint detection using only depth
camera or both RGB and depth camera has been developed.
Some implementation is done by using anthropometric
constraint and some other is done by using random forest
classifier. In this paper, we propose an approach to detect
single full body human joint detection by using a single
Microsoft Kinect camera. Our solution divided into 3 stage
which is preprocess stage, distance transform stage, and
anthropometry analysis stage.

II. RELATED WORKS
Kar [4] and Jain et al.[3] have developed a novel human

upper body joints detection method. Both use the same face
detection ,distance transform, and anthropometric analysis.
The different part is on the arm fitting method. On Kar
implementation, a skin segmentation method is use to do the

arm fitting, while on Jain et al. Implementation, arm fitting is
done by sampling method on the weighted-distance transform
result. (Kar, 2010) implementation use 640 x 480 RGB and
depth image with average detection time of 103 ms, while Jain
et al. Implementation use 320 x 240 RGB and depth image
with average detection time of 68 ms.

Shotton et al.[2] propose a machine learning method to
approximate human joints by detecting body part first. Shotton
et al. use random forest to detect the body parts with 15.000
and 900.000 training data. The resulting experiment give
average detection accuracy from 73.1% up to 98,4%.

Currently Microsoft Kinect SDK also provide joint
detection method. The SDK also use random forest algorithm
to detect human joints and given joint position has been
converted to metric size. The Microsoft Kinect SDK also give
method to convert the joint position into many resolution that
supported by Microsoft Kinect..

III. SYSTEM OVERVIEW
All related works is done by using a camera with aspect

ratio of 4:3. To get a full picture of standing pose human body
with Microsoft Kinect we need to be at approximately 2 - 2.5
meters away from the camera. On our solution, we try to
minimize the range of object to camera by rotating the camera
to get aspect ratio of 3:4. By doing so, we could decrease the
range of detection to approximately 1.6 - 2.1 meters away
from the camera.

Our solution assumes that the camera position is static
and the object captured by camera is an unobstructed full body
of human. Our solution workflow is divided in four steps as
shown in Fig. 1. The output from our solution is a stickman
model consists of 21 joints. The joint structure is based on tree
data structure as shown in Fig. 2

Proceeding of International Conference on Electrical Engineering, Computer Science and Informatics (EECSI 2014), Yogyakarta, Indonesia, 20-21 August 2014

81

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Proceeding of the Electrical Engineering Computer Science and Informatics

https://core.ac.uk/display/296975586?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 1. Proposed solution workflow

Fig. 2. Resulting stickman model

3.1. Preprocessing

Preprocessing stage consists of two steps, which is
foreground detection and image clipping as shown in Fig. 3.
Foreground detection producing a background removed depth
image and image clipping producing clipped area to minimize
computation on the next stage.

Fig. 3. Preprocess stage flow

Foreground detection is a method to separate foreground
with the background from a given full image. (Hamissi &
Faez, 2013) implementation do the foreground segmentation
by finding the minimum object range on an image, and keep
the nearest object as foreground. On (MA, XU, & WANG,
2013) implementation, a foreground image of hand body part
is extracted with the help of Microsoft Kinect SDK. Palm
information is extracted from the SDK and is used as a
reference depth of the hand. On our solution, foreground
detection is done by comparing input image with a
background image model pixel by pixel. If a pixel has a
difference more than determined threshold, the pixel can be
considered as a foreground part, if not, the pixel can be
removed. On our solution, we use a static background model
to optimize the speed of the whole process. Example of
foreground detection is shown in Fig. 4.

F

Fig. 4. Foreground detection method

Image clipping is a method to take only some part of full
image. By taking only a partial image, the next stage
calculation could be optimized. On our solution, image
clipping is done by using a rectangular clip. The border of the
clip is determined from the foreground depth image border.
Example of image clipping is shown in Fig. 5.

Fig. 5. Image clipping result

3.2. Haar Cascade Face Detection

Face detection is a method to detect any faces from the
input image by using integral image. Haar cascade is one
popular method to do face detection task. Haar cascade detect
face by using Haar-like features. There are four types of Haar-

Proceeding of International Conference on Electrical Engineering, Computer Science and Informatics (EECSI 2014), Yogyakarta, Indonesia, 20-21 August 2014

82

like feature, which is edge feature, line feature, center-
surround feature, and special diagonal line feature. These
features are improved with 45˚ tilted feature from the original
feature. Illustration of Haar-like features is shown in Fig. 6.
The extracted feature from each figure is a value obtained by
subtracting sum of pixels under the white area with sum of
pixels under the black area.

Fig. 6. Haar-like features

The features then processed with machine learning
algorithm, usually by using AdaBoost. The training model
created from AdaBoost than use for classify input image.
Classification is done by using a scalable window. Then
feature is extracted from the window. If the extracted features
match with the training model, then we can classify the
window is a face region. The result from the face detection
classification is collection of windows containing the face
region. Fig. 7 shows result of the Haar cascade face detection.

Fig. 7. Haar cascade face detection result

3.3. Distance Transform

Distance transform is commonly used in computer vision
and pattern recognition. Our distance transform use
chessboard distance. Chessboard distance assigns distance
value of current pixel by counting minimum range from
current pixel to the nearest background pixel. Illustration of
chessboard distance is shown in Fig. 8.

Fig. 8. Chessboard distance example

After distance transform process is performed, we
perform pixel deletion with a simple rule by checking 8
neighboring pixels from every pixel that is not background. If
the current checked pixel has neighbor pixel with distance
value more than itself, the current checked pixel will be
deleted. After deletion, the remaining pixel is local maximum
pixel that located on the center of each body part. Our distance
transform result is shown in Fig. 9.

Fig. 9. Distance transform result

3.4. Anthropometry Analysis

We use anthropometric data to get general percentage
comparison of human body. The anthropometric data is
summarized from NASA Anthropometric Source Book
Volume 1: Anthropometry for Designers [5]. We split the
percentage comparison into 3 human body part, which is core
body, arm, and leg. The core body part is divided into 6 part,
which is head, neck, neck to bust, bust to stomach, stomach to
waist, and waist to hip. The arm part is divided into upper
arm, lower arm, and hand. The leg part is divided into thigh,
calf, and foot. The percentage of core body, arm, and leg part
is shown on Table 1. Illustration of each part is shown in Fig
10.

Proceeding of International Conference on Electrical Engineering, Computer Science and Informatics (EECSI 2014), Yogyakarta, Indonesia, 20-21 August 2014

83

Table 1. Body Part Percentage

Body Part Percentage

Core BodyPart

Head 25.19589894
Neck 7.942145734
Neck to Bust 16.61662395
Bust to Stomach 19.86085683
Stomach to Waist 19.37385573
Waist to Hip 11.01061882

Arm Part

Upper Arm 44.38514091
Lower Arm 31.44748079
Hand 24.16737831

Leg Part

Thigh 44.38557163
Calf 40.20786631
Foot 15.40656205

Fig. 10. Body measure

From the anthropometric analysis, we will develop the

stickman model. Our stickman model consists of 21 joints
from head to foot. The stickman model shown in Fig 10.With
the anthropometry percentage and face detection result, we
determine the position of all core body part. After that we
determine the joint location of head, neck, chest, spine, center
hip, left hip, right hip, left shoulder, and right shoulder.

In order to determine the thigh, calf, and foot joints, we
trace path from left and right hip to foot and create a prefix
sum list of path range. After that we calculate the range of
knee joint and ankle joint by calculating anthropometric
percentage of leg part with the total path range and determine
which pixel become the candidate of the knee, ankle, and foot
joint. We use the same method to calculate the arm joints but
is start from left and right shoulder joint.

.

IV. EXPERIMENTAL RESULT
Our experiment is done by using Intel Core I5 2.67 GHz

processor with 8 GB DDR3 RAM. The prototype is
implemented in C# by using Microsoft Kinect SDK to retrieve
RGB and depth Image and AForge.NET library. We test our
method solution with 480x640 image resolution. The average
running time of our solution shown in Table 2. Comparison of
our solution with (Jain & Subramanian, 2011), (Kar, 2010),
and the Microsoft Kinect SDK is shown in Table 3

Table 2. Running time per stage

Stage Avg. Time Min Time Max Time
Preprocess ~16.971 ms 8 ms 78 ms
Face Detection ~58.198 ms 20 ms 221 ms
Distance Transform ~108.375 ms 67 ms 180 ms
Anthropometric
Analysis ~0.125 ms 0 ms 8 ms

Total ~183.669 ms 95 ms 478 ms

Table 3. Comparison with other implementations

Aspect Our Solution (Kar, 2010) (Jain &
Subramanian, 2011)

Detected
Joint

21 joints 8 joints 8 joints

Avg. Time ~183.6 ms 103 ms 68 ms
Detected
body part

Whole body Upper
body

Upper body

Image
Resolution

480x640 640x480 320x240

Proceeding of International Conference on Electrical Engineering, Computer Science and Informatics (EECSI 2014), Yogyakarta, Indonesia, 20-21 August 2014

84

Fig. 11. Estimated joints overlay on RGB and depth image

REFERENCES

[1] Dedeoglu, Y. (2004). Moving Object Detection, Tracking and
Classification for Smart Video Surveillance. Ankara, Turkey: bilkent
university.

[2] Gritai, A., & Shah, M. (2006). Tracking of human body joints using
anthropometry . Int. Conf. of Multimedia and Expo. Florida: University
of Central Florida.

[3] Hamissi, M., & Faez, K. (2013). Real-Time Hand Gesture Recognition
Based on the Depth Map. International Journal of Electrical and
Computer Engineering, 2-4.

[4] Jain, H. P., & Subramanian, A. (2011). Real-time Upper-body Human
Pose Estimation using a Depth Camera. HP Laboratories.

[5] Kar, A. (2010). Skeletal Tracking using Microsoft Kinect. Kanpur:
Methodology.

[6] MA, B., XU, W., & WANG, S. (2013). A Robot Control System Based
on Gesture Recognition. TELKOMNIKA, Vol. 1, No. 5.

[7] NASA. (1978). Anthropometric Source Book Volume I: Anthropometry
for Designers. Springfield: NASA.

[8] Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore,
R., et al. (2011). Real-Time Human Pose Recognition in Parts from
Single Depth Images. IEEE Conference. Microsoft Research Cambridge
& Xbox Incubation.

Proceeding of International Conference on Electrical Engineering, Computer Science and Informatics (EECSI 2014), Yogyakarta, Indonesia, 20-21 August 2014

85

	I. Introduction
	II. Related Works
	III. System Overview
	IV. Experimental Result
	References

