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Abstract

The main objective of this work is to present a multitask, efficient and automatic approach to
estimate thresholds for a generalized Pareto distribution, aiming at high-performance prediction
of extremes in multiple precipitation time series. Based on Extreme Value Theory, the only infor-
mation used to model the heavy tail distribution by maximum likelihood estimation is given by
the samples of the time series exceeding a user-defined threshold. This approach suffers from two
fundamental drawbacks: (1) the subjectivity of the threshold definition, even when resorting to
some graphical guidance, (2) the inherent sparse nature of the above-threshold samples, which, by
definition, belong to the tail of the distribution. The proposal presented here for multitask learn-
ing automatically creates a hierarchical relationship among the prediction tasks and uses a nested
cross-validation to automatize the choice of the optimal thresholds. Given the obtained hierar-
chical relationship among the prediction tasks, the multitask learning explores data from multiple
related prediction tasks toward a more robust maximum likelihood estimation of the parameters
that characterize the generalized Pareto distribution. The proposed methodology was applied to
precipitation time series of South America and its performance was compared to a single-task
learning method and to the traditional graphical approach, indicating a consistent performance
improvement. Another advantage of the approach is the possibility of performing a qualitative
interpretation of the obtained hierarchical relationship among the tasks, when associated with the
geographical locations of the precipitation time series.

Keywords: Extreme Value Theory; Multitask Learning; Hierarchical Clustering; Automatic
Threshold Estimation in Pareto Distributions



Resumo

O principal objetivo deste trabalho é apresentar uma abordagem multitarefa, eficiente e automática
para estimar limiares de uma distribuição generalizada de Pareto, visando uma previsão de alto
desempenho de extremos em várias séries temporais de precipitação. Com base na teoria dos val-
ores extremos, as únicas informações usadas para modelar uma distribuição de cauda pesada por
estimação por máxima verossimilhança são fornecidas pelas amostras da série temporal que exce-
dem um limiar definido pelo usuário. Essa abordagem sofre de duas desvantagens fundamentais:
(1) a subjetividade na definição do limiar, mesmo quando se recorre a alguma orientação gráfica;
(2) a natureza esparsa inerente das amostras acima do limiar, que, por definição, pertecem à cauda
da distribuição. A proposta aqui apresentada para aprendizado multitarefa cria automaticamente
um relacionamento hierárquico entre as tarefas de predição e usa uma validação cruzada aninhada
para automatizar a escolha dos limiares mais indicados. Dada a relação hierárquica obtida entre
as tarefas de predição, o aprendizado multitarefa explora os dados de várias tarefas de predição
relacionadas para uma estimativa de máxima verossimilhança dos parâmetros que caracterizam a
distribuição generalizada de Pareto mais robusta. A metodologia proposta foi aplicada em séries
temporais de precipitação da América do Sul e sua performance foi comparada a um método de
aprendizado monotarefa e à abordagem gráfica tradicional, indicando uma melhoria consistente de
desempenho. Outra vantagem da abordagem é a possibilidade de realizar uma interpretação qua-
litativa da relação hierárquica obtida entre as tarefas, quando associada às localizações geográficas
das séries temporais de precipitação.

Palavras-chave: Teoria do Valor Extremo; Aprendizado Multitarefa; Clusterização Hierárquica;
Seleção Automática de Limiar em Distribuições de Pareto.
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Chapter 1

Introduction1

Extreme climate events, such as intense precipitation, extended droughts, and excessive increase
of temperature, are, by definition, rare and potentially of high impact (Seneviratne et al. , 2012).
Its occurrence tends to produce a wide range of consequences in fields such as economy (Hallegatte
et al. , 2007) and civil defense (Valverde, 2017). That is why more and more attention has been
devoted to investigating the statistical behavior and to properly forecasting these events (Chandra,
2017; Hu & Ayyub, 2019; Iglesias et al. , 2015; McGovern et al. , 2017), so that the damage and
impact that they may cause are prevented/attenuated.

Despite the high potential impact of extreme events, defining them is not an easy task. There
are two main methods defining extremes: (1) Generalized Extreme Value (GEV) (Fisher & Tip-
pett, 1928) consists in dividing the observation period into blocks and analyzing only the most
extreme value in each block; and (2) Peaks Over Threshold (POT) (Balkema & de Haan, 1974;
Pickands, 1975) uses the peaks above a certain threshold to fit a Pareto Distribution (Pareto,
1898). Selecting only the peaks of each block makes GEV simpler, but results in a low number
of samples, impairing the generalization performance of resultant fitted models. POT overcomes
the disadvantage of GEV since it makes better use of the available data. However, the selection
of an appropriate threshold is usually made by visual methods (Coles, 2001), which incorporates
errors and uncertainties (Thompson et al. , 2009). Additionally, these procedures require prior
experience while interpreting threshold choice plots to achieve a satisfactory model fit (Coles &
Tawn, 1994).

This subjective and expert-dependent approach to select the threshold motivates the proposi-
tion of automatic methods to select the threshold. Thompson et al. (2009) presented a method
that is based on the difference of the parameter estimates when the threshold is changed, and Fuku-
tome et al. (2015) adopted the automation of an existing graphical method to select the threshold
that will guide to a proper parameter choice, resorting to a measure of clustering in data. Here we
are going to present a more robust and data-intensive proposal based on the joint application of
multitask learning and extreme value theory to automatically estimate an appropriate threshold.
The use of this technique allows the analysis of multiple time series simultaneously without any
previous knowledge on the data or any additional parameter. Furthermore, the structural rela-
tionship involving multiple learning tasks can support a qualitative analysis of the joint behavior

1The content of this manuscript is essentially based on the content of the submitted paper Aguiar et al. (2019).
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of the prediction models. The main advantage of a multitask learning algorithm, especially when
focused on climate forecasting, is that it allows the information sharing of locations characterized
by similar climate events. With a more robust estimation of the threshold, an extreme event that
had already happened in some location may influence the prediction of an upcoming extreme in
another related location.

In the context of climate forecasting, multitask learning was already applied to predict extreme
events with distinguished performance gain when compared to single-task learning. As presented
in Chandra (2017), a co-evolutionary algorithm, which incorporates features from distinct models
and multitask learning (MTL), is used to predict tropical cyclone wind-intensity. Also related
to climate prediction, Gonçalves et al. (2015) presented a multitask learning-based method to
build high-performance Earth System Models (ESM), based on the joint learning of the structural
relationship among the tasks (each point in the Earth surface grid is taken as a distinct prediction
task) and of the parameters of the learning models.

In this work, a hierarchical multitask learning approach is proposed to automatically select a
threshold in Pareto distributions. The novel proposal automatically conceives a hierarchical struc-
tural model involving the prediction of all tasks and uses a nested cross-validation to automatize
the choice of the optimal thresholds. This method aims at improving the performance of each
task by taking into account the data from other related prediction tasks; the clustering procedure
finds similar tasks to construct the hierarchical structure and to suggest which tasks should be
held together to improve generalization performance. This method is tested with precipitation
time series, aiming at predicting extreme events, taking as contenders the equivalent single-task
learning procedure and the traditional graphical approach.

The next chapters are organized as follows. Chapter 2 presents an overview of the theoretical
basis of Extreme Value Theory, Cross-Validation, Multitask Learning and Hierarchical Clustering,
focusing on key aspects to better understand the proposed method. Chapter 3 introduces the
proposed automatic method to threshold selection in Pareto distributions. Chapter 4 describes the
experimental setup and discusses the results of two experiments on real-world datasets. Chapter
5 presents final considerations and future perspectives of the research.
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Chapter 2

Conceptual background

This chapter will present the main technical concepts used throughout this work. Initially, basic
aspects of the Extreme Value Theory and the main approaches usually applied to model the tail of
a distribution will be explained in Section 2.1. Next, a machine learning technique, called Cross-
Validation, generally applied to evaluate the inherent quality of a learning model is presented in
Section 2.2. A literature overview of Multitask Learning, an approach that exploits commonalities
across tasks to improve efficiency and prediction accuracy of learning models, is presented in
Section 2.3. Finally, the hierarchical clustering model adopted in the proposed methodology to be
presented in Chapter 3 is formally described in Section 2.4.

2.1 Extreme Value Theory
The Extreme Value Theory (EVT) was created as a branch of Statistics that aims to estimate

extreme events and its impacts in diverse fields, such as financial market, insurance coverage and
climate forecasting.

When forecasting extreme events, the focus is in modeling the events of the tail of a distribution,
i.e., those that have low probability and high impact. However, tail events data are rare, which
justifies the necessity to derive asymptotic properties of the tail, by analogies to the Central Limit
Theorem.

In this context, two main approaches are usually applied: Generalized Extreme Value (GEV),
which uses the Block Maxima, that consists in dividing the observation period into blocks and
analyzes only the most extreme value in each block; and Peaks Over Threshold (POT), which uses
the exceedances above a threshold to fit a Pareto Distribution.

The second approach is generally taken as an alternative to the first one, since the main
disadvantage of GEV takes place in the presence of few data in a series and/or when series have
many missing values.

When the distribution is fitted, it is possible to find the return levels and their periods, which
are important to the forecast of extreme events. As illustrated in Figure 1, a high-quality model for
a given time series (black) is the starting point to achieve a competent estimation of the subsequent
values of this time series (blue). The estimated values, 𝑥̂𝑡, are the return levels, that will be further
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explained. More details of these approaches are given in Sections 2.1.2 and 2.1.3.

Figure 1: Time series with estimation in blue.

2.1.1 Brief historical context
One of the first investigations devoted to the statistics of extremes was conducted by Bernoulli

and in 1709 he answered the following open question: "if 𝑛 men of equal age die within 𝑡 years,
what is the mean duration of life of the last survivor?". This question can be reduced to "𝑛 points
are randomly situated in a straight line of size 𝑡, what is the largest mean distance to origin?".

Extreme values are necessarily associated with small probabilities. Therefore, the Poisson law
must be mentioned, since it considers these probabilities. For 60 years, the Poisson distribution was
nothing but a mathematical curiosity, until Von Bortkiewicz (1898) demonstrated its statistical
meaning and its relevance to explain natural events. In the next year, R. Von Mises introduced the
fundamental notion of the highest characteristic value and indicated its asymptotic relation with
the mean of the greatest normal values. In 1925, L. H. C. Tippett calculated the probabilities of
the greatest normal values for sizes of different samples until 1000 and the mean normal interval
for samples from 2 until 1000.

In 1990, trying to solve an estimation problem of dikes height, after a flood in Netherlands that
killed almost two thousand people in 1953, de Haan (1990) formulated a statistical methodology
that was the basis for extreme event analysis.

2.1.2 Generalized Extreme Value
Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be a sequence of independent and identically distributed random variables

with a common distribution function 𝐹 . For 𝑚 = 1, 2, . . . and 𝑖 = 1, 2, . . . , 𝑘 the Block Maxima is
defined as:

𝑀𝑖 = max
(𝑖−1)𝑚<𝑗≤𝑖𝑚

𝑋𝑗 (2.1)
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The 𝑚 × 𝑘 observations are divided into 𝑘 blocks of size 𝑚. The distribution function of the
maximum 𝑀𝑘 can be described as:

𝑃 (𝑀𝑘 ≤ 𝑥) = 𝑃 (𝑋1 ≤ 𝑥, . . . , 𝑋𝑘 ≤ 𝑥) = 𝐹 𝑘(𝑥), 𝑥 ∈ R, 𝑘 ∈ N (2.2)
The problem is that such distribution depends on the distribution of the underlying random

variables, which is not known in practice. Thus, having access to a proper cumulative asymptotic
distribution for a high value of 𝑛, would help in modeling extreme events. For a block maxima, the
cumulative asymptotic distribution exists and it is described by the Theorem of Fisher & Tippett
(1928).

Theorem 1 (Fisher-Tippett theorem, Extreme Value theorem). Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be a sequence
of independent and identically distributed random variables. If there are norming constants 𝑐𝑛 > 0,
𝑑𝑛 ∈ R and a non-degenerated distribution function 𝐻 such as

𝑐−1
𝑛 (𝑀𝑛 − 𝑑𝑛) d−→ 𝐻, (2.3)

in which d−→ means convergence in distribution, then 𝐻 belongs to one of the following three dis-
tribution functions:

Fréchet:

Φ𝛼(𝑥) =
⎧⎨⎩0, 𝑥 ≤ 0;

exp{−𝑥−𝛼}, 𝑥 > 0
𝛼 > 0. (2.4)

Weibull:

Ψ𝛼(𝑥) =
⎧⎨⎩exp{−(−𝑥)𝛼}, 𝑥 ≤ 0;

1, 𝑥 > 0
𝛼 > 0. (2.5)

Gumbell:
Λ(𝑥) = exp{−𝑒−𝑥}, 𝑥 ∈ R. (2.6)

Proof: See Fisher & Tippett (1928).

Consequently, the generalized distribution is described by the following equation:

𝐻𝜉,𝜇,𝜓 =

⎧⎪⎨⎪⎩exp
{︁

−
(︁
1 + 𝜉 𝑥−𝜇

𝜓

)︁ −1
𝜉

}︁
, 1 + 𝜉 𝑥−𝜇

𝜓
> 0 , 𝜉 ̸= 0;

exp
{︁

− exp
(︁

− 𝑥−𝜇
𝜓

)︁}︁
, 𝜉 = 0

(2.7)

in which 𝜉 is called shape parameter, 𝜇 location parameter and 𝜓 scale parameter. The set
𝜃 = (𝜉, 𝜇, 𝜓) can be called the set of model parameters.
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For 𝜉 > 0, the distribution is called heavy-tailed with polynomial decay and infinity right
endpoint (Fréchet); for 𝜉 = 0, it is called exponential (Gumbell); and for 𝜉 < 0, it is called light-
tailed with finite right endpoint (Weibull). Figure 2 illustrates how the process of fitting values of
a distribution tail works for GEV distributions.

(a) Time series of monthly values with annual
block size.

(b) GEV distribution with different 𝜉 (shp)
values. The parameters 𝜓 (scl) and 𝜇 (ctr) are
1 and 0, respectively. Extracted from NCAR
(2019).

Figure 2: (a)The blue dots in the time series are selected by the Block Maxima approach and
represent the tail of the distribution. (b)Then, the blue dots are modeled in a GEV distribution
that can be Fréchet, Gumbell or Weibull.

Maximum Likelihood Estimation

Intuitively, the maximum likelihood method selects parameters that makes the observed data
more likely.

Equation 2.7 corresponds to the standard parametric case of statistical inference and, therefore,
can be solved by maximum likelihood. Suppose that the generalized distribution function 𝐻𝜃 has
density function ℎ𝜃:

ℎ𝜃(𝑥) = 1
𝜎

[︁
1 + 𝜉

(︁𝑥− 𝜇

𝜎

)︁]︁(− 1
𝜉

−1)
exp

{︁
−

[︁
1 + 𝜉

(︁𝑥− 𝜇

𝜎

)︁]︁− 1
𝜉
}︁
,

for 1 + 𝜉
(︁
𝑥−𝜇
𝜎

)︁
> 0. The likelihood function, then, based on data 𝑋 = (𝑋1, . . . , 𝑋𝑁), is given by

𝐿(𝜃;𝑋) =
𝑁∏︁
𝑖=1

ℎ𝜃(𝑋𝑖).
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Let ℓ(𝜃;𝑋) = ln𝐿(𝜃;𝑋) be the log-likelihood function, in which:

ℓ(𝜃;𝑋) = −𝑁 ln 𝜎 −
𝑁∑︁
𝑖=1

[︁
1 + 𝜉

(︁𝑋𝑖 − 𝜇

𝜎

)︁]︁− 1
𝜉 −

(︁1
𝜉

+ 1
)︁ 𝑁∑︁
𝑖=1

ln
[︁
1 + 𝜉

(︁𝑋𝑖 − 𝜇

𝜎

)︁]︁
(2.8)

The maximum likelihood estimator for 𝜃 is:

𝜃𝑁 = arg max
𝜃∈Θ

ℓ(𝜃;𝑋) (2.9)

The numerical calculation of the maximum likelihood estimator, 𝜃𝑁 , for 𝐻𝜃 no longer represents
a challenge since the existence of a FORTRAN algorithm published by Hosking (1985) and further
investigated by Macleod (1989).

Return Level

The return level is the maximum amplitude, on average, after every 𝑡 observations. For a GEV
distribution, it is described by

𝑧𝑡 =
⎧⎨⎩𝜇̂+ 𝜎̂

𝜉
[(− ln (1 − 𝑡))−𝜉 − 1], 𝜉 ̸= 0

𝜇̂+ 𝜎̂[ln (1 − 𝑡)], 𝜉 = 0
, (2.10)

in which 𝜎̂, 𝜉 and 𝜇̂ are the parameters estimated by the maximum likelihood method.

2.1.3 Peaks Over Threshold
The Pareto (1898) distribution is one of the heavy-tailed distributions. So its generalization

can be used to model extreme events.
The Generalized Pareto Distribution (GPD) can be defined by:

𝐺𝜉,𝜎(𝑥) =
⎧⎨⎩1 − (1 + 𝜉𝑥

𝜎
)− 1

𝜉 , 𝜉 ̸= 0,
1 − 𝑒

−𝑥
𝜎 , 𝜉 = 0;

(2.11)

in which ⎧⎨⎩𝑥 ≥ 0, 𝜉 ≥ 0,
0 ≤ 𝑥 ≤ −𝜎

𝜉
, 𝜉 < 0;

(2.12)

for 𝜎 > 0 and 𝜉 ∈ R.
Let 𝑋 be a random variable and a threshold 𝑢. Then, the random variable 𝑋 − 𝑢 is the excess

values and its distribution function, denoted by 𝐹𝑢, can be calculated by:

𝐹𝑢 = 𝑃 (𝑋 − 𝑢 ≤ 𝑥|𝑋 > 𝑢) = 𝑃 (𝑋 − 𝑢 ≤ 𝑥 ∧𝑋 > 𝑢)
𝑃 (𝑋 > 𝑢) = 𝐹 (𝑥+ 𝑢) − 𝐹 (𝑢)

1 − 𝐹 (𝑢) (2.13)

It follows that 𝐹𝑢 can be approximated by a GPD:
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Theorem 2 (Balkema & de Haan (1974); Pickands (1975)). For a class of distributions, an
appropriate positive function 𝜎(𝑢) can be found such that:

lim sup
𝑢→𝑥𝐹 , 0≤ 𝑥 <𝑥𝐹 −𝑢

|𝐹𝑢(𝑥) −𝐺𝜉,𝜎(𝑥)|= 0

The class of distributions for which this theorem is valid includes most of standard distributions,
i.e., Normal, Log-normal, Beta, Exponential, Uniform, etc.

Based on this result, for a large value of 𝑢, the following approximation is possible:

𝐹𝑢(𝑥) ≈ 𝐺𝜉,𝜎(𝑥) (2.14)
Thus, the GPD can be used to model distribution tails for data that exceed a threshold, as

shown in Figure 3.

(a) Time series with exceedances above thresh-
old 𝑢 = 220 in blue.

(b) GPD distribution with different values of
𝜉, 𝜎. Extracted from Wikipedia (2019).

Figure 3: (a) The blue dots in the time series are selected by the Peaks Over Threshold approach
and represent the tail of the distribution. (b)The blue dots are modeled in a GPD distribution.

Maximum Likelihood Estimation

Assuming 𝐹 is GPD with parameters 𝜉, 𝜎, so that the density function is

𝑓𝜉,𝜎(𝑥) = 1
𝜎

(︁
1 + 𝜉

𝑥

𝜎

)︁− 1
𝜉

−1

Using the likelihood function, based on data 𝑋 = (𝑋1, . . . , 𝑋𝑁),

𝐿((𝜉, 𝜎);𝑋) =
𝑁∏︁
𝑖=1

𝑓𝜉,𝜎(𝑋𝑖) (2.15)
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Then, the log-likelihood function is

ℓ((𝜉, 𝜎);𝑋) = −𝑁 ln 𝜎 −
(︁1
𝜉

+ 1
)︁ 𝑁∑︁
𝑖=1

ln
(︁
1 + 𝜉

𝜎
𝑋𝑖

)︁
(2.16)

Thus, likelihood equations can be derived and solved numerically, obtaining the estimated
parameters 𝜉, 𝜎̂.

Return Level

The return level is the maximum amplitude, on average, after every 𝑡 observations. For a
Pareto distribution, it is described as

𝑧𝑡 =
⎧⎨⎩𝑢+ 𝜎̂

𝜉
[(𝑡𝜆̂𝑢)𝜉 − 1], 𝜉 ̸= 0

𝑢+ 𝜎̂(𝑡𝜆̂𝑢), 𝜉 = 0
, (2.17)

in which 𝑢 is the chosen threshold, 𝜎̂ and 𝜉 are the scale and shape parameters, respectively, 𝑡 is
the number of observations and 𝜆̂𝑢 is the rate of observations above the threshold.

2.1.4 Graphical Approaches to Threshold Selection
Hill Estimator

The 𝜉 parameter, also known as tail index, is determinant when inferring rare events, such
as, the estimation of a high quantile non-usual (in finance, Value at Risk) or the dual problem of
estimating the probability of exceeding a high value.

The Hill (1975) estimator is given by:

𝛼̂𝑘 = 1
𝜉𝑘

=
(︁1
𝑘

𝑘∑︁
𝑗=1

ln𝑋𝑗 − ln𝑋𝑘

)︁−1
(2.18)

with 𝑋1, . . . , 𝑋𝑛 independent and identically distributed. It is important to notice that the esti-
mator depends on the 𝑘-th upper order statistics, in which 𝑘 → ∞, 𝑘/𝑛 → 0 with 𝑛 → ∞.

In this scenario, the upper order statistics are samples from the time series sorted in descending
order.

The crucial aspect in using Hill estimator is the choice of 𝑘, that is directly connected to
the threshold 𝑢. A value of 𝑢 too high results in too few exceedances and, consequently, high
variance estimators. For 𝑢 too small, estimators become biased. To determine the value of 𝑘 to be
considered, it is advised to plot (𝑘, 𝜉𝑘) and find a plateau region. This region is identified as the
one with the values of 𝜉𝑘 closer to the original value 𝜉.

In Figure 4, it is exhibited the Hill plot of Fort Collins (Colorado, USA) precipitation time series.
Data were provided by the R package "extRemes" Gilleland (n.d.). In this plot, an adequate choice
of threshold is in the region delimited by the 774 and the 873 order statistics. It is also worth
mentioning that the two red lines are the confidence interval with 𝑝 = 0.95.
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Figure 4: Hill plot of Fort Collins precipitation data.

Mean Excess Plot

Definition 1 (Mean excess function). Let 𝑋 be a random variable with right endpoint 𝑥𝐹 , then

𝑒(𝑢) = 𝐸(𝑋 − 𝑢|𝑋 > 𝑢), 0 ≤ 𝑢 ≤ 𝑥𝐹 (2.19)

is called mean excess function of 𝑋.

In the previous definition, the right endpoint concept was applied. Therefore,

𝑥𝐹 = 𝑠𝑢𝑝{𝑥 ∈ R : 𝐹 (𝑥) < 1}.

being 𝐹 the distribution function.
The mean excess function exerts an important role due to the fact that, for variable 𝑢, it is

linear in the GPD case.

𝑒(𝑢) = 𝜎 + 𝜉𝑢

1 − 𝜉
(2.20)

It is possible to verify in what region the mean excess function is linear for 𝑢, by calculating it
for different values of threshold 𝑢 and plotting the results. In this region, then, the approximation
2.14 is considered to be reasonable.

To find an optimal threshold 𝑢, in Figure 5b, a linear region must be searched and the starting
point of the linear part represents the optimal threshold. In this case, the chosen threshold is
𝑢 = 0.395, highlighted by the red horizontal line.
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(a) Mean Excess plot for Fort Collins precipita-
tion data.

(b) Mean Excess plot pruned with threshold
𝑢 = 0.395 highlighted.

Figure 5: Example of mean excess plot.

2.1.5 Applications
Extreme Value Theory has been widely applied in countless fields to assess risk and predict the

probabilities of extreme events. Here, a focus on applications of EVT in climate areas is provided.
EVT was employed to describe maximum monthly distributions of heavy precipitation in a

certain location in Towler et al. (2010). The model presented also considered that there is non-
stationarity, i.e., no concurrent information that indicates climate change needed to be used. With
the statistics provided by the EVT application, it was possible to reconstruct flow quantiles and
to project it to the year 2100. The paper also extended the analysis to changes in the quality of
the water. Results show that, in the case study location, it will be an increase in the variability
and magnitude of streamflow extremes and an increase in risk of turbidity exceedance was also
quantified.

Another application of EVT was made by Cooley (2009), which produced a commentary of
another paper about how slowly changing climate could affect the frequency of extreme events.
The main objective was to discuss the advantages of an EVT approach and review techniques that
were already used to describe the impact of climate changes in extreme phenomena. An analysis of
temperatures of central England was also done, comparing a time-varying model with a stationary
one.

In Naveau et al. (2005), three case studies were presented to show that EVT can provide a
solid foundation when considering the uncertainty associated with extreme events. One of these
studies focused on characterizing magnitudes of large volcanic eruptions, and it is shown that the
effects of volcanic activity in climate should be modeled by a heavy-tailed distribution.
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2.2 Model selection in machine learning
For each chosen 𝑢 we can generate a model fitted using Maximum Likelihood Estimation. When

the training phase ends, it is necessary to check the accuracy of the model when predictions are
made. This process encompasses evaluating the quality of the model and selecting the one that
performs the best in unseen data, thus exhibiting maximal generalization capability (Bishop, 2006;
Hastie et al. , 2001).

When testing the effectiveness of the model, we look for a method that uses data in the best
possible way when training and also assessing the performance. Two types of validation are the
most common: holdout and 𝑘-fold cross-validation — the first consists of splitting the dataset into
two sets: training and test. The training set is used to fit the model, and the test set is used to
see how well the model performs on unseen data.

The second randomly splits the dataset into 𝑘 different folds. One of the folds is used as the
test set, and the rest is used as a training set. The model is trained on 𝑘 − 1 folds and tested on
the test fold. The process is repeated until each fold was used once as the test set. Usually, the
𝑘-fold method results in a less biased model, since every sample appears in the training and test
set at least once. The disadvantage here is the necessity of determining 𝑘 and the existence of 𝑘
learning models at the end. With 𝑘 = 𝑁 , in which 𝑁 is the number of samples, the estimator is
approximately unbiased for the expected prediction error, but can have high variance due to the
𝑁 training sets being similar to each other. On the other hand, with 𝑘 = 5 or 𝑘 = 10, common
values found in literature, the variance is lower, but bias can be a problem, depending on how the
performance of the method differs with the size of the training set. Overall, the last proposal is
recommended as a good compromise (Breiman & Spector, 1992; Kohavi, 1995). Figure 6 presents
a graphical representation of the partition policy of the two types of validation.

Figure 6: Comparison of the data preprocessing promoted by holdout and 𝑘-fold cross-validation.

In Nested Cross-Validation (Bergmeir & Benítez, 2012), an outer loop will train each time
window with optimal parameters and then average each window’s test error. An inner loop will
tune hyperparameters by training a subset and validating it. Two main methods are applied in
nested CV: predict second half and day forward-chaining (Bergmeir & Benítez, 2012). In the first
type, the first half of the data, which is split temporally, is assigned to the training set, while
the latter half is the test set. The validation set size depends on the problem. However, it is
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always chronologically subsequent to the training set. The second type is based on rolling-origin-
recalibration and each day is considered as the test set and all previous data is assigned to the
training set. This method will be the main basis for the proposed method of Chapter 3.

2.2.1 Applications
In Kohavi (1995), a review of accuracy estimation methods and a comparison of the two most

common ones — bootstrap and cross-validation — is given. A large-scale experiment — over half a
million runs of C4.5 and a Naive-Bayes algorithm — is executed to estimate the effects of different
parameters on these algorithms on real-world datasets. The results obtained indicate that for
real-world datasets that are similar to the ones used, the best method to use for model selection
is 10-fold stratified cross-validation.

Cross-validation for model selection can be applied in multiple areas. For example, in Sharma
et al. (2017), the performance of several machine learning classifiers was assessed for the discrim-
ination between the vegetation physiognomic classes, using the satellite-based time-series of the
surface reflectance data. A set of machine learning experiments comprised of some supervised clas-
sifiers with different model parameters were conducted to assess how the discrimination of these
classes varies with classifiers, input features, and ground truth data size. The performance of each
experiment was evaluated using 10-fold cross-validation.

2.3 Multitask Learning

2.3.1 Single-Task Learning vs Multitask Learning
When facing a set of learning tasks, for example, predicting the forecast of distinct locations,

the usual procedure is to learn each task individually, recombining the solution after this step.
This reductionist approach ignores the fact that, given multiple learning tasks, a subset of those
tasks may act as valuable sources of knowledge for each one of those tasks, so that the exploration
of the relationship among multiple tasks may benefit performance. Consequently, that mechanism
generates a faster and more precise learning process (Caruana, 1993).

In conclusion, this is the main difference between the two learning processes in machine learning:
single-task and multitask. While the first is focused on learning each task in specific, using for that
only data that is related to that task; the second integrates the knowledge of all tasks. Moreover,
that integration act as a parallel of how human knowledge works. For example, if a child is taught
to run, to jump, to walk, to estimate trajectories and to recognize objects, she/he probably easily
learn how to play soccer. As much as these tasks are not the same in different contexts (run in
soccer and run in a cinder track) some similarities allow the transference of knowledge or ability.

Thus, an MTL approach will use information contained in train signals of related tasks as
inductive knowledge that will benefit multiple tasks. Two components are essential to multitask
learning: the information shared and the relationship among tasks.
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Stein’s Paradox

A result that validates the principle that joint learning of related tasks can leverage performance
when compared to learning each task individually is Stein’s Paradox (Stein, 1956). This paradox
states that, when three or more parameters are estimated simultaneously, there are estimators
that, when combined, produce more accuracy, on average, than any other method that estimates
these parameters separately.

Formally, let 𝜃 be a vector with 𝑛 ≥ 3 unknown parameters. To estimate these parameters,
let 𝑋𝑖 be the measure for each parameter 𝜃𝑖, resulting in a vector 𝑋 of size 𝑛. Suppose that
𝑋 ∼ N(𝜃, 1) is a more intuitive way to estimate its corresponding parameters, that is,

ℒ𝜃(𝜃) = E{‖ 𝜃 − 𝜃 ‖2} =
∫︁

(𝜃(𝑥) − 𝜃)2𝑝(𝑥|𝜃)𝑑𝑥. (2.21)

In other words, the risk function measures the expected value of the estimation error. An
estimator 𝜃 is admissible if there is no other estimator 𝜃 with smaller risk. Stein proved that 𝜃 is
admissible for 𝑛 ≤ 2, but inadmissible for 𝑛 ≥ 3.

Spite of Stein’s Paradox is considered as a premise for the hypothesis of multitask learning,
since it works with unrelated random variables. The difference between the two approaches is also
in the fact that MTL estimates the parameters of a certain task with unknown distribution, while
in Stein’s Paradox the variables follow a normal distribution.

2.3.2 Formulation
In machine learning, it is usual to minimize the empirical error:

min
Θ

ℒ(Θ) (2.22)

such that Θ is the set of estimated parameters for the training samples, and ℒ(Θ) is the empirical
cost in the training set, that measures the performance of the learning task in the training set.

Given a set 𝑆 of 𝑛 tasks, 𝑆 = 𝑆1, . . . , 𝑆𝑛, the 𝑘-th training dataset is given by (𝑥𝑘𝑗 , 𝑦𝑘𝑗 )
𝑁𝑘
𝑗=1, where

𝑥𝑗 ∈ R𝑑 is the input data and 𝑦𝑗 ∈ R is the corresponding output, when a regression problem is
solved, or 𝑦𝑘𝑗 ∈ {0, 1}, when it is a binary classification problem. Consequently, the goal is to learn
𝑛 parameter vectors 𝜃1, . . . , 𝜃𝑛 given that f (𝑥𝑗, 𝜃𝑘) ≈ 𝑦𝑘, 𝑘 = 1, . . . , 𝑛; 𝑗 = 1, . . . , 𝑁𝑘. Hence, the
MTL cost function can be represented as follows:

ℒ(Θ) =
𝑛∑︁
𝑘=1

E(𝑋𝑘,𝑦𝑘)∼𝑝[ℓ(f (𝜃𝑘, 𝑋𝑘), 𝑦𝑘)] =
𝑛∑︁
𝑘=1

∫︁
𝒳 ×𝒴

ℓ(f (𝑥𝑘, 𝜃𝑘), 𝑦𝑘)𝑑𝑝(𝑥𝑘, 𝑦𝑘) (2.23)

In practice, the distribution 𝑝 is unknown and only a finite number of i.i.d samples, 𝑁𝑘, is
available. Hence, the total empirical cost can be described as

ℒ̂(Θ) =
𝑛∑︁
𝑘=1

1
𝑁𝑘

𝑁𝑘∑︁
𝑗=1

ℓ(f (𝑥𝑘𝑗 , 𝜃𝑘), 𝑦𝑘𝑗 ) (2.24)

in which the loss function ℒ̂(Θ) is generalized to aggregate the prediction cost of 𝑛 tasks and Θ is
a matrix containing 𝑛 columns, being 𝜃𝑘 the 𝑘-the column of Θ.
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2.3.3 Models of relationship among tasks
Capturing the structural relationship among tasks is a crucial step in multitask learning. As

pointed in Caruana (1997), it is fundamental that information is shared only among related tasks.
Notice that the task relationship impacts directly in the performance and, therefore, can cause
negative transfer when unrelated tasks share information.

All tasks are related

In some models, it is assumed that all tasks are related and only the information that is shared
among them is controlled. In this case, the matrix Θ is responsible for the sharing pattern.

One of the first approaches proposed was the one described in Caruana (1993), in which the
relationship among tasks is defined in hidden units of a neural network and each task corresponds
to an output in the output layer. In Evgeniou & Pontil (2004), the existence of a reference vector
that is shared among tasks is explored, so that the regularization penalty is imposed to force
the parameter vector of each task toward this reference vector. Next, Argyriou et al. (2006)
suggest an approach that assumes that all tasks share a common set of features, so that a group
sparsity penalty is imposed to the parameter vectors of the tasks. In Ji & Ye (2009), a trace norm
minimization is incorporated to bias the optimization of the parameter vectors.

Nevertheless, these approaches do not consider the presence of outliers, since they consider
that all tasks are related to each other or that tasks share a common structure. Aiming at a
more flexible structural relationship among the tasks, Chen et al. (2011) proposed a robust MTL
formulation, which decomposes the parameter vectors in two components: the first identifies the
relationship among tasks using a low rank structure and the second identifies outlier tasks using
a sparse grouping structure. On the other hand, in Gong et al. (2012) the parameter vectors are
decomposed differently: one component capture common features in relevant tasks and the other
identifies outlier tasks.

Tasks are related in cluster structures

Here it is presumed that not all tasks are related, although it is assumed that this relationship
occurs in groups or clusters. Thus, the information is shared only among tasks that belong to the
same group.

Initially, in Thrun & O’Sullivan (1996), a methodology was proposed to learn clusters of tasks
using a pairwise relationship: distances are measures based on how well a task is fitted when
using other task’s model. In Xue et al. (2007), the approach consists in automatically identifying
task structure without previously knowing the number of clusters, in which task similarity are
learned based on a Dirichlet process. In Jacob et al. (2008), a convex formulation was presented,
considering that the task group is not known a priori and the task’s parameters in the same cluster
are restrict to be similar.

The disadvantage of using an approach that treats structural relationship among tasks as
clusters is that tasks in the same cluster are limited to have similar parameter vectors, which may
not hold in all cases. Thus, a method that considers a graph structure characterized by weighted
edges indicating how strongly tasks are related and how densely graphs are connected, may be more
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attractive. In Zhou et al. (2011), a Laplacian regularization was brought to the MTL context,
using a graph structural model. A limiting factor of these methods is that these models consider
previous knowledge of the graph structure, information that is not always available.

To solve this limitation, some proposals were accomplished to learn the graph structure directly
from data, along with the parameter vectors.

Task relationship is explicitly learned

Some proposals suggest that the dependency among tasks be incorporated in the learning
process. Most of them is based on hierarchical Bayesian models, supposing some distribution in
the task parameter matrix, Θ, that discovers information about task relationship.

In Zhang & Yeung (2010), task relationship is modelled by the covariance matrix of the tasks,
so that its inverse is used in the task parameters learning phase. As a result, the inverse matrix
must be calculated at each iteration.

In Widmer et al. (2010), tasks are leaf nodes in a hierarchical structure described by a tree
and, thereby, two approaches were proposed to explore such hierarchy. In one of them, a top-down
approach is applied to learn individually parameter vectors for all the nodes, in which each node
is composed of the union of the data of tasks below in the hierarchy and a regularization penalty
is imposed, imposing that the parameter vector of a node be similar to the parameter vector of its
father node. In the other, all parameter vectors are simultaneously learned and the regularization
penalty is imposed to the parameter vectors by a proximity measure derived from the hierarchy.

2.3.4 Applications
Multitask learning has given important contributions to multiple research areas. In this context,

some climate applications of multitask learning are provided.
A co-evolutionary multitask learning algorithm is presented in Chandra (2017) to dynamic

predict the wind intensity during the occurrence of a tropical cyclone as soon as the event takes
place. In the algorithm proposed, each point is the cyclone data every six hours and works as a sub-
task. Therefore, when more points of data are given, more predictions can be made which makes the
model dynamic and robust. When compared to conventional alternatives and single-task learning
(evolutionary algorithm and cooperative neuro-evolution algorithm), significant performance gain
occurred.

The problem of climate variables prediction considering global climate model outputs is treated
by Gonçalves et al. (2015) as part of the performance evaluation of their MTL framework. Each
geographical location is considered a task and their relations are encoded in a sparse graph. The
graph structure is jointly learned with the task parameter vectors. It is important to notice that
their framework is capable of discovering relations between tasks without using the geographical
coordinates as input information. Results confirmed the better performance of the proposed ap-
proach against baseline methods and also shown that correlations among locations were correctly
captured by the graph.

A multitask neural network (MTNN) was applied in a deep learning approach to predict heat-
waves from longitudinal time series of climate factors in Iglesias et al. (2015). The MTNN
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framework is a series of fully connected hidden layers, where the activations at a determined layer
are a function of the previous layer. Experiments were conducted with a time series of 18 variables
related to climate, such as temperature, atmospheric conditions, and solar radiation. Heatwaves
were defined as the monthly maximum temperature exceeding the five-year return level for that
month. For each location, four outputs were provided: (1) the next month’s maximum temper-
ature; (2) the last six month’s future maximum temperature over the next five years; (3) the
presence of a heatwave next month; (4) the presence of a heatwave in the last month over the next
five years.

2.4 Hierarchical Clustering
Unsupervised learning has multiple techniques to model relationships among objects without

depending on labeled data. As discussed in Section 2.3.3, unsupervised learning steps can be
incorporated into the MTL context, by clustering similar tasks and sharing information only among
cluster members.

When dealing with the task of assembling objects, clustering is a technique that groups similar
data points so that points in the same group are more related to each other than points in other
groups. Several methods have been proposed in the clustering literature, and they can be classified
as hierarchical or partitional algorithms (Jain et al. , 1999).

Hierarchical approaches can be classified in two categories: agglomerative (bottom-up) and
divisive (top-down). In the agglomerative approach, each object starts in its own cluster and an
agglomerative strategy is recursively applied, creating larger clusters up in the hierarchy until all
objects are in the same cluster or the given number of clusters is reached. On the other hand, in a
divisive approach, all objects start in the same cluster and a divisive strategy is applied recursively,
creating smaller clusters until each object is in its own cluster or a given number of levels is reached.

2.4.1 Agglomerative Hierarchical Clustering
Agglomerative Hierarchical Clustering can be formally described as: let 𝑆 = {𝑥𝑖}𝑁𝑖=1 be the set

of 𝑁 objects, where each of them is composed of 𝑠 features. The goal is to establish the objects
in a binary tree structure 𝑇 , such that leaf nodes represent the objects of 𝑆, and internal nodes
represent clusters of leaves directly below in the hierarchy. Initially, objects are assigned to its
cluster 𝑇𝑖, and pairs of clusters (𝑇𝑗, 𝑇𝑘) are recursively merged using a similarity method. Each
merged cluster creates a new internal node, 𝑇𝑚.

Hierarchical clustering methods differ by the distance metric and the linkage criterion Berkhin
(2006), and the choice of an adequate metric will influence the shape of clusters. Before starting
the clustering process, it is necessary to determine the proximity matrix that contains the distance
between each point using a distance metric. There are three main measures: single linkage, average
linkage, and complete linkage.

• Single linkage: uses the smallest distance between clusters;

• Average Linkage: the algorithm uses the average distance between the clusters;
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• Complete linkage: the algorithm merges each pair of clusters to minimize the maximum
distance between them.

For the distance criterion, the most commonly used are Euclidean, Manhattan, and Maximum.
Given that, we explored traditional (HC) and non-traditional (NHC) hierarchical clustering.

Given a distance metric 𝑑(𝑇𝑗, 𝑇𝑘) that states distance between clusters 𝑇𝑗 and 𝑇𝑘, and given the
clusters {𝑇 𝑙1, . . . , 𝑇 𝑙𝑛𝑙} in level 𝑙 of the tree: traditional clustering chooses the pair of clusters 𝑇 𝑙𝑗
and 𝑇 𝑙𝑘 with lower distance 𝑑(𝑇 𝑙𝑗 , 𝑇 𝑙𝑘) to be part of the next level 𝑙 + 1, the clusters 𝑇 𝑙𝑗 and 𝑇 𝑙𝑘 are
removed and all other are preserved; the non-traditional clustering chooses the pair of clusters
𝑇 𝑙𝑗 and 𝑇 𝑙𝑘 with lower distance 𝑑(𝑇 𝑙𝑗 , 𝑇 𝑙𝑘) to be part of the next level 𝑙 + 1, after that, it iteratively
find another pair of clusters (with the lowest distance) among the clusters not yet selected; this
method removes all previous clusters, except when there is an even number of clusters. The cluster
left out remains to the next level.

For example, in Figure 7 the clustering process of 𝑁 = 4 objects is illustrated for both ways of
composing the hierarchical structure. In Figure 7a, the non-traditional hierarchical clustering is
represented. The algorithm checks the lowest distance value in the pairwise performance matrix
and adds objects 3 and 4 to the same cluster. Since objects 1 and 2 are the remaining pair, they
are also merged into a cluster, concluding step 1. Then, in step 2, there is only one possible
combination, that merges all objects into a cluster, and, therefore, this is the chosen combination
and the algorithm is finished.

On the other hand, in Figure 7b, the traditional hierarchical clustering is shown. In step 1, the
algorithm also checks the lowest distance value in the pairwise performance matrix. The pair that
corresponds to this value is merged into a cluster. Next, in step 2, all combinations are calculated,
including the cluster (3,4). The smallest distance indicates that object 1 should be merged into
the cluster (3,4) and that is what happens. Finally, in step 3, only one combination is left, object
2 with the cluster (1,(3,4)), and the algorithm finishes its execution.

HC makes a more coherent exploration of the pairwise performance matrix, but NHC is com-
putationally cheaper.

2.4.2 Applications
Clustering algorithms can be a very helpful tool when applied to the climate field since it allows

the division of geographical areas into different climate districts. The analysis of the multiple clus-
ters obtained by a clustering algorithm is useful to economic, agriculture and planning fields. For
exploratory application, when the relations between different locations are unknown, hierarchical
clustering is a recommended method.

An analysis of different climate zones of Turkey using temperature and precipitation data was
performed in Unal et al. (2003). A comparison between hierarchical clustering methods with
different distance criteria was also executed and seven different climate clusters were found.

In Stooksbury & Michaels (1991), another analysis was performed in southeastern US climate
stations. In this case, hierarchical and non-hierarchical algorithms were combined in a two-step
execution. The main objective was defining regions of climate homogeneity that should perform
more robustly in climate impact models. These climate clusters may be more appropriate than
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(a) Non-traditional hierarchical clustering
(NHC). (b) Traditional hierarchical clustering (HC).

Figure 7: Comparison between the two ways of composing the hierarchical structure.

the standard climate divisions, proposed by modifications of the agro-economic US Department of
Agriculture crop report districts.
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Chapter 3

Proposed Methodologies

3.1 Motivation
Despite POTs being a better approach than GEV, mostly because it uses data more efficiently,

this method is often neglected in fields such as climatology and meteorology (J. Scarrott & Mac-
Donald, 2012). This occurs due to the necessity of analyzing multiple time series, aggravated by
the absence of efficient and reliable methods to automatically select the threshold that acts as
the best choice for each time series. Furthermore, the usual graphical methods are more popular.
However, it lacks accuracy for requiring a very subjective choice.

When using the mean excess plot, it is common the existence of more than one possible thresh-
old, and discrepancies tend to arise (J. Scarrott & MacDonald, 2012). Another problem of the
mean excess approach is that the analyst needs to trim away the plot for small and for too large
values of the series. The situation here is similar to choosing the 𝑘 upper order statistics of Hill
Estimator, detailed in Section 2.1.4. Small values are governed by either the center or the left tail
of the distribution. Too large values makes only a few samples be considered on the estimation of
the parameters of the distribution. So two discretionary cuts need to be made. This situation is
illustrated by Figure 8a. Finally, the analyst also needs to be convinced that 𝜉 < 1, since for 𝜉 ≥ 1
the ME function does not exist, so the ME plot converges to a random curve, as shown in Figure
8b. More details about the disadvantages of the Mean Excess method is provided by Ghosh &
Resnick (2009).

On the other hand, when using the Hill Plot it sometimes does not present a region of stability.
When it occurs, the plot is called "Hill Horror plot", as shown in Figure 9. In this case, 𝐺1 has a
slowly varying tail, so it is possible to find a stable region when the Hill estimator is plotted. On
the other hand, when plotting the Hill estimator of 𝐺2, it is not possible to find a stable region
and, therefore, and adequate threshold cannot be selected. The performance of Hill estimator can
be very poor if the slowly varying function in the tail is far away from a constant (Embrechts et al.
, 1997).

Aiming at a more robust estimation of the best threshold for each time series, an approach
that is based on Hierarchical Clustering and Multitask Learning will be suggested here. This can
be achieved by iteratively alternating between hierarchical multitask learning and the framework
to train and test data, as indicated in Figure 10.
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(a) Mean Excess plot of 50000 random variables. Entire plot (left) and order statistics 120-30000 (right).

(b) Mean Excess plot of 50000 random variables from Pareto distribution with 𝜉 = 2. Entire plot (left)
and order statistics (right).

Figure 8: Cases in which the ME plot can be very difficult to interpret and mislead the analyst
to wrong choices of threshold. 8a shows the need to trim the plot; 8b shows that the plot has no
linear region when 𝜉 ≥ 1. Extracted from Ghosh & Resnick (2009).

3.2 Model Assessment and Selection
To preserve the validity of the experiment, we first split the available dataset 𝑋𝑘, for the 𝑘-th

task into training 𝑋 𝑡𝑟
𝑘 , and test 𝑋 𝑡𝑒

𝑘 sets. The training set is used to fit and evaluate the candidate
thresholds and the test set is used, after we found the most appropriate threshold 𝑢*

𝑘, to report
the performance of the model. The proportion of this division is 80%/20%.

To evaluate a set of thresholds 𝑀𝑘 for the 𝑘-th task in the training phase, we used an approach
similar to Day Forwarding-Chaining, already presented in Section 2.2. This procedure consists
of subdividing the training dataset into sliding windows, 𝑋 𝑡𝑟

𝑘 [𝑤]. Each window has 20% of the
training dataset. Then, the window dataset is used to fit a Pareto Distribution (GPD), using the
MLE method and a threshold 𝑢𝑖𝑘 ∈ 𝑀𝑘. The estimated parameters, (𝜉𝑤𝑘 , 𝜎𝑤𝑘 ), are used to calculate
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Figure 9: "Hill horror plot". The Hill estimator of 𝑛 iid samples with distribution tail 𝐺1 = 1/𝑥
(curve above) and 𝐺2 = 1/𝑥 ln 𝑥 (bottom line). The solid line corresponds to when the estimator
is 1. Extracted from Embrechts et al. (1997).

Figure 10: Flowchart of the proposed method.

the annual return levels, two years later (𝑇 = 24), as the following equation indicates.

𝑥̂𝑡 =
⎧⎨⎩𝑢

*
𝑘 + 𝜎𝑤

𝑘

𝜉𝑤
𝑘

[((𝑇 + 𝑡)𝜆̂𝑢)𝜉
𝑤
𝑘 − 1], 𝜉𝑤𝑘 ̸= 0

𝑢*
𝑘 + 𝜎𝑤𝑘 ln [((𝑇 + 𝑡)𝜆̂𝑢)], 𝜉𝑤𝑘 = 0,

(3.1)
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in which 𝜆̂𝑢 is the rate of observations above the threshold and 𝑡 is the number of observations
that range from 1 to 12.

Later, the annual mean error of the fit was calculated by the monthly difference between the
prediction 𝑥̂𝑡 and the real value two years ahead, guiding to:

𝑒 = 1
12

12∑︁
𝑡=1

|𝑥𝑇+𝑡 − 𝑥̂𝑡|. (3.2)

Afterwards, the validation window was translated in one year, and the whole process is re-
peated. After all training data is fitted, the l-infinity norm of the error was calculated as a
performance measure. Non-extremal samples occur with higher frequency and, consequently, have
more impact in usual measures, such as the mean squared error (MSE). Alternatively, the l-infinity
norm measures the most significant difference, which probably happens when an extreme sample
is estimated, and minimizing the worst case, the best threshold to estimate extremes are returned.

‖𝑙‖∞ = max
𝑖

|𝑒𝑖| (3.3)

This process is repeated for every single threshold 𝑢𝑘 in 𝑀𝑘. Then, the threshold 𝑢*
𝑘 that

generated that minimum ‖𝑙‖∞ is used in the test set. All data from the training dataset is fitted in
a GPD by the ML estimator, and the parameters returned are used to calculate the return levels
for each year of the test set. Subsequently, the return values are compared to the real values of the
test set, and the l-infinity norm of the annual mean error is obtained. This value will be used as
a performance measure of the internal nodes of the tree, which is constructed by the Hierarchical
Multitask Learning Framework. At the end of the execution, the best performance nodes are
returned for each task.

The whole process of training, validation and testing is represented in Figure 11.

Figure 11: [Best view in color] Nested Cross-Validation proposed.

In Figure 12, the set subdivision is the one detailed in Figure 11. The inner and outer loop
are the ones explained in Section 2.2. While the inner loop consists in training and validating all
thresholds, the outer loop selects the best threshold for a determined time series and checks its
performance when comparing with the test set.
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Figure 12: Fluxogram of the inner and outer loop based on nested cross-validation.

3.3 Hierarchical Multitask Learning Framework
In this work we explored the traditional and non-traditional clustering methods (presented

in Section 2.4) to jointly search for the parameter 𝑢 among the learning tasks. Each task 𝑖 (a
time series with extreme events) represents a leaf node 𝑇 0

𝑖 ≡ {𝑖} in level 0. At any level 𝑙 of the
clustering tree, a new possible cluster 𝑇 𝑙𝑚 consists of the set of tasks belonging to the clusters 𝑇 𝑙𝑗
or 𝑇 𝑙𝑘. Given that, it is possible to define a set (better explained below) of thresholds 𝑀𝑇 𝑙

𝑚
to that

new cluster. The distance 𝑑(𝑇 𝑙𝑗 , 𝑇 𝑙𝑘) consists of the mean performance ||𝑙||𝑇 𝑙
𝑚∞ = ∑︀

𝑖∈𝑇 𝑙
𝑚

1
|𝑇 𝑙

𝑘
| ||𝑙||

𝑢*
𝑖∈𝑇 𝑙

𝑚∞

for all tasks. The performance for each task 𝑖 is found by the best threshold 𝑢*
𝑖∈𝑇 𝑙

𝑚
∈ 𝑀𝑇 𝑙

𝑚 in the
set of thresholds 𝑀𝑇 𝑙

𝑚
determined by the cluster 𝑇 𝑙𝑚.

The information sharing between tasks happens when the range of possible thresholds 𝑀𝑇 𝑙
𝑘

is
defined. Besides, when two or more tasks are in the cluster, the range is defined by merging all time
series into one. However, each task is trained and tested individually. Three possible alternatives
are presented to select this range and they were also used in the single-task configuration:

1. R1: The range is composed of data samples corresponding to the last quartile, i.e., all series
values that are above the 75th percentile when varied in one unit;

2. R2: The range is composed of 50 data samples above the 75th percentile, similar to the first
possibility, but the step is 0.5 instead of 1;

3. R3: The range is composed of all data samples greater than the corresponding value of the
75th percentile.

The 75th percentile was chosen because it represents the beginning of the tail of the distribution,
as pointed in Bader et al. (2018).
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As a result of more combinations to be evaluated, the traditional approach has a computational
time considerably higher than the non-traditional one.

(a) Non-traditional hierarchical approach.

(b) Traditional hierarchical approach.

Figure 13: A complete journey through the first agglomerative step when performing the hierar-
chical structure discovery (the number of tasks is N = 4).

Figure 13 illustrates how the operations in the Hierarchical Structure Discovery module are
done. Both approaches, non-traditional and traditional, were considered.
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Chapter 4

Results

In this chapter, the experimental setup is presented as well as a discussion on the obtained
results. First, a brief description of the dataset is given. Then, the obtained results when evaluating
the performance of the proposed method comparing to the graphical one were described. Finally, a
test with all time series from the dataset is executed to evaluate the benefits of multitask learning.

4.1 Dataset description
For the experiments, a monthly precipitation dataset provided by GPCC (Global Precipitation

Climatology Centre) (Schneider et al. , 2016) was used. This dataset has the spatial coverage of
2.5∘ latitude × 2.5∘ longitude, in which each geographical location corresponds to a time series
precipitation, and this grid was sliced to cover only South America. The locations of each time
series is presented in Figure 14. Besides including Brazil, another motivation to define South
America as the case study is the challenging scenario brought by its very diverse climate. Moreover,
the temporal coverage used was from 1917 to 2016.

In addition to the slicing process, only the series that did not contain missing values were
considered, since data imputation can lead to biased parameter estimation and the total number
of series was considered adequate to perform the experiments here explained.

4.2 Comparison between graphical and the proposed au-
tomatic approaches

Aiming at comparing the results of the graphical (GM) and the proposed automatic method,
20 precipitation time series were considered. All series contain at least one extreme and they were
selected so that at least five geographical regions from Brazil were covered. Then, the mean excess
graphic of each time series was plotted in order to select an adequate threshold. As described in
Section 2.1.4, a linear region was searched and the corresponding threshold was the one selected.
After this procedure, the threshold was used to train 80% of the data and the return levels obtained
were compared to the real values of the test set, which corresponds to the final 20% data of the
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Figure 14: Geographical locations of data.

time series. The l-infinity norm was calculated.
Given the two possible ways to construct the hierarchical structure, two types of tests were

executed: one with the non-traditional approach (NHCMTL) and the other with the traditional
approach (HCMTL). In both of them, the automatic multitask algorithm was executed with all
20 series, following the method described in Chapter 3. Additionally, the single-task method
(STL) consisted in running the proposed cross-validation, already explained in Section 3.2, with
all thresholds from the chosen range. Also, the ranges R1, R2 and R3 from Section 3.3 were applied
here. The results are presented in Table 1.

To detect differences between the experiments with each algorithm, a Friedman Test (Friedman,
1937, 1939, 1940) was applied in the results of Table 1 with threshold 0.01. A Friedman Test
consists in a non-parametric statistical test that is used to detect differences in treatments among
multiple models across multiple experiments. A Post-hoc Finner test is used to point which
experiment is better. For the NHCMTL, the Friedman test found statistical significance, but the
Finner post-hoc with the same threshold did not.

The same tests were applied to the HCMTL algorithm. In this case, statistical significance
were found in both tests, and the Finner post-hoc indicated that HCMTL-R3 is better than all
the contenders, including the graphical method. The same test pointed that the graphical method
and STL are equivalent but worse than all multitask approaches proposed here.
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Table 1: Comparison between the 𝑙-infinity norms obtained by the graphical method (GM), single-
task learning algorithm (STL) and the proposed algorithms (NHCMTL and HCMTL).

ID GM STL - R1NHCMTL - R1HCMTL - R1STL - R2NHCMTL - R2HCMTL - R2STL - R3NHCMTL - R3HCMTL - R3
s1 257,88 391,73 224,03 252,97 391,73 252,97 252,97 401,94 252,95 252,95
s2 388,12 291,50 249,47 256,69 288,70 248,36 262,30 243,15 243,15 187,80
s3 57,10 26,93 26,93 26,93 26,60 26,60 26,60 26,59 26,59 26,59
s4 171,46 235,63 227,37 162,44 235,63 213,46 162,44 236,14 229,57 162,71
s5 303,04 195,29 195,29 176,93 197,61 197,61 197,61 198,00 198,00 198,00
s6 39,97 25,41 25,41 25,41 25,41 25,14 25,41 33,31 33,31 33,31
s7 247,95 443,942 250,65 252,97 485,77 252,97 252,97 484,53 252,95 252,95
s8 211,04 228,70 228,70 216,82 228,70 195,94 191,29 218,93 123,91 207,53
s9 56,53 65,37 65,37 65,37 65,37 65,37 65,37 65,35 65,35 53,24
s10 224,43 276,46 249,47 216,82 276,46 237,61 237,61 276,19 273,85 207,53
s11 243,57 207,30 93,40 128,36 216,88 93,95 149,76 217,34 149,27 116,79
s12 336,68 455,49 269,66 220,95 455,49 271,54 220,86 455,40 251,92 220,70
s13 126,18 37,44 37,44 37,44 40,17 40,17 40,17 40,92 40,92 40,92
s14 277,69 322,97 269,66 244,78 328,55 271,54 191,29 332,14 247,09 247,09
s15 88,44 69,08 69,08 69,08 69,08 69,08 69,08 69,15 68,99 64,69
s16 258,42 362,32 250,65 244,78 353,51 237,61 237,61 353,13 247,09 247,09
s17 85,93 48,92 48,92 48,92 48,92 48,92 48,92 48,87 48,87 48,87
s18 196,59 324,50 224,03 162,44 324,50 195,94 162,44 323,92 251,92 162,71
s19 51,80 34,75 34,75 34,75 34,30 34,30 34,30 40,74 40,74 40,74
s20 331,71 246,74 246,61 246,74 310,56 248,36 243,45 309,84 123,91 243,39

In Table 2, the rank of each algorithm is listed, so the performances can be compared.

Table 2: Obtained ranking for the methods under comparison.

Graphical STL-R1 NHCMTL-R1 STL-R2 NHCMTL-R2 STL-R3 NHCMTL-R3
4.35 4.7 3.325 4.95 3.125 4.8 2.75

Graphical STL-R1 HCMTL-R1 STL-R2 HCMTL-R2 STL-R3 HCMTL-R3
4.85 4.85 2.95 5.05 2.8 5.0 2.5

In the first part of Table 2, the methods compared were the graphical, STL and NHCMTL;
while in the second part the approaches compared were the graphical, STL and HCMTL.

First of all, it is essential to notice that graphical and STL are statistically equivalent, thus
indicating that the automatic approach, even in a single task configuration, is capable of achieving
a similar result without the need of an expert. More importantly, it is possible to conclude that
multitask learning approaches are capable of improving the performance in extreme events, and
even when NHCMTL approaches did not present statistical significance, it always produces better
ranks. Although HCMTL presented better results than NHCMTL, HCMTL takes more processing
time, mostly because the better combinations of tasks are chosen at each agglomerative step.

However, there are some cases in which the graphical method was better than the proposed
method. That occurred mainly due to two reasons: the threshold selected by the graphical ap-
proach was not present in the possible range of the proposed method or the combination among
tasks that would benefit the performance was not selected by the model since another combination
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presented a smaller metric value.
In the cases in which the single task method outperformed the multitask approach, the reason

was mostly because of the negative transfer phenomenon, i.e., two or more unrelated tasks were
placed in the same cluster. This may happen since a task was not related to any other task present
in the data set, mostly considering that climate areas in South America are very diverse. Indeed,
the algorithm does not detect outlier tasks before the whole hierarchical structure is constructed.

A plot comparison of the real values, the return levels obtained by the graphic method and the
return levels obtained by one of the algorithms proposed of the Series ID 4 are presented in Figure
15. The algorithm chosen is HCMTL-R3 due to its great accuracy when compared to the other
proposed algorithms.

Figure 15: Comparison between the real values and the return levels generated by the graphic
method and the ones generated by the HCMTL-R3.

The return levels generated by the HCMTL-R3 algorithm are below the graphic method due
to the absolute value of the error being considered in the performance measure. Thus, both
high values, corresponding to extreme precipitation, and low values, corresponding to droughts,
influence the prediction. Also, it is important to notice that extreme prediction does not tend to
follow the time series values, that is why the prediction curves do not have the same shape of the
real values.

In Table 3, a comparison between the time execution of each algorithm is presented. This test
was executed in a Intel(R) Core i9-9900K machine with CPU @ 3.6GHz and 16GB RAM. When
analyzing the different possible ranges, the execution time is much higher for R3 since it uses
all data above the 75th percentile. Thus, the number of possible thresholds and, consequently,
the number of training phases increases with the number of combinations at each level of the
hierarchical structure. In each combination, a task is incorporated into a cluster. Thereby, the
range of possible thresholds includes all data above the 75th percentile of the concatenated data
of all tasks clustered.

Another analysis is that HCMTL, in spite of being more accurate, takes more time to execute
all the steps. The reason for the increase of execution time is that as the algorithm chooses only
one combination to be a cluster per level of the hierarchical structure, there is an increase in both
the number of levels and the combinations to be trained at each level.



CHAPTER 4. RESULTS 44

Table 3: Comparison between the execution time of each algorithm.

Method Time Spent (h:m:s)
NHCMTL - R1 00:28:07
NHCMTL - R2 00:53:20
NHCMTL - R3 04:37:08
HCMTL - R1 01:06:40
HCMTL - R2 02:16:36
HCMTL - R3 98:42:50

Fortunately, in our application involving precipitation extremes, even the higher execution
times are reasonable and will not prevent the use of the proposed technique.

4.3 STL vs MTL
To measure the superiority of MTL methods over STL, another experiment was executed. In

this one, 86 precipitation time series of the mentioned data set were used. The algorithm selected
to train and test those series is the NHCMTL-R2, mostly because it has competent performance
and takes less computational time than the other proposals with similar performance.

The Friedman Test was applied with 0.01 as a threshold, and the test found statistical relevance.
The Finner post-hoc test pointed out the superiority of the multitask method. The l-infinity norms
obtained are displayed on Appendix A.

Another essential feature of the multitask algorithm is the automatic proposal of a structural
relationship among the prediction tasks. A map with the geographical locations and its estimated
connections by the NHCMTL - R2 of all tasks is in Figure 16. Notice that the geographical location
is not part of the provided information to the learning process, which implies that the coherent
existence of dense connections between co-located points is something raised directly from the
data-intensive methodology.

In Figure 16, the algorithm automatically discovered the coherent behavior between the pre-
cipitation series in north of Brazil, which contains the Amazon Forest, a region characterized by
intense rainfall most of the year. Another region that was interconnected was the Brazilian Mid-
west, which has intense precipitation in the interval between October and March, and it is dry for
the rest of the year.

However, some locations that were connected by the multitask algorithm does not have a similar
rainfall regime, such as the tropical rainforest and an arid region, known in Brazil as northeastern
“sertão". Nevertheless, these connections may have arisen because the difference between extremes
and normal values is similar.
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(a) Level 0: 43 edges. (b) Level 1: 22 edges. (c) Level 2: 11 edges.

(d) Level 3: 6 edges. (e) Level 4: 3 edges. (f) Level 5: 2 edges.

Figure 16: [Best viewed in color.] Relationship between tasks represented in a geographical map.
Each figure shows a level of the hierarchical structure while in construction and the clusters in
each level are in the same color.
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Chapter 5

Conclusion

5.1 Concluding remarks
The overview of the Extreme Value Theory presented in Chapter 2 showed the importance of

this field to predict extreme events whether they are in the realm of epidemiology, meteorology or
even finance. The initial goal of this research was only in the final result of the fitted distribution,
the return value, which allows the maximum amplitude prediction of the time series values in a
given time observation. However, by studying the two main approaches to model the tail of the
distribution and realizing that the one that is most indicated to model precipitation data is GPD,
a new research opportunity was identified.

Usually, the threshold - value that separates time series data in exceedances - is graphically
determined and, as demonstrated in Section 2.1.4 of a subjective nature and expert-dependent.

Therefore, an approach to solve the problems of subjectivity and expert dependency of the
graphical models were proposed. The hierarchical clustering method is well-known in the multitask
learning field as it is used to represent the task relationship that is directly learned from task data.
The cross-validation is applied to select the model that obtains the best performance. Thus, all
these strategies presented were combined and resulted in a framework to automatically select an
adequate threshold for each task in a given group of tasks.

Then, to compare the presented method with the usual graphical method, two experiments
were conducted. One of them consisted of 20 precipitation time series of South America. The
second one was applied in 86 precipitation time series to determine if the multitask approach
was more effective than the single task learning procedure. The proposed method was not only
better than the graphical approach but was also superior to the single task counterpart, indicating
that multitask learning can improve algorithm performance. The presented method will necessarily
propose a structural relationship among tasks. Consequently, this structure can be used to analyze
qualitatively the relationship among different time series, given their geographical location.
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5.2 Future Directions
Despite of the promising results obtained until now, opportunities for further improvements

were identified. Therefore, a list of future directions is provided:

• Hierarchical Clustering: Non-binary hierarchical clustering is a promising extension that
will allow more than two tasks in the merging phase, producing rose trees. Therefore, the
computational cost can decrease since the number of levels in the tree tends also to decrease.

• Multivariate prediction: Including other types of possibly correlated climate time series,
such as wind speed, temperature and relative humidity, will also be pursued to further explore
the knowledge transfer promoted by multitask learning. Thus, the relationship between tasks
can be better identified, possibly leading to improved results.

• Outlier Tasks: Investigation of other clustering structures capable of removing outlier tasks
before the training phase starts, thus avoiding unnecessary computational cost and negative
transfer.
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Appendix A

Comparison between single task and
multitask methods

Table 4: Comparison between the l-infinity norms obtained by the single task and the multitask
learning algorithm.

ID STL-R2 NHCMTL-R2
1 391,728 239,657
2 325,684 203,731
3 235,629 222,401
4 368,053 276,543
5 408,91 276,543
6 380,259 262,208
7 404,257 226,757
8 485,771 230,071
9 351,553 206,357
10 209,91 209,91
11 217,009 212,207
12 387,008 267,829
13 371,251 276,543
14 380,352 245,844
15 411,343 276,543
16 308,833 225,312
17 262,683 246,471
18 276,456 229,906
19 455,488 276,543
20 415,894 245,844
21 322,328 267,829
22 335,665 267,829

Continued on next page
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Table 4 – continued from previous page
ID STL-R2 NHCMTL-R2
23 300,907 225,489
24 289,64 225,312
25 289,536 229,906
26 298,792 206,357
27 330,909 246,471
28 333,529 246,471
29 353,515 203,731
30 355,862 238,239
31 302,92 234,95
32 378,287 225,489
33 361,361 226,757
34 392,752 249,504
35 355,708 234,95
36 283,085 231,515
37 268,706 246,471
38 334,281 240,163
39 468,999 239,657
40 417,599 230,071
41 496,495 276,543
42 390,398 249,504
43 404,096 262,208
44 370,51 238,239
45 295,138 240,163
46 344,769 231,515
47 324,349 246,471
48 325,292 267,829
49 239,54 222,401
50 288,697 246,471
51 197,607 197,607
52 200,5 200,5
53 310,561 222,401
54 179,263 96,432
55 118,957 96,432
56 228,698 96,432
57 65,5 65,5
58 74,151 74,151
59 62,947 62,947
60 46,926 46,926

Continued on next page
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Table 4 – continued from previous page
ID STL-R2 NHCMTL-R2
61 59,516 59,516
62 39,718 39,718
63 40,175 40,175
64 42,69 42,69
65 34,078 34,078
66 33,831 33,831
67 69,083 69,083
68 48,917 48,917
69 28,783 28,783
70 38,903 38,903
71 25,397 25,397
72 71,515 71,515
73 37,609 37,609
74 34,296 34,296
75 26,6 26,6
76 24,943 24,943
77 29,737 29,737
78 73,558 72,845
79 60,379 60,379
80 43,348 43,348
81 49,627 49,627
82 25,414 25,414
83 36,719 36,719
84 135,619 135,619
85 65,367 65,367
86 52,924 52,924
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