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Resumo

Dados geográ�cos são utilizados em várias aplicações, tais como mapeamento, navega-
ção e plani�cação urbana. Em particular, serviços de mapeamento são frequentemente
utilizados e requerem informação geográ�ca atualizada. No entanto, devido a limitações
orçamentárias, mapas o�ciais (e.g. governamentias) sofrem de imprecisões temporais e de
completude. Neste contexto projetos crowdsourcing, assim como os sistemas de informa-
ção geográ�ca voluntária, surgiram como uma alternativa para obter dados geográ�cos
atualizados. OpenStreetMap (OSM) é um dos maiores projetos desse tipo com milhões
de usuários (consumidores e produtores de informação) em todo o mundo e os dados co-
letados pelo OSM estão disponíveis gratuitamente. Uma desvantagem do OSM é o fato
de poder ser editado por voluntários com diferentes habilidades de anotação, o que torna
a qualidade das anotações heterogêneas em diferentes regiões geográ�cas. Apesar desse
problema de qualidade, os dados do OSM têm sido amplamente utilizados em várias apli-
cações, como por exemplo no mapeamento de uso da terra. Por outro lado, é crucial
melhorar a qualidade dos dados em OSM de forma que as aplicações que dependam de
informações precisas, por exemplo, roteamento de carros, se tornem mais e�cazes. Nesta
tese, revisamos e propomos métodos baseados em aprendizado de máquina para melhorar
a qualidade dos dados em OSM. Apresentamos métodos automáticos e interativos focados
na melhoria dos dados em OSM para �ns humanitários. Os métodos apresentados podem
corrigir as anotações do OSM de edifícios em áreas rurais e permitem realizar a anotação
e�ciente de coqueiros a partir de imagens aéreas. O primeiro é útil na resposta a crises que
afetam áreas vulneráveis, enquanto que o último é útil para monitoramento ambiental e
avaliação pós-desastre. Nossa metodologia para correção automática das anotações de pré-
dios rurais existentes em OSM consiste em três tarefas: correção de alinhamento, remoção
de anotações incorretas e adição de anotações ausentes de construções. Esta metodologia
obtém melhores resultados do que os métodos de segmentação semântica supervisiona-
dos e, mais importante, produz resultados vetoriais adequados para o processamento de
dados geográ�cos. Dado que esta estratégia automática poderia não alcançar resultados
precisos em algumas regiões, propomos uma abordagem interativa que reduz os esforços
de humanos ao corrigir anotações de prédios rurais. Essa estratégia reduz drasticamente
a quantidade de dados que os usuários precisam analisar, encontrando automaticamente
a maioria dos erros de anotação existentes. A anotação de objetos de imagens aéreas é
uma tarefa demorada, especialmente quando o número de objetos é grande. Assim, pro-
pomos uma metodologia na qual o processo de anotação é realizado em um espaço 2D,
obtido da projeção do espaço de características das imagens. Esse método permite anotar
com e�ciência mais objetos do que o método tradicional de fotointerpretação, coletando
amostras rotuladas mais e�cazes para treinar um classi�cador para detecção de objetos.



Abstract

Geographical data are used in several applications, such as mapping, navigation, and ur-
ban planning. Particularly, mapping services are routinely used and require up-to-date
geographical data. However, due to budget limitations, authoritative maps su�er from
completeness and temporal inaccuracies. In this context, crowdsourcing projects, such
as Volunteer Geographical Information (VGI) systems, have emerged as an alternative to
obtain up-to-date geographical data. OpenStreetMap (OSM) is one of the largest VGI
projects with millions of users (consumers and producers of information) around the world
and the collected data in OSM are freely available. OSM is edited by volunteers with dif-
ferent annotation skills, which makes the annotation quality heterogeneous in di�erent
geographical regions. Despite these quality issues, OSM data have been extensively used
in several applications (e.g., landuse mapping). On the other hand, it is crucial to im-
prove the quality of the data in OSM such that applications that depend on accurate
information become more e�ective (e.g., car routing). In this thesis, we review and pro-
pose methods based on machine learning to improve the quality of the data in OSM. We
present automatic and interactive methods focused on improving OSM data for humani-
tarian purposes. The methods can correct the OSM annotations of building footprints in
rural areas and can provide e�cient annotation of coconut trees from aerial images. The
former is helpful in the response to crises that a�ect vulnerable areas, while the later is
useful for environmental monitoring and post-disaster assessment. Our methodology for
automatic correction of the existing OSM annotations of rural buildings consists of three
tasks: alignment correction, removal of incorrect annotations, and addition of missing
building annotations. This methodology obtains better results than supervised seman-
tic segmentation methods and, more importantly, it outputs vectorial footprints suitable
for geographical data processing. Given that this automatic strategy could not attain
accurate results in some regions, we propose an interactive approach which reduces the
human e�orts when correcting rural building annotations in OSM. This strategy drasti-
cally reduces the amount of data that the users need to analyze by automatically �nding
most of the existing annotation errors. The annotation of objects from aerial imagery is
a time-consuming task, especially when the number of objects is high. Thus, we propose
a methodology in which the annotation process is performed in a 2D space of projected
image features. This method allows to e�ciently annotate more objects than using tra-
ditional photointerpretation, collecting more e�ective labeled samples to train a classi�er
for object detection.
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Chapter 1

Introduction

Geographical data describe objects in certain locations on the earth's surface and are

usually represented in maps. Acquiring updated geographical data is crucial for several

applications, such as mapping [26], urban planning [121], navigation [56], natural disaster

management [85], and farming applications [103].

Keeping updated the data of mapping services is a challenging task. Frequently,

authoritative maps su�er from temporal and completeness inaccuracies because of bud-

get limitations. Thus, Volunteer Geographical Information (VGI) systems, like Open-

StreetMap 1 (OSM), have emerged as an alternative approach collecting mapping in-

formation from volunteers around the world. However, the di�erent expertise levels of

the volunteers in annotating geographical data makes heterogeneus the quality of VGI

systems. For instance, several research works have pointed out quality issues in OSM

data, such as inaccurate positions of building footprints [141], missing buildings [54] and

roads [36], and inaccurate tags of geographical objects [3].

In this thesis, we aim at better understanding how machine learning methods can

be useful for improving the process of image annotation. We explore automatic and

interactive approaches to e�ciently create and correct image annotations. We focus our

work on improving the annotations of geographical objects in OSM, by using machine

learning methods applied to remote sensing imagery and OSM data.

Our proposed methodologies use information extracted automatically from aerial im-

ages (e.g., building segmentation) to identify and correct issues of the current annotations

of geographical objects in OSM and also to perform more e�ective annotations of new

objects. Thus, we propose techniques based on state-of-the-art computer vision methods,

such as Convolutional Neural Networks (CNN).

We validated our proposed methods mainly on rural building annotations in OSM.

Our motivation to work with OSM annotations of rural buildings is that a signi�cant

amount of buildings in rural areas are not mapped in any commercial mapping service

(e.g., Google maps and Bing maps) and also not in open maps like OSM. One of the

methods is validated for coconut tree annotations in OSM, which can be used in tasks like

post-disaster assessment and environmental monitoring. However, most of the proposed

methods in this thesis can also be applied to other types of geographical objects.

1https://www.openstreetmap.org
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The thesis is divided into four parts. In the �rst part, we review recent works that

use machine learning methods to improve OSM data quality. In this review, we also

show how machine learning methods have used OSM data to solve problems from other

domains. The second part presents a proposed methodology to automatically correct

rural building annotations in OSM. This is done by correcting possible misalignments of

building's annotations followed by the removal of wrong annotations and the addition of

new annotations whenever needed. Methods for automatic annotation correction can not

obtain the desired annotation quality level. Therefore, in the third part of the thesis,

we present a interactive approach to correct rural building annotations in OSM. In this

strategy, the computer selects a small set of regions in the image that most likely requires

corrections, greatly reducing the amount of data that the user has to verify/correct.

Finally, the fourth part of the thesis presents a strategy for interactive annotation of

coconut trees in OSM, which can signi�cantly reduce the human e�ort of traditional

manual annotation over aerial imagery. This method extracts image features of the objects

of interest and projects them into a 2D space for visualization. In 2D, several samples

can be selected and annotated by a user at the same time, improving the e�ciency of the

image annotation system. The detailed structure of this thesis is presented in Section 1.5.

The next sections of this chapter are organized as follows. Section 1.1 de�nes the

concept of Volunteer Geographical Information (VGI). Section 1.2 describes the OSM

project and how geographical data are stored in OSM. Section 1.3 presents the types

of quality issues in OSM data and gives examples of them. Section 1.4 presents the

main research question of this thesis. Section 1.5 shows the structure of this thesis and

Section 1.6 presents the accepted and submitted publications.

1.1 Volunteer Geographical Information

With the widespread use of web technologies, users became active producers of informa-

tion. A good example of this phenomenon is the project Wikipedia, that has created a

free encyclopedia with content edited by volunteers. Volunteer Geographical Information

(VGI), term coined in [44], is a phenomenon in which geographical data are generated by

users (e.g., OpenStreetMap and Wikimapia 2). VGI projects have a great potential to

obtain up-to-date information, because of their large number of users and the fact that

several of them have local knowledge about the information registered in their databases.

The data generated by VGI projects have been extensively used for applications such as

routing and landuse mapping. Thus, VGI data quality became a very important problem

and it has been studied in several works [39, 98].

1.2 OpenStreetMap

OpenStreetMap is a VGI project that started in 2004 and now it has more than 5 million

registered users. Initially, most of the contributions were collected by GPS devices. Since

2007 satellite imagery, provided by Yahoo! and later by Bing maps, has been used to

2https://wikimapia.org/
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collect new geographical data for OSM. Frequently, volunteers digitize buildings, roads,

and other geographical objects guided by satellite imagery. After digitizing a geographical

object, tags are added to each object with relevant information about it (e.g., address or

landuse type).

In OSM, newly registered users can already add, remove, or modify geographical

objects, and there are several web-based services that allow the download of raw and

preprocessed OSM data 3. Active OSM annotators participate in meetings called �Map-

athons�, where they annotate unmapped areas or improve the map in regions with existing

annotations.

Geographical objects in OSM are represented by four types of data: nodes, ways,

relations, and tags. Nodes represent particular locations in the earth's surface and are

de�ned by latitude and longitude. For instance, nodes can represent bus stations, tra�c

signals or park benches. A way is a list of two or more nodes. It is used to represent

objects that can be represented by polylines like rivers and roads. A way also represents

the boundary of a polygonal object like buildings or parks. In this case, the last and �rst

nodes of the list are the same. A relation is a data structure that stores the relationship

among several OSM elements, for example, a set of roads can form an avenue or a set

of polygons can de�ne a multi-polygon that represents an area with holes. These basic

three types of elements can have tags that give more information about the objects in

OSM. A tag is a key-value pair that contains free format text. For example, a restaurant

can be represented by a way with tag �amenity=restaurant� and a residential road can be

represented by a way with tag �highway=residential�. The keys can have any value, but

there are conventions recommended by OSM 4. This helps to standardize the annotation

of common objects in OSM.

OSM data has been used by several companies, such as Apple, Facebook, and Foursquare,

and several other mapping services, like Baidu maps (world map outside China), Open-

TopoMap (topographical maps of Europe), and Mapbox.

1.3 Quality issues in OpenStreetMap

The applications that use OSM data in several domains depend on the quality of the data

obtained from OSM. Thus, several works have studied the quality of OSM data [32, 113] by

analyzing several aspects of the data. The International Organization for Standardization

(ISO) recommend to use �ve quality measures for geographical data (standard 19138

created by the Technical Committee ISO/TC 211 5): completeness, consistency, positional

accuracy, temporal accuracy, and thematic accuracy.

Completeness errors refer to the absence of data, for example, newly constructed

buildings that are not present in the map. This measure can also refer to the excess of

data as pointed out in [113]. For example, buildings that have been demolished should

be removed from the map. Consistency refers to the coherence of the stored data, for

example, similar polygons located very close to each other and representing the same

3https://export.hotosm.org/en/v3/
4https://wiki.openstreetmap.org/wiki/Map_Features/
5https://www.isotc211.org/
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object is an example of consistency error. The positional accuracy is a measure of how

close the location of an object is to the true location of the object. The thematic accuracy

measures the correctness of the feature values of the geographical objects. For instance, a

garden labeled as forest will represent a thematic classi�cation error. Temporal accuracy

refers to the correctness in the order of events related to a geographical object. For

instance, if a building is extended and we have a database that stores all the versions

of the polygons that delineate the buildings, then we expect to have an attribute that

indicates which version of the polygon is the latest one.

Several works have pointed out that OSM present data quality issues [141, 32, 21, 36].

Most of these works have found positional, completeness, and thematic errors in common

geographical objects like roads, buildings and other urban objects. For instance, positional

and completeness inaccuracies of buildings are analyzed in [141] and [21], by comparing

OSM data with governmental data. Completeness errors in road networks are analyzed

in [36] and thematic classi�cation errors of roads and other urban spaces are reported in

several works [36, 31, 3].

1.4 Research question

In this thesis, we study mechanisms that use machine learning methods to make more

e�cient the process of image annotation. We focus our work in the task of obtaining up-

to-date annotations of geographical objects, by processing remote sensing images. The

main research question in this thesis is formulated as follow:

How can we improve the quality of open geographical databases with minimum human

e�ort in data annotation?

This thesis has a particular focus on improving positional and completeness accuracy of

OSM data by using machine learning methods and remote sensing imagery. Nevertheless,

in Chapter 2 of this thesis, recent methods that propose solutions to di�erent quality

issues in OSM data are included in our literature review.

1.5 Structure of the thesis

This thesis is structured as follows:

In Chapter 2, we present a review of works that use machine learning methods to

improve the quality of OSM data and also machine learning based techniques that use

OSM data for applications from other domains. For instance, we review works that

have been proposed to correct building annotations, �nd missing roads in road networks,

autocomplete missing street names and correct wrong semantic tags. One of our works,

presented in Chapter 3, is also brie�y described in this review. We also present works

that use machine learning and OSM data in other domains, such as landcover/landuse

mapping and enable navigation/routing applications.

In Chapter 3, we present a methodology to correct rural building annotations in

OSM, by analyzing remote sensing imagery [135]. We identi�ed three main problems in

OSM annotations of rural buildings: i) they are geometrically misaligned, ii) some annota-
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tions do not correspond to buildings in the aerial imagery, and iii) some OSM annotations

are missing for buildings that are present in the aerial imagery. We propose solutions for

these three problems. The methodology starts by correcting alignment errors of the build-

ing annotations by using a Markov Random Field (MRF) method and removing polygons

based on a building probability map obtained by a Convolutional Neural Network (CNN)

model. The last step of the methodology is the prediction of new building annotations

that are missing in OSM by using a CNN model that predicts building footprint with

prede�ned shapes. Following the suggestions of the reviewers of the thesis we have better

standardized the mathematical symbols used to describe the method proposed in Sec-

tion 3.2.2. Since the content of Chapter 3 is already published we present the improved

version of the aforementioned section in Appendix B.

Automatic approaches, including our method for automatic correction of rural build-

ing annotations can not obtain the desired quality level. Thus, in Chapter 4 we present

an interactive approach to correct annotations of rural buildings in OSM. It starts by

correcting misalignment errors based on aerial imagery of the analyzed geographical lo-

cations. Then, a building probability map, as obtained by using an e�cient building

detection/segmentation method, is compared with the original OSM annotations to get

a measure of annotation correctness. This measure is used to select just the regions in

the map that require some correction. The user is asked to verify/correct the selected

tiles during several iterations until a stopping criterion is met. In this process, the model

is improved with the new annotated data. The experimental results show that the pro-

posed method greatly reduces the amount of data that the volunteers of OSM need to

verify/correct.

We also propose an alternative strategy to the traditional manual visual interpretation

over a large remote sensing imagery, which can minimize the e�ort of human annotators.

In Chapter 5, we present a general interactive method for the annotation of objects

in aerial imagery [136]. In this approach, image features are extracted and projected

onto a 2D space, by using the t-SNE (t-Distributed Stochastic Neighbor Embedding [78])

algorithm. Then, the samples are selected and annotated by a user in the 2D projection.

This methodology facilitates the construction of e�ective training sets more e�ciently

than using the traditional manual annotation over the aerial imagery. The method is

evaluated on annotations of coconut trees in OSM. Note that this method could be also

applied to other geographical objects in OSM, as long as high spatial resolution imagery

is available.

1.6 List of publications

This thesis includes the following submitted or published works.

• J. E. Vargas-Muñoz, S. Srivastava, and D. Tuia, A. X. Falcão OpenStreetMap, Ma-

chine learning and Remote sensing: challenges and opportunities. IEEE Geoscience

and Remote Sensing Magazine, 2019 (submitted)

• J. E. Vargas-Muñoz, S. Lobry, A. X. Falcão, and D. Tuia. Correcting rural building
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of Photogrammetry and Remote Sensing, vol 147, pages 283-293, 2019
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Remote Sensing Symposium (IGARSS), 2019 (to appear)
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Chapter 2

OpenStreetMap, Machine learning and

Remote sensing: challenges and

opportunities

Abstract

OpenStreetMap (OSM) is a community-based, freely available, editable map service that

was created as an alternative to authoritative ones. Given that it is edited mainly by

volunteers with di�erent mapping skills, the completeness and quality of its annotations

are heterogeneous across di�erent geographical locations. Despite that, OSM has been

widely used in several applications in Geoscience, Earth Observation, environmental sci-

ences, and control. In this work, we present a review of recent methods based on machine

learning to improve and use OSM data. Such methods aim either 1) at improving the

coverage and quality of OSM layers, typically using GIS and remote sensing technologies,

or 2) at using the existing OSM layers to train models based on image data to serve

applications like navigation or landuse classi�cation. We believe that OSM (as well as

other sources of open land maps) can change the way we interpret remote sensing data

and that the synergy with machine learning can scale participatory map making and its

quality to the level needed to serve global and up-to-date land mapping.

2.1 Introduction

Mapping systems need to be reliable and frequently updated, which makes them costly to

be maintained. Due to limited budget, authoritative maps are usually not fully updated

at regular time intervals, and present temporal, spatial, and completeness inaccuracies.

Recently, Volunteered Geographic Information (VGI) [44] has appeared as an alternative

to authoritative map services. VGI collects mapping information from individuals, usu-

ally volunteers, and stores the information in a database which is often freely available.

OpenStreetMap (OSM) is one of the most successful VGI projects. It started in 2004 and

currently counts more than 5 million users 1 from di�erent parts of the world. This gives

1https://osmstats.neis-one.org/
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OSM the potential to provide updated mapping data at global scale.

OSM information is represented by four types of data: nodes, ways, relations, and

tags, which are constantly edited by volunteers.

- A node is a location on the earth's surface, as determined by latitude and longitude

coordinates. Points of Interests (POIs) such as bus stations can be represented by

nodes.

- A way is a list of nodes forming polylines, that can represent road networks or areal

objects (closed ways) like buildings.

- A relation represents the relationship among objects � e.g., a group of road seg-

ments can represent a bus route.

- A tag is a key-value pair that contains information of an object � e.g., a restaurant

can be represented by a way with a tag �amenity=restaurant".

Although the OSM data is constantly under improvement, the completeness and qual-

ity of the annotations in di�erent regions are a�ected by the number and mapping skills

of the volunteers [94]. As reported in [49], the spatial coverage of OSM is heterogeneous

in di�erent geographical regions � i.e., urban areas are more regularly updated than ru-

ral areas. In road networks, missing roads are reported in [36] and inaccurate road tags

are reported in [60]. The positional accuracy of building footprints in OSM sometimes

requires corrections [141]. Several works in the literature have studied methods to assess

the quality of OSM data by quantifying: data completeness [67], positional accuracy [32],

semantic tag acccuracy [39], and topological consistency [98]. Some works focus on meta

analysis of OSM, like the analysis of the contributors' activities [97, 6] and the quality

assessment of the OSM data [113, 57].

Despite its completeness and quality issues, OSM has been widely used for sev-

eral applications: e.g., validation of landcover maps [35]; landcover/landuse classi�ca-

tion [117, 8, 119]; navigation and routing applications like tra�c estimation [75] and

pedestrian, bicycle, and wheelchair routing [112, 95]; detection of buildings and roads in

aerial imagery [135, 93]; 3D city modelling [101]; indoor mapping [42]; and location-based

map services [111].

In the recent years, the automation of tasks involving OSM data has received in-

creasing attention: on one hand, research aiming at the improvement of the OSM layers

has turned to Earth observation and machine learning algorithms as automatic ways to

complete footprints in missing areas and verify speci�c annotations, mostly to ease and

decrease the workload of volunteers. On the other hand, the rise of deep learning [145] has

found in OSM a very valuable source of label information to train large models for image

recognition from Earth Observation data, but also brought issues related to the quality,

standardization, and completeness of the data used for training the models. In both cases,

and in countless applications, the alliance of machine learning, Earth Observation, and

OSM layers is proving to be an enabling factor for tackling global challenges in new ways.

To present the potential and opportunities of OSM for geoscience and remote sensing

research, in this paper we present a review of methods based on machine learning to
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improve and use OSM for applications in di�erent domains. Note that, we do not intend

to cover an exhaustive list of OSM applications, but we focus on the ones that involve

machine learning techniques only.

In Section 2.2, we review methods based on machine learning to improve the com-

pleteness and quality of the OSM objects, such as building footprints, street networks,

and points of interest. Section 2.3 reviews the works based on machine learning for

applications like landcover/landuse classi�cation, navigation, and �ne-scale population

estimation. Section 2.4 summarizes the discussion and draws promising future research

areas at the interface of ML and VGI. Section 2.5 states the conclusion about this paper.

2.2 Improving OSM data with machine learning

The next sections describe methods based on machine learning to improve di�erent types

of OSM annotations: building footprints, street networks, semantic tags, and points of

interest.

2.2.1 Building footprints

Detecting geometric mismatches

Buildings are one of the most widely annotated objects in OSM. Although the ge-

ometrical features and tags of the buildings in OSM are usually correct (especially in

urban areas), there are cases where the building footprints are not accurately mapped by

volunteers. Figure 2.1 presents examples of incomplete OSM building annotations in the

cities of São Paulo and Amsterdam. An autoencoder neural network method is proposed

in [141] to measure the accuracy of OSM building annotations with respect to o�cial gov-

ernmental data in the city of Toronto. The authors extract geometrical mismatch features

to train an autoencoder neural network. Then, the reconstruction error predicted with

the trained model is interpreted as a score that represents the quality of the annotation

for a particular region. This method could be useful to import building footprints from

other sources to OSM, since the proposed score could be used to identify where are the

most mismatched regions that need to be carefully analyzed by annotators.

Detecting vandalism behavior

Some building annotations in OSM are intentionally edited with wrong geometries,

such cases are known as digital vandalism. In order to identify vandalism in OSM data,

the authors in [96] propose a rule-based system that analyzes temporal data of user anno-

tations. For the case of buildings, in particular the authors in [124] propose a clustering-

based method to detect vandalism of building annotations. This method extracts geomet-

rical features from the OSM vectorial building data (e.g., perimeter, elongation, convexity,

and compacity) and then �nds groups in the feaure space to detect outliers, which are

assumed to be possible vandalized building footprints.
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(a) (b)

Figure 2.1: Examples of OSM building annotations (regions highlighted in blue) with
completeness errors superimposed over Bing aerial imagery: a) incomplete annotation of
buildings in the city of São Paulo, b) incomplete annotation of buildings in the city of
Amsterdam.

Correct and create new annotations

In addition to the geometrical features of OSM building annotations, other works in

the literature use aerial imagery to correct building annotations [135, 146]. In [135], the

authors propose a methodology to correct rural building annotations in OSM. The paper

points out three common problems in OSM building annotations in rural areas: they

are geometrically misaligned (see Figure 2.2a), some annotations do not correspond to

buildings in the updated aerial imagery (Figure 2.2b), and some OSM annotations are

missing for buildings that are present in the updated aerial imagery (Figure 2.2c). The

authors propose solutions for the three issues by using Markov Random Fields (MRF)

to align annotations and remove annotations using a building probability map obtained

by a Convolutional Neural Network (CNN). The last step of the method is the predic-

tion of new building annotations that are missing by using a CNN model that predicts

building footprint with prede�ned shape priors. The method in [146] aims at correct-

ing OSM building annotations by using contour information from image segmentation of

oblique images, acquired by Unmanned Aerial Vehicles (UAV). The paper uses contour

information of multiple-view images and 3D building models to correct OSM building

annotations. Some companies have also made great e�orts to improve the geometrical

completeness of OSM. Microsoft has used deep learning models to compute new building

footprints by processing satellite imagery in the United States of America 2.

2https://blogs.bing.com/maps/2018-06/microsoft-releases-125-million-building-footprints-in-the-us-
as-open-data



24

(a) (b) (c)

Figure 2.2: Examples of rural building annotations errors found in OSM superimposed
over Bing aerial imagery (polygons in blue represent building annotations): a) misalign-
ment annotation errors, b) annotations that do not match with any building, c) missing
building annotations.

2.2.2 Street Network

The quality of street network information in OSM is crucial for several applications. The

quality of street type tags and the completeness of the road network data are critical

for route planning, while the street names are important to perform queries on the OSM

map. As reported in [98, 11], road networks in OSM present heterogeneous quality and

some completeness errors even in urban areas.

Correcting topology

In [36] the authors propose a method to improve the completeness of road networks.

Speci�cally, they present a method based on machine learning to identify missing roads

between candidate locations (two nodes of the OSM road network). The method extracts

several features from each pair of candidates from OSM data such as connectivity, street

type, and node degree in the OSM road network. The work shows empirically some

evidence that the shortest path distance between two nodes in an OSM road network is

correlated with the straight line distance. The extracted features are then used to train a

Logistic Regression classi�er to predict missing roads. The last step involves the pruning

of some predictions to increase their precision.

Extracting roads from aerial images

The automatic extraction of road networks has also been attempted by analyzing

remote sensing imagery. The work proposed in [24] performs per pixel classi�cation using

a CNN-based method and later obtain the centerline of the roads. The authors of [90]

also use CNNs and centerline computation, but additionally they correct some gaps in

the extracted road network by generating several possible missing road candidates and

selecting some of them with the help of another CNN. Recently, more accurate results

have been obtained by some methods [16, 137] that iteratively construct the road network
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Figure 2.3: Three di�erent street types (secondary, tertiary and residential colored in
red, blue, and cyan, respectively) over the OSM map in the city of Wageningen, the
Netherlands.

graph, by adding new edges to the graph. The authors in [15] propose a method that is as

accurate as [16] but much more e�cient. This CNN-based method output road directions

for each pixel to create a road network.

The authors of [92] propose a CNN-based method that uses aerial imagery as well as

ground-based pictures, in the city of Karlsruhe, Germany, to extract road networks and

other objects such as parking spots and sidewalks that could be integrated into the OSM

database. Facebook has also implemented deep learning methods to analyze satellite

imagery but for the detection of new road networks in developing countries in the OSM

map 3

Assigning attributes: road types

Topological and geometrical features extracted from road networks can be very useful

to predict street types. Figure 2.3 depicts three types of streets (i.e., secondary, tertiary,

and residential streets) over the OSM map. It can be observed that residential street

segments are small in length (distinctive geometrical feature) and that tertiary roads are

connected with several residential streets (distinctive topological feature). A solution

to �x incorrect street type tags in OSM is then presented in [58]. The authors extract

topological features from OSM road network data to train a neural network classi�er that

predicts if a street is of type residential or pedestrian. This classi�er can be useful to �nd

inconsistent street type tags in OSM.

A multi-granular graph representation of street networks is proposed in [59]. This

structure combines the primal (where nodes are road intersections) and dual representa-

tions (where nodes are fragments of roads) of road networks. This multi-granular rep-

3https://wiki.openstreetmap.org/wiki/AI-Assisted_Road_Tracing
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resentation is used in [60] to extract features and train a Random Forest classi�er that

is able to classify streets to 21 di�erent street categories in OSM. The method uses Bag

of Words computed over geometrical and topological features of the analyzed streets and

their neighbors. The method in [61] uses graphical models with geometrical and spatial

features, such that the parameters of the model are learned by Structured Support Vector

Machines (SSVM) [125]. More recently, the authors in [62] propose a multi-layer CRF

(Conditional Random Field) model to perform hierarchical classi�cation of street types

into coarse and �ne-grained classes.

Assigning attributes: structural

Detecting multilane roads is important to model tra�c in urban areas. However, the

tag 'lanes' that is used to specify how many tra�c lanes a road has is usually empty in

OSM. Therefore, some works [73, 142] have developed methods to detect multilane roads

in OSM data by analyzing the polygons formed by the road network. This is possible

because frequently multilane roads are digitized as multiple parallel roads with terminals

in road crossings. In [73] the authors proposes to extract geometrical features (e.g., area,

perimeter, and compactness) from polygons obtained from the road network and train

SVM classi�er to predict if a road has multiple lanes. After that a postprocessing step

is performed, by using a region growing algorithm, to analyze if roads connected to the

predicted multilane roads are also multilane roads. The method proposed in [142] also uses

geometrical features to train a classi�er, a Random Forest in this case, but the predictions

are used to train a second Random Forest classi�er that uses geometrical and topological

features, such as the percentage of neighboring roads that were classi�ed as a multilane

road by the �rst classi�er. In [91] the authors use an MRF and data extracted from

remote sensing images (e.g., edge information, cars detected, and contextual information)

to correct OSM road centerline locations and estimate the width of OSM roads.

Extracting road data from GPS locations

Sequences of GPS positions (also called tracking data) of users can be used to enrich

OSM data. This information can be obtained by GPS locations of cars or applications

installed in the volunteers' mobile devices. In [14], the authors propose to �nd errors

in OSM data by analyzing patterns extracted from GPS positions and OSM mapping

information. For instance, indoor corridors wrongly labeled as tunnels in OSM can be

detected by verifying if the trajectory data comes from a pedestrian or a car.

In [13], the authors propose to use GPS positions and machine learning models for

recomending the addition of new objects to OSM. For instance, GPS positions can help

us predict a missing street in OSM by observing a linear shaped agglomeration of points

at some location, where there is not a street in OSM but it is close to the road network.

Analyzing the spatiotemporal GPS positions one can also identify, for example, that a

road in OSM is a motorway because of the high velocity of objects derived from the GPS

information data. The authors in [13] extract several features from GPS information, such

as the density of nodes in the trajectory and speed of movement. Two types of classi�ers
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are trained: one to predict the geometry and the other to predict object attributes, such

as motorway, bicycle lanes, one or two-way street. For geometry classi�cation, the KNN

classi�er performed better than other algorithms like Logistic Regression and Random

Forest. It is observed that the KNN model obtains poor results when detecting polygonal

geometries, because of the lack of data along the boundaries of polygonal objects. For the

classi�cation of geographical object attributes, the Random Forest classi�er outperforms

the compared traditional machine learning methods.

In [69], the authors utilize GPS information for the reconstruction of road network

geometries. The extracted road networks from updated GPS locations can be useful to

improve the OSM map. One issue is obtain accurate road geometries since the GPS

locations present errors in the range of 5-20 meters. This shortcoming can be mitigated

by using multiple trajectories obtained from the same road segment. The authors observe

that the accuracy of geometries increase with the number of GPS samples for each road

segment.

2.2.3 Semantic tags

The annotation of a geographical object in OSM consists in the digitization of the ob-

ject geometry (e.g., polygons, lines, or points) and also the attribution of a tags to it.

OSM does not provide a rigorous classi�cation system of the geographical objects. It just

gives some recommendations and a set of prede�ned tags that can be used to annotate

objects. Thus, the �nal label attributed to the OSM objects is de�ned by the volunteers

based on their knowledge about the objects under annotation. This can lead to incorrect

tag annotations since sometimes it is di�cult for inexperienced users to di�erentiate be-

tween similar classes. The decision if a water body is a lake or a pond will depend on

the knowledge of the volunteer and on his/her analysis of the aerial imagery or in-situ

information.

Recommendation systems

OSM also allows the assignment of tag values that are not in the set of recommended

OSM tag values, which detriments standardization of OSM data. The authors in [83]

propose a method to identify recommended OSM tags that are equivalent to new tags

created by annotators. The paper proposes an unsupervised method that uses tag usage

statistics and geometry type information to compute a similarity measure between a given

tag value and a set of common tag values recommended by OSM. This approach just uses

OSM data, in contrast with the method proposed in [10], which uses external data, such

as information from the OSM wiki website. Other works [65, 131] have implemented tag

recommendation tools as plugins of JOSM 4, a widely used editor of OSM data. In [65],

the authors proposed the tool called OSMRec that uses geometrical and textual features

to train a Support Vector Machine classi�er that is used to recommend a set of tags

for new objects that are being digitized by annotators. The tool OSMantic is proposed

in [131] and uses semantic similarity and tag frequency to recommend tags.

4https://josm.openstreetmap.de/
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Tags veri�cation

As shown in the previous section, several methods propose machine learning models

based on properties of OSM objects. Then, the trained classi�ers can be applied to

another set of OSM objects to �nd possible annotation errors. In [3], the authors present

three strategies of how such learned classi�ers can be applied (see an illustration of them

in Figure 2.4).

1. Consistency checking, where the classi�er is applied while the user is editing and

assigning tags to OSM objects. In this case, the editing tool can, for example, inform

the volunteer that the assigned tag value is inconsistent with what the classi�er

predicted. Then, the annotator can modify the annotation if required, by taking

into consideration the classi�er's recommendation

2. Manual checking, in which the classi�er is applied over a selected set of objects

already registered in OSM. Then, the objects whose tags present inconsistencies

with the predictions of the classi�er are manually validated by the users

3. Automatic checking, in which a classi�er is used to automatically correct annotations

based on its predictions without human veri�cation.

The method proposed in [3] aims to �nd errors in tags used for annotating green area

objects (i.e., meadow, garden, grass and park). The authors observed that these four

types of green area objects are some times mislabeled by OSM annotators. Figures 2.5a-b

illustrate a case where a grassland area in the center of a roundabout was wrongly la-

beled as a park. Figures 2.5c-d depict a case where a grassland area with some trees is

wrongly labeled as a forest. The technique proposed in [3] extracts geometrical, topolog-

ical, and contextual properties (e.g., object area and features based on the 9-Intersection

model [30]) and trains a K-Nearest Neighbours (KNN) classi�er to analyze the labels of

the four types of green area objects in OSM. The authors in [3] perform an experiment

that consists in asking users to manually verify/correct objects with possible erroneous

labels. These objects are detected by a classi�er, and the experiment shows the e�ective-

ness of the approach to detect mislabeled green areas. Another approach proposed in [2]

tries solving this problem (disambiguation of green areas with the same four classes) by

extracting rules from the OSM dataset using the algorithm proposed in [1]. These rules

are extracted based on topological relations between geographical objects.

2.2.4 Points of Interest

Points of Interest (POIs) are key elements in OSM. They indicate the location of geograph-

ical objects that are commonly used in the city, such as bus stations, cafes, restaurants,

ATMs, etc. Thus, the quality control of new added POIs to the OSM database is very

important. Some OSM editors, like JOSM implement basic rules to avoid errors (e.g.,

duplicate elements) while editing objects in OSM. However, this type of topology quality

control veri�cations does not take into account the spatial relationship between a new

POI and neighboring geographical objects in OSM.
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Figure 2.4: Three strategies used with a classi�er to improve OSM data, according to [3].
a) contribution checking, b) manual checking and c) automatic checking

Plausibility of new additions

In [66], the authors propose a recommendation tool that evaluates the positional plau-

sibility of a new registered POI with a certain category label. That work proposes to

use spatial co-existence patterns for computing a plausibility score. Con�dence scores are

computed based on the frequency of occurrence of each pair of POI categories (i.e., {ATM,

Bar} or {Bank, supermarket}). Then, the similarity score of two POIs is de�ned based

on the con�dence values of their POI categories. Finally, the plausibility score of a new

POI is computed as the sum of the similarity score of the new POI and its neighbors. In

order to compute the con�dence values of pairs of POI categories, the authors recommend

using POIs of the same city where the tool has to be validated. This is because di�erent
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(a) (b)

(c) (d)

Figure 2.5: Misannotated green area objects in the OSM map alongside with the Bing
imagery of the corresponding location: a-b) A grassland area at the center of a roundabout
mislabeled as a park in the city of Campinas, Brazil, c-d) A grassland area with some
trees (located at the bottom right of the image) is mislabeled as a forest in the city of São
Gonçalo, Brazil.

cities may have di�erent patterns.

In [66], a case study is shown by evaluating the plausibility of a new ATM being added

to four locations in Paris (besides a river and bridge, Paris downtown, middle of a park,

and outside the city). The plausibility values obtained are coherent with what is expected

� e.g., the plausibility score of a new ATM located in Paris downtown is much larger than

the other alternatives.
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Tags prediction

In [37] the authors propose a method that can predict tags of Points of Interest (POIs)

based on their names. This method can be useful to extract tag information for POIs that

lack of tagging information. For instance, a POI with name "Chicken Palace" probably

should have the tag �amenity=restaurant". This work used the number of occurences of k-

grams, substrings of a given size, extracted from the POI names to create feature vectors.

Then, a Random Forest classi�er was trained with OSM reference data to food, shop and

tourism related POIs in OSM obtaining accurate prediction for some food related classes.

2.3 Using OSM data with machine learning algorithms

This section presents methods based on machine learning to use OSM in other appli-

cations, namely landuse/landcover classi�cation, building detection and segmentation,

navigation, tra�c estimation, and �ne-scale population estimation.

2.3.1 Landuse and lancover

Landcover/landuse mapping has been attempted by governmental organizations (e.g.,

Urban Atlas 5), commercial services (e.g., Google maps) and crowdsourced projects (e.g.,

OpenStreetMap). Several governmental surveys are freely available. However, the quality

of the landuse maps depends on the city and country and also this data is of few use when

is not updated frequently. Commercial services like Google maps are more frequently

updated but great part of the geographical information in such services are not openly

available. In contrast, crowdsourced projects, like OSM provide access to all the collected

geographical information and they are regularly updated in several cities.

The data quality of some landuse types in OSM is comparable to governmental surveys.

In [7], the authors compare the accuracy of OSM data for landuse mapping in seven large

European metropolitan regions. The thematic accuracy and degree of completeness of

OSM data are compared to the available Global Monitoring for Environment and Security

Urban Atlas (GMESUA) datasets. Evaluation of several land use types suggests that some

OSM classes have good quality, such as forest, water bodies, and agricultural areas, and

could be used for landuse planning.

Several works have proposed methods to predict landcover/landuse labels by using

remote sensing imagery and OSM landuse labels as reference data to train a classi�er.

The authors in [63] use time-series Landsat imagery and OSM annotations (i.e., object

boundary delineations and landuse labels) to train and evaluate several supervised meth-

ods for landcover classi�cation, considering six classes (e.g., impervious, farm, forest,

grass, orchard, and water). The authors in [64] use aerial imagery and a large amount

of building and road annotations from OSM as training data for supervised classi�ca-

tion. The collected annotations are selected without any quality veri�cation and thus the

authors observe several cases of low-quality annotations. The authors show that Convo-

5https://land.copernicus.eu/local/urban-atlas
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a)	 b)	 c)	

d)	 e)	 f)	

Figure 2.6: Data sources and local climate zones prediction map in the region of North
Rhine Westfalia [126]. All the sub�gures correspond to the region in the blue square in
the right most map.

lutional Neural Network (CNN) methods trained with this type of data can achieve high

accuracies as compared with methods that use a relatively small amount of good quality

data. The authors in [8] propose a CNN based method that combines aerial imagery

and rasterized OSM data to predict per-pixel landuse labels. In [126], The authors pro-

pose a method for landuse mapping at large scale (approx. 34000 km2 in the region of

NorthRhine-Westfalia, Germany). Each spatial unit is a 200m x 200m cell characterized

by multimodal features: remote sensing data (RapidEye bands and texture features, see

Fig. 2.6a-b), 3D models (see Fig. 2.6c) and OSM data (Point of interests location and road

networks (see Fig. 2.6d), both encoded as street densities at the cell level (see Fig. 2.6e)).

Other works use OSM data and ground-based pictures of a set of OSM objects, to teach

a model how to predict the landuse (e.g., museums, parks, educational institutions, sports

centers, and hotels) of other OSM objects [118, 117, 119]. The method proposed in [118]

use pictures, obtained from Google Street View (GSV), which capture multiple viewpoints

of OSM objects (see the last three columns in Figure 2.7) and use a pre-trained CNN

model to extract features and perform label prediction of 13 landuse types. The method

proposed in [117] presents an extension of [118] and considerably improves the prediction

accuracy. That method train end-to-end a CNN model that take as input a variable

number of ground-based pictures and extract and combine features from the multiple

pictures learning to identify the proper landuse class (among 16 landuse categories) of an

OSM object.

More recently, the authors in [119] propose a CNN-based method that combines aerial

imagery and ground-based pictures information to perform landuse prediction, using OSM

as reference data. That method greatly improves the accuracy obtained by the method

in [117] which uses only ground-based pictures. Additionally, that work also proposes

a strategy to deal with the cases when ground-based pictures are missing for an OSM

object. Figure 2.7 illustrates aerial and ground-based images corresponding to two OSM

objects in the city of Paris. The �rst row shows the images of a church. If we just observe

the aerial imagery, it is di�cult to be con�dent in predicting the object as a church.

Ground-based pictures can give additional visual features to predict the correct landuse
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Figure 2.7: Aerial imagery, from Google maps, and ground-based pictures, from Google
Street View, for two di�erent OSM objects in the city of Paris. The pictures in the �rst
row correspond to a church. The pictures in the second row correspond to sport facility.

label. The second row shows images of a sport facility in OSM. Because of the fences

around the building, sometimes it is di�cult to recognize a sport facility. In this case,

aerial imagery is usually more valuable to predict the correct landuse label.

2.3.2 Building detection and segmentation

Building annotations are widely available in OSM and they are usually of considerable

quality in several urban areas. Thus, OSM building annotations have been used as refer-

ence data to train CNN-based building segmentation methods [81, 93, 144]. The building

segmentation maps produced by these methods are not directly usable for Geographi-

cal Information Systems (GIS) because they are raster images. However, some meth-

ods [87, 122] have been recently proposed to output vectorial building polygons suitable

for GIS software. The method proposes in [87] uses Active Contour Models with its pa-

rameters learned by a CNN to output vectorial footprints. The authors of [82] and [122]

propose to convert binary building classi�cation maps into vectorial outputs by using a

mesh-based approximation method.

In contrast to urban buildings, rural buildings are sparsely located in large geographical

areas and their annotations in OSM are less frequent and of lower quality as compared

to buildings in urban areas. Some techniques have proposed to improve the detection of

locations of rural buildings in aerial imagery [23, 22]. In [23], the authors propose a CNN-

based method to detect buildings in aerial imagery using an iterative process, in which

new samples are selected for annotation by an active learning method and the model is

retrained. In [22] the authors use multiple sources of crowdsourced geographical data
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(namely OSM, MapSwipe 6, and OsmAnd 7) and an active learning strategy to train a

CNN model that detects image patches with buildings. Furthermore, the authors perform

an experiment in MapSwipe (smartphone-based application for humanitarian mapping)

asking the volunteers to just verify the tiles that are selected by a trained classi�er, saving

considerably the user e�ort and obtaining an accurate classi�er.

2.3.3 Navigation

In several urban areas, building and road network data in OSM have similar quality

as commercial map services. Thus, OSM has been used for navigation/routing applica-

tions [77, 45, 48]. In [77], the authors show that routing services based on OSM data can

attain real-time shortest path computation in large areas for web-based applications as

well as in hand-held devices. In [45], the authors show that OSM data can be used for

pedestrian routing. The paper proposes a solution to e�cient routing in open spaces (e.g.,

squares, parks, and plazas). A more recent and extensive analysis of di�erent strategies

to deal with routing that consider open spaces is presented in [48].

In [34], the authors propose a method for accurate global vehicle localization. That

work uses visual odometry and OSM data obtaining better localization results than meth-

ods that just rely on visual odometry approaches. A probabilistic model for autonomous

robot navigation is proposed in [120]. It uses a Markov-Chain Monte-Carlo method to

combine semantic terrain information extracted from 3D-LiDAR data and OSM informa-

tion.

2.3.4 Tra�c estimation

Tra�c prediction is a challenging task that can be very useful for congestion management

and car navigation. The authors in [140] propose a method to predict four classes of

tra�c (i.e., good, slow, congested, and extremely congested) in four cities in China. That

work uses data obtained from POIs of Baidu maps and geographical objects from OSM

(the number of POIs in OSM is limited in China). This geographical data together with

other features, like weather, temperature, and house pricing are used to train a machine

learning model for tra�c prediction. The authors use tra�c data from Baidu maps as

reference data to train a Support Vector Machine (SVM) classi�er. In that work, the

authors observe that tra�c congestion data is very unbalanced, because most of the time

the tra�c is good considering all the time intervals in one day (with exception of the

rush hours 9h and 17h). Thus, the authors assign higher weights to the classes with less

number of samples. The results show that even using class weighting, the accuracy of the

model is high for the class good and poor for the other classes. Additionally, that method

is compared to the tra�c prediction system of Baidu maps outperforming it in some time

intervals of the day and obtaining reasonably good performances when the model trained

in one city is used for prediction in another city.

6https://mapswipe.org/
7https://osmand.net/
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In [75], the authors deal with a similar problem, predicting tra�c speed using a regres-

sion method. A public dataset named UIUC New York City Tra�c Estimates 8 is used

for their experiments. This dataset contains hourly average tra�c speed measurements in

the New York City road network, obtained from car trips. Several geographical features

are obtained from OSM, such as road length, number of roads connected to the analyzed

road, number of neighbor nodes and roads in the area, and also temporal features (e.g.,

time and whether it is a workday). In order to predict tra�c speed in the target areas,

the authors of that work propose the method Cluster-based Transfer Model for Prediction

(CTMP), which �rst clusters the road features of the source and target areas. Then, the

tra�c speed of the target area is computed based on the nearest neighbor roads data of

the source area, which contains tra�c speed information. CTMP shows better results

than other baseline methods, such as Neural Networks and Support Vector Regression.

More recently in [106], the authors propose a deep learning method that models the road

network topology to predict tra�c �ow in the city of Chengdu, China. The authors

use neural networks to model road network topology and residual learning [53] to model

spatio-temporal dependencies. One limitation of that work is that it requires tra�c �ow

historic reference data of the target location to be able to predict the tra�c �ow in a

di�erent time interval.

2.3.5 Fine-scale population estimation

Population distribution at the building level is important for several tasks, like urban

planning and business development. Population estimation at the building level scale can

be obtained by areal interpolation. Although this technique usually requires 3D building

models, obtained by LiDAR data, the authors in [9] propose to use building footprints

and POIs from OSM to predict population distribution by using areal interpolation. The

authors in [143] use a Random Forest model to predict population at the grid level (i.e.,

the area of study is divided into grid cells) by using Baidu POIs, mobile user density

data, and road networks from OSM. Then, the grid level estimations are transformed to

building level estimations.

In [38], the authors propose a CNN-based method to perform population density

estimation at the grid level. First, the area of study is divided into grid cells of size

200 × 200 meters. Then, for each cell, they compute several urban features, such as

building area, number of buildings, and number of POIs. Finally, the authors use a fully

convolutional neural network, applied over the urban features of the grid cells, to obtain

the population estimation of the corresponding grid cells. The experimental results show

that by training the model with data from 14 French cities, the model attains low error

rates in the validation data extracted from the city of Lyon.

8https://lab-work.github.io/data/
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2.4 Discussion and future works

In this section, we discuss potential promising research avenues at the interface of OSM

and machine learning.

Going multimodal

Although the use of several sources of data have proven to be bene�cial for solving sev-

eral problems it has been only applied in relatively few works described in this manuscript,

such as in [119]. We believe that the performance of supervised methods used to improve

OSM data can be greatly improved with the use of several data sources, such as images,

tracking data, and social media data. This has been also pointed out in [123] for the

particular case of POIs, where the authors recommend the use of several data sources,

like OSM geographical data, ground-based pictures, and historical data to create more

accurate models for POI label prediction. Among these external data sources, ground-

based pictures obtained from Google Street View (GSV) have found to be particularly

useful to enrich OSM data, for example, for landuse prediction [117] and crosswalk lo-

calization [19]. Recently, crowdsourced ground-based images collected by the TeleNav's

project, called OpenStreetCam 9, has also been used to improve OSM. For instance, pic-

tures obtained from OpenStreetCam have been used to detect tra�c signs 10. Although

nowadays the coverage of crowdsourced ground-based pictures platforms is not as com-

plete as GSV, they have the potential to obtain more updated data and to be available

for everyone at no cost. This data can then be used to obtain up-to-date OSM data of

objects like tra�c lights and road signs, which can greatly bene�t navigation applications.

Supporting users via interaction and skills estimation

Mapping information obtained by machine learning models applied with Earth Ob-

servation data (e.g., building footprints, and road networks) could contain some errors.

Thus, an alternative to performing automatic updates in OSM is to use a human-computer

interactive approach. In this strategy, the machine learning model is used to minimize the

e�ort of the users during the annotation process. This strategy has been already applied

in [15] to improve road network completeness. In that work, an automatic method is

used to extract major roads (in places with a few road annotations) and missing roads

(in places where major roads are already annotated) and the user is asked to verify or

correct if needed the extracted roads. This work shows experimentally that such an inter-

active approach is more e�cient than traditional manual annotation. A related and also

e�ective approach that involves the user in the process is active learning [114, 27]. Ac-

tive learning is an iterative process that consists of intelligently selecting a small number

of samples for user annotation that allow training an e�ective classi�er. We think that

these approaches that involve the interaction between a machine learning model and the

annotator could be applied to improve other aspects of OSM data with fewer annotators'

9https://openstreetcam.org
10https://blog.improveosm.org/en/2018/02/detecting-tra�c-signs-in-openstreetcam/
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e�ort, especially if user's skills are involved in the process, as shown in concurrent research

in crowdsourcing [43, 127].

Between January and May of 2019, the number of active contributors per month in

OSM was less than 1% of the total registered OSM users. However, a few e�orts have been

made to encourage volunteers to frequently edit data. Gami�cation strategies could be

applied to solve the problem, by assigning annotation tasks to volunteers with a game-like

interface and scoring systems. Some gami�cation projects have been listed in the OSM

wiki 11 but they are not of widespread use.

Contributor analysis in OSM have been studied in several works [99]. It has been

observed that volunteers' experience and familiarity with the area edited in the map are

good proxies to estimate the quality of their annotations in OSM. The authors in [115]

propose a measure for estimating annotation trust, by using annotation statistics obtained

from volunteers' activities, object geometries, and temporal data. A trust index could be

also learned with machine learning methods using OSM data statistics with some reference

data. Such trust index could be used to improve methods that are created to verify the

correctness of labels of objects registered in OSM [3, 2].

New ways of searching and interacting with OSM

Search tools are important features of mapping services. However, the search tool

provided by the OSM website has limited capabilities, basically just trying to �nd the lo-

cation of a given place name or address. In [70], the authors propose NLmaps 12, a natural

language interface to query data in OSM. This service can answer textual questions about

geographical facts in OSM. The response is a text and a map with geographical objects

of interest highlighted. For instance, NLmaps can answer the following question: �What

is the closest supermarket from the Royal Bank of Scotland in Edinburgh?". Figure 2.8

illustrates the search results in NLmaps for the question: �Which museums are there in

Heidelberg?". First, the names of the museums found are shown and then their locations

are shown with markers in the OSM map of the city of Heidelberg.

This work uses a semantic parser for the OSM data, proposed in [47] and extended

in [71], to transform natural language text to a Machine Readable Language formula

(MRL) [5]. This representation is used to create a structured query and retrieve OSM

information using an extension of the Overpass API, called Overpass MLmaps 13. Al-

though NLmaps can handle several common questions, it is not able to answer complex

questions like �Where are 4 star hotels in Berlin?". The authors of [71] also propose to

improve NLmaps performance by using user feedback. A simple example of feedback is

to ask the user if the result of the query is helpful or not. More complex feedback can be

obtained from expert users, with knowledge of OSM and the Overpass API. For instance,

one can ask the expert user if the intermediate results of the query processing pipeline are

correct or not. We believe that the implementation of a more intelligent tool for answering

natural language queries in the OSM website could potentially attract more users.

11https://wiki.openstreetmap.org/wiki/Gami�cation
12https://nlmaps.cl.uni-heidelberg.de/index.html
13https://github.com/carhaas/overpass-nlmaps



38

Figure 2.8: NLmaps search results for the query: Which museums are there in Heildel-
berg?.

Recently, the authors of [76] use OSM data for the Visual Question Answering (VQA)

problem, a task that consists in providing a natural language answer for a given image and

a natural language question about the image. The authors create a dataset using OSM

data and Sentinel-2 satellite imagery for training a VQA model. VQA is a challenging

problem and its application for remote sensing imagery is still in its infancy. VQA can

enable to perform some queries in places where there is incomplete mapping data, but

aerial imagery is available.

OSM-enabled augmented reality

Recent applications of OSM data can be further improved by using machine learning

methods. For instance, augmented reality (AR) has great potential to improve the way

we experience the cities, especially for tourism. In [109], an augmented reality tool is

presented to recommend Points Of Interest (POIs) in the city by taking into account the

pro�le of the users. The authors propose a mobile application that shows POIs registered

in OSM in real time with the mobile camera view as background. A case study in the city

of Trani, Italy, shows how a tourist interested in local architectural work can visualize

in the mobile application the POIs, within a distance radius, marked as colored circles

with labels superimposed over the mobile camera view. In [109], a hand engineered rule

is proposed to de�ne which POIs to show to the user. For this type of AR applications,
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reference data could be used by asking users' feedback (e.g., asking to the user to add

POIs visited in a favorites list). Thus, obtaining reference data can enable the use of more

e�ective supervised learning methods to predict adequate POIs for new users.

2.5 Conclusion

In this paper, we reviewed synergetic e�orts involving OpenStreetMap and machine learn-

ing. In the �rst part, we review works that use machine learning to improve OSM data.

These methods deal with the three main object geometric types in OSM: points (e.g.,

ATMs), lines (e.g., roads) and polygons (e.g., buildings). The reviewed works use fre-

quently traditional machine learning methods (e.g., Support Vector Machines and Ran-

dom Forest), but also several of them have used state-of-the-art methods, such as deep

learning based techniques, especially when dealing with image data. Although several

methods could be integrated into OSM editors (e.g., iD editor 14 and JOSM) just a few

works [65, 131] have implemented their methods in such tools.

The second part of the manuscript reviewed works that have used machine learning

based techniques to use OSM data for applications in other domains. We identi�ed two

groups of works. The �rst group uses OSM data as reference data to train machine

learning models, for examples several works that perform landuse classi�cation [117, 119]

and building segmentation [81, 93]. The second group uses OSM data to extract features

for training the machine learning model (e.g., �ne-scale population estimation [38]).

We believe that a mixture of automatic and human-interactive approaches could lead

to obtaining accurate data for OSM with e�cient use of the annotators' labor. The strong

links with machine learning and the ever increasing availability of up-to-date remote

sensing data open countless opportunities for research in this exciting interface among

disciplines.
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Chapter 3

Correcting rural building annotations

in OpenStreetMap using convolutional

neural networks

Abstract

Rural building mapping is paramount to support demographic studies and plan actions

in response to crisis that a�ect those areas. Rural building annotations exist in Open-

StreetMap (OSM), but their quality and quantity are not su�cient for training models

that can create accurate rural building maps. The problems with these annotations essen-

tially fall into three categories: (i) most commonly, many annotations are geometrically

misaligned with the updated imagery; (ii) some annotations do not correspond to build-

ings in the images (they are misannotations or the buildings have been destroyed); and (iii)

some annotations are missing for buildings in the images (the buildings were never anno-

tated or were built between subsequent image acquisitions). First, we propose a method

based on Markov Random Field (MRF) to align the buildings with their annotations.

The method maximizes the correlation between annotations and a building probability

map while enforcing that nearby buildings have similar alignment vectors. Second, the

annotations with no evidence in the building probability map are removed. Third, we

present a method to detect non-annotated buildings with prede�ned shapes and add their

annotation. The proposed methodology shows considerable improvement in accuracy of

the OSM annotations for two regions of Tanzania and Zimbabwe, being more accurate

than state-of-the-art baselines.

3.1 Introduction

The amount of publicly available mapping information in web services, like Google Maps

and OpenStreetMap (OSM), is large, covering great part of the existing human settlements

in the world. Although mapping information of buildings and several other man-made

structures are largely available for urban areas, a signi�cant amount of rural buildings is

not mapped in any of the aforementioned systems. Rural building mapping information
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is important to assist demographic studies and help Non-Governmental Organizations to

plan actions in response to crises 1. There is therefore a need for creating (or at least

updating) urban footprint vector databases in rural areas.

Several works in the literature have approached this problem as the one of detecting

buildings in remote sensing images using shape, color, edge, and texture knowledge-based

features [116, 17]. More recently, Convolutional Neural Networks (CNNs, for a review in

remote sensing see [145]) in combination with other image processing methods have been

used to detect and delineate buildings in urban areas with successful results [93, 81, 110].

Most commonly, the pixel (or region) level detections are merged into vectorial shapes in

a post-processing step. In [87], a CNN model was proposed to avoid this postprocessing

step: vector footprints of buildings are learned directly, by de�ning the building outline

de�nition as an active contour model, whose parameters are learned with a CNN. The

investigation of building detection using deep learning is a �eld of growing interest, also

supported by recent data processing competitions in this direction, e.g. DeepGlobe [29].

Irrespectively of the strategy chosen, the main drawback of using CNN methods in

remote sensing is the need of large amount of labeled data for training. In recent re-

search, OSM annotations have been used as repositories of large labeled data collections.

In GIScience, this source of data has proven to be very powerful, and several works

have proposed methods to automatically predict attributes of OSM objects. For example

in [61], the authors proposed a methodology for automatic prediction of street labels (e.g.,

motorway and residential). In [32], authors proposed a method using geometrical prop-

erties of the OSM annotation polygons to predict the types of buildings (e.g., residential,

industrial and commercial). In [33], OSM data was used to improve robot navigation

for autonomous driving and in [139] OSM data was used for 3D building modeling, al-

lowing visualization of indoor and outdoor environments in 3D maps. Authors in [117]

use Google Street View pictures to predict the landuse of the footprints. They use OSM

annotations as labels to train a deep learning model. Within the remote sensing build-

ing segmentation �eld, OSM annotations of urban areas have been recently used in [8]

and [64] as label information to perform semantic segmentation of buildings and roads.

The INRIA building detection challenge uses corrected OSM footprints as labels [80].

Despite the appeal of using OSM data for training deep learning models, the quality

of these data is uneven. Usually CNNs trained with this type of reference data can learn

to predict the location of the object but not the exact object extent [93]. Several works

proposed methods that can be useful to improve the quality of the OSM data, both for

attribute classi�cation and positional inaccuracies. Authors in [14] detect errors in OSM

annotations of roads using patterns extracted from GPS tracking data. For instance,

indoor corridors wrongly classi�ed as tunnels can be detected using tracked trajectories

of cars and pedestrians. In [52], distance, directional, and topological relationship of OSM

objects are used to detect inconsistencies.

OSM has gathered and made publicly available large amounts of building annotation

data. But if the quality of OSM data has been judged su�cient for urban areas [31],

the same does not hold in rural areas, especially because of the lower update rate and

the drop in the number of volunteers out of cities. By analyzing available OSM data in

1https://www.missingmaps.org/

https://www.missingmaps.org/
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(a) Urban buildings (b) Rural buildings

Figure 3.1: Misaligned OSM building annotations (in orange) superimposed on the im-
agery obtained from Bing maps: a) For urban building misaligned annotations, there is a
considerable overlap with the object in the imagery; b) For the case of rural building mis-
aligned annotations, some buildings in the imagery and their corresponding annotations
do not overlap.

rural areas, we observed that the annotations performed by the volunteers su�er from

three main issues, mostly due to infrequent imagery updates and incomplete/inaccurate

volunteer annotations [14, 12]:

(a) the locations of building annotations might be inaccurate: building footprints are

often present, but displaced on the image plane by up to 9 meters. These displace-

ments are often due to the fact that the image used to digitize the footprint does not

correspond to the image being used for analysis. Two examples of misalignments

are given in Figure 3.1;

(b) some annotations do not correspond to buildings in the imagery: in this case, some

buildings might have been demolished, or simply the annotations by the volunteers

are erroneous [35];

(c) some objects that appear in the imagery are not present in the annotation dataset: in

this case, some buildings might have been missed by the volunteers or new buildings

might have been built in between the two image acquisitions.

In order to deal with inaccurate reference building data, the authors in [93] propose a

loss function to reduce the e�ect of this problem, while the authors in [79] use a Recurrent

Neural Network to improve the classi�cation maps with a small set of perfectly and

manually annotated data. However, as mentioned above, for rural buildings the problem

of inaccurate annotations is more severe, since buildings are smaller and scarcer than

urban buildings in OSM [23]. As one can see in Figure 3.1, there exists considerable

overlapping areas between urban buildings and the misaligned OSM annotations, while

some rural buildings in the image and the OSM annotations do not overlap.

In this work, we propose a methodology to correct OSM rural building annotations.

We tackle the three problems above simultaneously, with a three-stage strategy based on

the predictions of a fully convolutional deep learning model that estimates the likelihood

of presence of buildings.
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(i) First, we propose a method to align buildings and their annotations based on Markov

Random Field (MRF) [20]. We make the hypothesis that alignment errors can be

�xed by simply translating the annotations themselves, since we observed that this

type of error is the most frequent in rural areas (see Figure 3.1(b)). MRFs have been

successfully applied to solve registration problems in several image domains [41, 86,

130]. Our MRF-based method maximizes the correlation between OSM annotations

and a predicted building probability map, while enforcing that nearby buildings have

similar alignment vectors (shift correction vectors). Usually, rural buildings appear

in small groups with the same alignment errors (as a given area is annotated on one

image by the same volunteer, this whole area will present a similar misalignment

when the imagery is updated). For this reason we use nearby rural buildings as

nodes of a small MRF graph. The method then computes a single alignment vector

for all the buildings in each small group of rural buildings.

(ii) Second, the OSM annotations with no evidence in the previously computed building

probability map are removed. For each OSM annotation, we compute the mean

building probability value of the pixels contained in the aligned annotations. If the

computed values are smaller than a threshold [40], we remove the OSM annotations.

(iii) Third, we present a CNN-based method for adding new building annotations. Since

the variety of rural building shapes and sizes is very small as compared to the ones

of urban buildings, the CNN estimates one of 18 commonly appearing rural building

shapes for each non-annotated building.

In Section 3.2 we present the proposed methodology to correct OSM rural building an-

notations. Section 3.3 shows the dataset and the setup of our experiments and Section 3.4

compares the results of our proposed method with other baseline methods. Section 3.5

concludes the paper.

3.2 Methodology

Our methodology to correct OSM annotations of rural buildings requires a fully convolu-

tional neural network (CNN) model trained to generate a building probability map for the

overhead image (Figure 3.2a): this method is detailed in Section 3.2.1. Once this classi�er

is trained, the building correction module consists of three main tasks, as described in

Section 3.1. Figures 3.2b-d illustrate them, from top to bottom. In sections 3.2.2 to 3.2.4

we detail these methods.

3.2.1 Computing building probability maps

In order to correct OSM rural building annotations, we use a building probability map

obtained by a CNN model that performs pixel classi�cation. In this work we use a

CNN model based on [138] that is trained on a small set of manually veri�ed/corrected

rural building OSM annotations. The CNN model performs four convolutional blocks

(convolution followed by spatial pooling, non-linear activation and batch normalization
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Figure 3.2: Proposed methodology to correct OSM rural building annotations: a) predict
a building probability map from an aerial image using a CNN trained for per-pixel classi-
�cation; b) correct alignment errors in the OSM annotations using a MRF-based method
and a building probability map; c) remove OSM annotations based on the aligned anno-
tations, a building probability map, and a thresholding method; d) add new annotations
selected from a set of candidates obtained by a CNN that predicts rural buildings with
prede�ned shapes.

operations) but, di�erently from [138] that uses deconvolutions to upsample the feature

map, we apply the concept of hypercolumns [51] to perform pixel classi�cation. We

modi�ed the original hypercolumn model in the same way as for the baselines of [88]:

the hypercolumns are obtained by upsampling the outputs of previous convolutions to

the size of the input image using bilinear interpolation. This makes the training of the

CNN more e�cient and with similar performance. These activations are then stacked to



45

˴ 1

˴ 2 ˴ 3

˴ 4

˴ 5

˴ 6

Figure 3.3: Neighboring system of the proposed MRF method. Groups of rural buildings
are used as nodes of the MRF graph.

a single tensor which is used to train a Multi-layer Perceptron classi�er to perform pixel

classi�cation. The architecture of the described CNN is presented in Figure 3.2a, while

the details of the speci�c architecture are presented in Section 3.3.

3.2.2 Aligning OSM rural building annotations

The building registration problem is considered as the problem of aligning the vector

shapes from OSM to the predictions of the CNN (Figure 3.2b). Such alignment is per-

formed by estimating alignment vectors, basically shifting every OSM polygon to an area

of high building probability in the CNN map.

In order to compute these alignment vectors, we need to measure how well a given

shift performs. To this end, we use the correlation between the aligned annotations and

the building probability map obtained previously using the image on which the annota-

tions need to be registered. Making the hypothesis that rural buildings are gathered in

small groups where each building has the same misalignment error, we align groups of

buildings instead of individual buildings. This reduces greatly the computational load

and is numerically more e�ective (see the results Section 3.4). Moreover, using groups

of buildings instead of single ones makes the results less dependent on the quality of the

building probability map.

Additionally, we observed that nearby groups of buildings have similar registration

errors. Based on this observation, we build our building registration module on a MRF

model using this prior together with the evidence provided by the building probability

map. Our method aims at �nding the alignment vectors d = {d0, d1, . . . , dn} that need
to be applied to the annotation locations x based on the a probability map y. Groups
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Algorithm 1 � MRF-based alignment algorithm

Input: Original OSM annotations M and building probability map

y
Output: Alignment vectors d

1. Group the original rural building annotations M according to their

spatial distance from each other, obtaining the set of building groups x.
2. De�ne the neighbors Ni of each site i as spatially close sites.

3. Initialize each di to argmax
d∈D

C(di(xi), yi)

4. Run Iterated Conditional Modes (ICM) for MaxIters iterations

5. For t← 1...MaxIters, do
6. For each xi ∈ x, do
7. For each D ∈ D, do
8. Compute energy U(D|xi, yi), equation (3.1)

9. If U(D|xi, yi) < U(di|xi, yi), then
10. di ← D
11. Return d

of buildings, or sites, are used as nodes of the MRF graph (See Figure 3.3), where sites i

and j are neighbors (i.e., j ∈ Ni) in the graph if they are spatially close (see Section 3.3.2

for more details on the MRF graph de�nition).

In our MRF formulation, the unary term is obtained by using the normalized corre-

lation C(di(xi), yi) between the annotation after alignment di(xi) and the building prob-

ability map yi. This term is equal to the average of the predicted probability values yi of

the pixels contained in the aligned annotation di(xi). The pairwise term is de�ned by the

dissimilarity (vector norm of the di�erence of two vectors) between the alignment vector

di of the annotation i and the alignment vectors dj of neighboring annotations j ∈ Ni [86].

The optimal set of alignment vectors d̂ for the annotations is de�ned by:

d̂ = arg min
d∈DN

∑
i

U(di|xi, yi) (3.1)

= arg min
d∈DN

∑
i

− logC(di(xi), yi) + β
∑
j∈Ni

1

Z
||di − dj||2,

where D = {D1, D2, . . . , Dm} is the set of all possible m alignment vectors, β is the

spatial regularization parameter and Z is a normalization factor, de�ned as the maximum

possible distance between two alignment vectors in D. To compute the optimal d̂ by

minimizing the energy function U , we use the Iterative Conditional Modes (ICM) [20]

algorithm initialized with di = argmax
d∈D

C(d(xi), yi). As this initialization is already a

good heuristic (see Section 3.4), the ICM algorithm allows to obtain a good solution in

a few iterations. The inclusion of a distance-based weight in the pairwise term does not

lead to better performances, so it is omitted for clarity. We presented preliminary results

of our proposed method for alignment of OSM annotations in the conference paper [134].

Algorithm 1 summarizes the proposed method for aligning OSM annotations.
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3.2.3 Removing incorrect building annotations

In order to remove OSM annotations that no longer exist in the updated imagery (Fig-

ure 3.2c), we compute the mean building probability value of the pixels contained in the

aligned annotations. We observe that the histogram of these average probability values

roughly follows a bimodal distribution. The group of annotations close to the �rst local

maximum corresponds to some of the few annotations that have average probability val-

ues close to zero (showing high evidence that there is no longer a building in that location

of the imagery) while the other group of annotations gathered around the second and

most prominent local maximum corresponds to the majority of the aligned annotations

that have higher average probability values. Since Otsu's thresholding method [100] is

known not to perform well for unbalanced distributions [72] we use the Minimum threshold

method [40]. This method iteratively smooths the histogram until only two local maxima

are found. After that, the minimum value between the two local maxima is selected as the

threshold. We then remove annotations, which have an average probability value below

this threshold.

3.2.4 Add new building annotations

The last task is the addition of new building footprints (Figure 3.2d). We observed that

rural buildings appear with very few di�erent shapes in the imagery (e.g., circles and

rectangles), as compared to urban buildings. Therefore, we make the hypothesis that a

restricted number of shapes is su�cient to represent most buildings in rural areas. Inspired

by this, we compile a set of 18 commonly appearing shapes and propose a CNN model that

predicts if a building with one of these prede�ned shapes is present in a particular location

of the imagery (see Figure 3.4). Based on our observations, we select 6 basic geometrical

shapes: a circle of radius 3.3 meters, a square of side 4.8 meters, a rectangle of sides 3.6

and 6 meters, and the same rectangle rotated by 45◦, 90◦ and 135◦. Furthermore, for each

base shape we generate two more scaled versions, by approximately increasing its area by

a factor of 2 and 4, resulting a total of 18 considered shapes (see Figure 3.4).

The architecture of the proposed CNN model is depicted in Figure 3.4: we apply

two convolutional blocks followed by one convolutional layer to the input image of size

256 × 256, leading to a 61 × 61 feature map with 512 activations per location (details

of the speci�c architecture are presented in Section 3.3). Afterwards, we apply a 1 × 1

convolutional layer that outputs a matrix of size 61 × 61 and 36 bands. This operation

is performed to compute scores for the two classes of interest (presence or absence of

buildings) with the 18 di�erent shapes in each location of the 61 × 61 grid. This means

that we have a di�erent classi�er for every building shape. Every pixel in the 61×61 grid

corresponds to one location in the original 256×256 input image. Therefore, the location

of our building predictions will have an additional approximation error of less than four

pixels.

For training the CNN model, we use a cross entropy loss on the sum of the binary shape

classi�cation problems. We consider as positive samples of a given building shape, rural

buildings with more than 0.75 Intersection over Union (IoU) value with a shape mask. The

rural buildings with less than 0.30 IoU value with a shape mask are considered as negative
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Figure 3.4: CNN model for adding new annotations of buildings that appear for the �rst
time in the updated imagery.

samples for that particular building shape. The threshold values are chosen empirically

based on the object detection method presented in [105]. Note that if we choose a higher

value for the positive sample's threshold, we might ignore some buildings that have very

similar desired shape and if we use lower values for that threshold, we would take the risk

of including buildings whose shape does not �t with the desired building shape.

The output of this CNN model is a set of rural building candidates that have prede�ned

shapes. We select a subset of these candidates based on the building probability map and

the aligned building annotations, obtained after the annotation removal process. We

�lter out all the candidates that have average probability values (as obtained by the CNN

model that performs per-pixel classi�cation) and detection probability values (obtained

by the CNN model described in this section) lower than a certain threshold t. In case of

overlapping candidates, we select the one with the highest sum of average probability and

detection probability values.

3.3 Data and experimental setup

3.3.1 Datasets

We evaluate our method with OSM rural building data from two di�erent countries,

namely the United Republic of Tanzania and the Republic of Zimbabwe. The evaluation

data collected from these two countries have di�erent characteristics: while the Tanzania's

evaluation region contains severe misaligned and incomplete annotations, the evaluation

region in Zimbabwe contains more accurate annotations. The Bing imagery utilized for the

two datasets were acquired between 2004 and 2014, while the annotations obtained from

OSM were performed by volunteers between 2013 and 2018. Bing maps provides an API

to obtain aerial imagery (red, green and blue channels) at di�erent spatial resolutions
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(e.g., 119 cm, 60 cm, 30 cm). In this work, for the training and testing datasets, we

use Bing maps imagery of 30 cm spatial resolution since we wanted to obtain accurate

building classi�cation maps with the CNN. The lower the spatial resolution, the higher

are the chances to obtain inaccurate building classi�cation maps, with missing buildings

and false positives. Therefore, we recommend the use of imagery with 60 cm or higher

spatial resolution that can be obtained from pansharpened images of satellites such as

QuickBird, GeoEye, Pléiades, WorldView-2, WorldView-3, and WorldView-4.

In order to train the CNN model that predicts the building probability maps (Sec-

tion 3.2.1), we use 3134 OSM rural buildings annotations. These OSM annotations were

manually veri�ed/corrected on a set of Bing aerial images, that cover 23.75 km2, acquired

over the Geita, Singida, Mara, Mtwara, and Manyara regions of Tanzania. In order

to obtain the building probability maps for the Zimbabwe dataset, we �netune the CNN

model trained on Tanzania's annotations with a small dataset of 559 building annotations

obtained from the region of Matabeleland North in Zimbabwe.

In order to evaluate our methodology, we create validation datasets spatially discon-

nected from the training regions. The �rst one is composed of 1094 manually corrected

misaligned building annotations located close to the city of Mugumu in Tanzania, where

we found OSM annotations with di�erent misalignment orientations. The second dataset

is composed of 811 manually corrected misaligned annotations located in the region of

Midlands in Zimbabwe. The validation dataset from Tanzania consists of three rural ar-

eas, for which we obtained Bing images of sizes (in pixels) 7936× 8192, 8192× 8192 and

7168 × 3840, respectively. The validation dataset from Zimbabwe consists of four rural

areas that were covered by Bing images of sizes 4096 × 3328, 4096 × 3584, 5120 × 4352

and 5120× 4352 pixels, respectively.

3.3.2 Model setup and evaluation procedures

- Building probability CNN. For the CNN model that obtains the building prob-

ability maps, the numbers of �lters in the convolutional layers are 32, 64, 128, and

128, with corresponding kernel sizes of 7 × 7, 5 × 5, 5 × 5 and 3 × 3. We apply

max-pooling (with stride 2 and kernel size 3× 3), Recti�ed Linear Unit (ReLU) as

activation function and batch normalization after every convolutional layer. We use

90% rate dropout after on the �nal fully connected layer. We train the model for

5000 stochastic gradient descent iterations using a learning rate of 0.001 and other

5000 iterations using a learning rate of 0.0001.

- MRF graph. As mentioned in Section 3.2.2, we use groups of buildings as nodes

of the MRF graph. A building belongs to a group if its center is less than 21 meters

away from the center of any of the buildings in this group. In the MRF graph,

every group of buildings is then connected to the 5 closest groups of buildings.

Both parameters (minimum distance to single buildings for inclusion and number

of closest groups) have been set empirically.

- Alignment with MRF. The alignment vectors D = {(x, y), x ∈ Dx, y ∈ Dy} are
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de�ned with Dx = Dy = {−30,−29, ...0, ..., 29, 30} (values in pixels) based on the

maximum expected misalignment. We set the MRF spatial regularization parameter

β = 2 and the maximum number of iterations of the ICM to 10, experimentally.

The ICM algorithm has converged before the tenth iteration in all the datasets.

- Building generation by CNN. For the CNN model that detects buildings with

prede�ned shapes, the number of �lters in the convolutional layers were, 32, 128,

512 and 16 with corresponding kernel sizes of 5 × 5, 3 × 3, 3 × 3 and 1 × 1. We

apply max-pooling (with stride 2 and kernel size 3×3), ReLU as activation function

and batch normalization after the �rst two convolutional layers. In order to select

the predicted building candidates to be added to the OSM annotations, we use a

threshold value t = 0.80, that was found experimentally. This high threshold value

is selected to decrease the number of false positives.

We evaluated the performance of the proposed method using the Precision, Recall and

F-score metrics with a pixel-level evaluation of the predictions.

3.4 Results

We compare the proposed method for alignment of OSM annotations (MRFGroups) with

the original annotations (`without alignment') and the following competitors from the

literature:

- `DeformableReg', a deformable registration method trained using an unsuper-

vised approach that optimizes a similarity metric between pairs of images [28].

DeformableReg analyzes pairs of image patches extracted from building classi�-

cation maps and OSM annotation maps (of the training set) to generate a displace-

ment vector �eld. During the inference phase, these vectors allow to perform the

registration of the OSM annotation maps into the building classi�cation maps for

the test dataset. DeformableReg is trained for 10000 stochastic gradient descent

iterations using a learning rate of 0.0001.

- `Semantic segmentation', the fully convolutional CNN-based segmentation model

in [81]. The CNN architecture is composed of several convolutional layers that ex-

tract features followed by a deconvolutional layer that output the �nal per-pixel

classi�cation. The model is trained for 5000 stochastic gradient descent iterations

using a learning rate of 0.001 followed by 5000 iterations using a learning rate of

0.0001.

In addition to the competitors from the literature, we report results obtained by our model

in varying conditions:

- `CorrBuildings'. When selecting the alignment vectors that maximize the cor-

relation between individual building annotations and a building probability map

(equivalent to use our MRF alignment model with β = 0).
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Table 3.1: Pixel-based performance of alignment correction methods for the Tanzania
evaluation dataset.

Methods Precision Recall F-score
Time
(sec)

Without alignment 0.108 0.115 0.111 0
CorrBuildings 0.565 0.460 0.507 141.7
CorrGroups 0.620 0.658 0.639 102.3
MRFBuildings 0.644 0.644 0.644 147.8
AbsDifference 0.303 0.322 0.312 41.2
MutualInfo 0.570 0.606 0.587 520.6
MRFGroups (proposed
method)

0.638 0.677 0.657 103.0

DeformableReg [28] 0.380 0.500 0.430 29.3

Table 3.2: Pixel-based performance of alignment correction methods for the Zimbabwe
evaluation dataset.

Methods Precision Recall F-score
Time
(sec)

Without alignment 0.526 0.519 0.523 0
CorrBuildings 0.793 0.663 0.723 84.9
CorrGroups 0.821 0.810 0.816 62.0
MRFBuildings 0.832 0.800 0.816 90.1
AbsDifference 0.806 0.795 0.800 36.7
MutualInfo 0.815 0.804 0.809 428.2
MRFGroups (proposed
method)

0.830 0.819 0.825 63.9

DeformableReg [28] 0.700 0.735 0.717 20.8

- `CorrGroups'. When obtaining the alignment vectors that maximize the correlation

between groups of buildings and the building probability map.

- `MRFBuildings'. When performing the alignment with the proposed MRF formu-

lation, but using individual buildings as nodes of the MRF graph. It is mostly meant

to assess computational speedups and the loss of precision when using individual of

buildings.

- `AbsDifference'. When obtaining the alignment vectors that minimize the sum of

absolute di�erence between groups of buildings and the building probability map.

- `MutualInfo'. When obtaining the alignment vectors that maximize the mutual

information between groups of buildings and the building probability map.
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Table 3.3: Pixel-based and object-based performance of the removal and building addition
methods for the Tanzania evaluation dataset.

Methods Precision Recall
F-score F-score Time
(pixel) (object) (sec)

Semantic

segmentation [81]
0.548 0.819 0.657 0.518 80.0

MRFGroups

+ remove 0.763 0.673 0.715 0.743 103.3
+ remove, then add
(by shape priors)

0.727 0.724 0.725 0.690 284.5

+ remove, then add
(by semantic segmen-
tation)

0.649 0.776 0.707 0.719 183.8

Table 3.4: Pixel-based and object-based performance of the removal and building addition
methods for the Zimbabwe evaluation dataset.

Methods Precision Recall
F-score F-score Time
(pixel) (object) (sec)

Semantic

segmentation [81]
0.653 0.782 0.712 0.519 41.0

MRFGroups

+ remove 0.837 0.814 0.825 0.846 64.2
+ remove, then add
(by shape priors)

0.833 0.817 0.825 0.841 180.1

+ remove, then add
(by semantic segmen-
tation)

0.843 0.816 0.829 0.802 105.6

3.4.1 Numerical results

Tables 3.1 and 3.2 present the performances and processing times of several alignment

methods for the Tanzania and Zimbabwe evaluation datasets respectively. For the Tan-

zania dataset (Table 3.1), we can observe that the original misaligned annotations poorly

match the actual building footprints visible in the image. All the alignment methods

drastically improve the performance of the misaligned annotations. MRF-based meth-

ods show better performances than methods based only on correlation. This shows that

adding the prior knowledge of smoothness of the alignment vectors helps to improve the

results. We can also observe that the alignment methods based on groups of buildings

are more e�ective and e�cient than the ones based on individual buildings. For the

case of the Zimbabwe dataset ( Table 3.2), the performances of the original misaligned

annotations are considerably better than the ones of the Tanzania dataset. As in the

Tanzania dataset, all the alignment methods considerably improve the performances of

the misaligned annotations and the proposed method based on MRF spatial logic applied

on groups of buildings outperforms the other baseline alignment methods, as well as the
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state-of-art semantic segmentation approach in terms of precision and recall.

Tables 3.3 and 3.4 show the performance of the proposed methods for the removal

of incorrect annotations and the addition of new annotations in the two datasets. As a

starting point, they use the proposed MRFGroups. In order to evaluate the performance

of the methods at the object level we consider that a building is detected if its IoU

(Intersection over Union) with the ground truth is greater than 0.5. This value corresponds

to a misalignment of 2 pixels (60 cm) in both axes when considering the smallest shape

(circle) in our dataset.

In the Tanzania dataset, the removal of incorrect annotations considerably improves

the precision of the method while maintaining the recall. When the method that used

shape priors for adding new buildings annotations is applied, the recall considerably in-

creases. This is at the cost of a slight decrease in precision because of some false positive

predictions. However, the gain in recall is larger in the pixel-level evaluation, which is

re�ected in the improvement of the F-score. Overall in the Zimbabwe dataset the results

of the aligned polygons and the result of removing and adding new polygons to the aligned

polygons are equivalent. This happens because most of the buildings in the imagery are

already well detected and considerably well delineated by the aligned annotations. Thus,

few candidates are removed and new building candidates, as predicted by the proposed

CNN, are already at their pre-annotated locations. Therefore, very few new candidate

buildings are added.

3.4.2 Analysis of shape priors

In Tables 3.3 and 3.4 we also compare our proposed methods with the fully convolutional

semantic segmentation approach proposed in [81] (line `Semantic segmentation'). As

it can be observed, in both datasets the proposed methods achieve better performances

than this baseline. Alternatively, one could also use a semantic segmentation method

(e.g. [81]) to add new building footprints after running MRFGroups and removing incor-

rect footprints: this result is reported in the last line of both tables (see `+ remove,

then add (by semantic segmentation)'). In this case, we observe similar numerical

performances to our proposed method in terms of F-score. Our proposed method is more

precise, while this baseline obtains higher recall values (possibly related to oversegmen-

tation). However, our method has the advantage of returning an output that can be

easily converted into vectorial data. As it can be observed in the visual comparisons in

Section 3.4.3 (Figure 3.9), our method obtains building predictions with shapes that �t

better to the ground truth, not oversegmenting. Also, in cases of objects with shared or

very close boundaries, the buildings outlines are easily disentangled, while they cannot

be recovered from the semantic segmentation results, since both objects are included in

a single blob.

We also evaluate how accurate our method based on shape priors is in di�erentiating

building shapes. To do so, we consider all the newly added buildings showing a consider-

able overlap (IoU > 0.3) with a building in the ground-truth map. Considering as classes

the six basic primitive shapes, the predicted shapes obtains an accuracy of 90.0 %. If we

consider as classes the 18 shapes (therefore shape and size of the object) an accuracy is
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38.3 % is reached. Most common errors are cases where the correct shape is predicted,

but not the correct size.

For the evaluation of the geometrical accuracy of the new buildings, we use the average

symmetric surface distance metric (ASSD). This metric computes the average distance

between all the pixels in the boundary of the predicted object to the closest pixel in the

boundary of the ground-truth object. A perfect building prediction will obtain an ASSD

value of 0 (the lower the value the better it is). We have computed this metric for all the

building predictions that have some overlap with the ground-truth. The average ASSD

value for the predictions of the proposed method is 2.54 in the Tanzania dataset, while

the method that add buildings based on semantic segmentation obtains an average ASSD

value of 2.56.

3.4.3 Visual comparisons

Alignment of footprints

Figure 3.5 presents �ve examples of groups of rural buildings from the Tanzania dataset.

For each example, we show the image, the building probability maps obtained by the

hypercolumn model, the original OSM annotations (in yellow) and the aligned annotations

obtained by di�erent methods (in other colors). For the proposed method, MRFGroups,

only the alignment is performed and no removal / addition component is considered in

the �gure.

- Example 1 (�rst row). Figure 3.5c shows in green circles the aligned annotations

obtained by CorrGroups. The alignment results obtained by our proposed method

(MRFGroups), blue circles in Figure 3.5d, are more accurate, despite missing the

bottom building, since the component that adds new building footprints was not

used in this case.

- Example 2 (second row). Figure 3.5g shows the alignment results obtained by the

MRF applied on individual buildings (MRFBuildings, orange circles). One of the

buildings was moved to an incorrect location because the values of the probability

map are high in a location where there are no buildings. This does not happen in

the case of the MRF applied over groups of buildings (MRFGroups, blue circles in

Figure 3.5h) because we applied the prior knowledge that buildings that are spatially

close should be registered with the same alignment vector.

- Example 3 (third row). Figure 3.5k presents the results obtained by the align-

ment method that uses the correlation on individual buildings (CorrBuildings, red

circles). We can observe that some building annotations are moved to the same

location of high building probability values. The proposed MRFGroups, denoted by

blue circles in Figure 3.5l, obtains a more desirable alignment, but still an inaccurate

one (annotations are shifted to the left side of the buildings) because the building

probability map itself is not accurate enough.

- Example 4 (forth row). Figures 3.5o and 3.5p present the results obtained by

AbsDifference and MutualInfo, respectively. We can observe that for both meth-
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Example 1 - Correlation vs. MRF

(a) Image (b) CNN probability map (c) CorrGroups (d) MRFGroups
Example 2 - Individual buildings vs. groups of buildings in the MRF

(e) Image (f) CNN probability map (g) MRFBuildings (h) MRFGroups
Example 3 - Correlation of individual buildings vs. MRF.

(i) Image (j) CNN probability map (k) CorrBuidings (l) MRFGroups
Example 4 - Absolute di�erence and Mutual information

(m) Image (n) CNN probability map (o) AbsDifference (p) MutualInfo
Example 5 - Deformable registration

(q) Image (r) CNN probability map (s) Original OSM (t) DeformableReg

Figure 3.5: Examples of alignment results (the original misaligned annotations are pre-
sented in yellow) from the Tanzania dataset.

ods the two building annotations are not well aligned with the objects in the imagery.

As for the previous example, this happens mainly because of inaccurate probability

maps.

- Example 5 (�fth row). Figure 3.5t presents the result obtained by DeformableReg

applied to correct the OSM annotation presented in Figure 3.5s. We can observe

that the shape of the resulting annotation is inaccurate since it is registered to an

object with an inaccurate shape in the building classi�cation map.
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Original Original Aligned Original Aligned
annotations annotations annotations annotations annotations

Figure 3.6: Examples of alignment results in the Zimbabwe dataset using MRFGroups.

Although the proposed MRF based method is more robust to inaccurate building

probability maps than the other alignment methods, the quality of the building probability

map remains the main factor to compute accurate alignment vectors.

Figure 3.6 illustrates the alignment results for the proposed MRFGroups in three ex-

amples. In the �rst case, no alignment is necessary, and MRFGroups result is equivalent

to the original labels. In the two other cases, MRFGroups aligns the buildings correctly,

and the removal and addition of footprints is not necessary. This is in line with expec-

tations from this dataset, as we observe that the Zimbabwe dataset has better quality

OSM annotations, only requiring geometric alignment. Missing building annotations or

incorrect annotations after alignment are rare. This is also re�ected in Table 3.2, in which

the alignment of the original annotations considerably improved the performance, but the

removal and addition of building annotations did not improve the �nal performance.

Including footprint removals and additions

Figure 3.7 presents results of the methods for alignment (orange), removal of incorrect an-

notations (green) and addition of new annotations (blue) in the Tanzania and Zimbabwe

datasets. For Tanzania dataset example, on the top row, an incomplete set of annota-

tions (Figure 3.7b) is �rst geometrically aligned so that the large buildings correspond to

structures in the image (Figure 3.7c); then, the small structure at the bottom is removed,

since there is no evidence that a small building would be located there (Figure 3.7d). One

could argue that the removed building corresponds to a small structure at the bottom,

but given the relative con�guration of the annotations, this is against the image evidence

learned by the CNN model. Finally, the second CNN adding new footprints succeeds in

adding the two missing large buildings in the right side (Figure 3.7e). For the example

from the Zimbabwe dataset (Figure 3.7f), the original OSM annotations (Figure 3.7g) are

already well aligned. As a consequence, the alignment correction (Figure 3.7h) and the

removal of incorrect annotations (Figure 3.7i) do not change the location of the original

annotations. However, two new footprints of missing buildings are correctly added using

the second CNN (Figure 3.7j).

Figure 3.8 compares the results obtained by our proposed method (MRFGroups followed

by the removal and addition of building annotations) with the result of a CNN-based

method trained for building segmentation [81]. We can observe that, despite detecting

most buildings, the prediction of the CNN segmentation model is not precise, containing
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Tanzania dataset

(a) Image
(b) Original (c) MRFGroups (d) MRFGroups+ (e) MRFGroups+
annotations removal removal+addition

Zimbabwe dataset

(f) Image
(g) Original (h) MRFGroups (i) MRFGroups+ (j) MRFGroups+
annotations removal removal+addition

Figure 3.7: Results of our method (the original misaligned annotations are presented in
yellow) for the Tanzania and Zimbabwe dataset.

(a) Image (b) Original OSM
(c) Semantic (d) MRFGroups+

segmentation [81] removal+addition

Figure 3.8: Results of our method compared with semantic segmentation [81]: a) Imagery
of groups of buildings b) Original OSM annotations (yellow circles) c) Results obtained by
using a CNN model trained for building segmentation (orange circles) and d) Annotations,
in blue circles, obtained using the propose method (MRF alignment followed by removal
and addition of annotations)

several false positive pixels, while our proposed method obtains a better result, more

coherent with the shapes of the buildings to be detected.

Figure 3.9 shows three examples of comparisons of the results of adding buildings

using a semantic segmentation method [81] and our proposed method for adding building

annotations, based on shape priors. The shape of the output of the semantic segmentation

method can be very irregular, while our proposed methods obtain predictions that �ts
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Example 1

(a) MRFGroups+ (b) Semantic (c) MRFGroups+
removal segmentation removal+addition

Example 2

(d) MRFGroups+ (e) Semantic (f) MRFGroups+
removal segmentation removal+addition

Example 3

(g) MRFGroups+ (h) Semantic (i) MRFGroups+
removal segmentation removal+addition

Figure 3.9: Visual comparison of two methods for adding new building annotations, after
the alignment and removal of annotations. 1) Add new buildings using the semantic
segmentation method proposed in [81] and 2) the proposed method based on shape priors.

better to the ground truth (see examples 1 and 2). In some cases, the prediction of the

semantic segmentation method can obtain higher values of IoU with the ground truth than

our proposed method since it tends to predict more pixels as buildings (oversegmentation).

However, it can also obtain some undesirable results like in Figure 3.9e. Overall, the

proposed method leads to a more precise outlining of buildings, easily exportable to

vector footprints, and also can disambiguate e�ectively with polygons with very close

boundaries.
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3.5 Conclusion

We presented a methodology for correcting rural building annotations in OpenStreetMap.

Our methodology consists of three steps: alignment of the original annotations, removal

of incorrect annotations, and addition of new annotations of buildings that appear for

the �rst time in the updated imagery. In order to solve the problem of misaligned OSM

annotations, we proposed an MRF-based method that encodes the dependency of the

alignment vectors of neighboring buildings and maximizes the correlation of aligned an-

notations and a building probability map learned by a fully convolutional neural network.

We used the evidence provided by a building probability map to remove annotations of

buildings that no longer exist in the updated imagery. In order to add new building

annotations, we learn a second CNN model that predicts building annotations with pre-

de�ned shapes candidates. We evaluated our methodology in a region of Tanzania that

contains misaligned and incomplete/inaccurate annotations and in a region in Zimbabwe

that contains mostly misaligned annotations. We observed that the alignment process

drastically improves the accuracy of the annotations in the two evaluated datasets. We

observed, specially in the Tanzania dataset, that the proposed method for the removal

of annotations improves the precision of the annotations and the proposed method for

the addition of new annotations considerably improves the recall of the annotations. The

proposed methodology will be helpful to reduce the large human e�ort required to correct

existing rural building OSM annotations. As future work, we plan to improve the building

delineation results by combining building probability maps learned by CNNs, graph-based

segmentation methods, and shape priors.
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Chapter 4

Supporting digital humanitarians in

OpenStreetMap: the role of deep

learning and human-machine

interaction

Abstract

Locating populations in rural areas has attracted the attention of humanitarian mapping

projects since it is important to plan actions that a�ect vulnerable areas. Recent e�orts

have tackled this problem as the detection of buildings in aerial images. However, the

quality and the amount of rural building annotated data in open mapping services like

OpenStreetMap (OSM) is not su�cient for training accurate models for such detection.

Although these methods have the potential of aiding in the update of rural building infor-

mation, they are not accurate enough to automatically update the rural building maps.

In this paper, we explore a human-computer interaction approach and propose an in-

teractive method to support and optimize the work of volunteers in OSM. It starts by

correcting misalignment errors with an aerial image and then uses an e�cient building

detection/segmentation method to select just the regions in the map that require some

correction. The user is asked to verify/correct the selected tiles during several iterations

and therefore improving the model with the new annotated data. The experimental re-

sults, with simulated and real user annotation corrections, show that the proposed method

greatly reduces the amount of data that the volunteers of OSM need to verify/correct.

4.1 Introduction

A large amount of mapping information of buildings has been collected in open and com-

mercial mapping services like OpenStreetMap and Google maps. However, the building

mapping data is concentrated mainly in urban areas. Recently, humanitarian organiza-

tions like, the Humanitarian OSM Team (HOT) and the Red Cross have created projects

to map buildings in rural areas, in order that Non-Governmental Organizations (NGOs)
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(a) (b) (c)

(d) (e) (f)

Figure 4.1: Examples of rural building annotations (orange circles), performed by vol-
unteers in OpenStreetMap, superimposed over Bing imagery. a-c) correct annotation,
d) annotations with misalignment errors, e) annotations that do not correspond to any
building in the aerial images, f) incomplete annotations.

can use the maps to plan actions in response to crises that a�ect those areas. For in-

stance, the HOT Task manager project 1 provides a platform that includes a web-based

map editor in which volunteers manually annotate buildings and other classes of inter-

est in some prede�ned areas in OSM. The volunteers verify/annotate all the tiles in a

selected geographical area by observing aerial imagery. This is a time-consuming task

since most of the tiles do not contain the objects of interest in rural areas. Figure 4.1

shows rural building annotations in OSM that were manually digitized by volunteers. Al-

though some annotations are of good quality, several others have issues of misalignment

or incompleteness with respect to aerial imagery.

Several deep learning methods have been proposed for segmenting buildings in aerial

images [81, 110, 138], with accurate results in urban areas [50]. However, the main

drawback of deep learning methods is the requirement of a large amount of labeled

data for training. OSM data have been used for several applications including real-time

routing [77], autonomous driving [33], 3D building modeling [139] and landuse classi-

�cation [117, 119]. The authors in [8] and [64] use aerial images and OSM footprint

annotations to train deep learning-based methods to perform semantic segmentation of

buildings and road networks. More recently, the authors in [22] propose a deep learning-

based building detection method that uses data from three open crowdsourced geographic

1https://tasks.hotosm.org/
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systems: OSM, MapSwipe 2, and OsmAnd 3. However, the two last resources just provide

annotations at the tile level, useful for building patch detection but not for building seg-

mentation. Active learning methods were proposed in [22] and [23] to select better image

patches for annotation and then train an e�ective classi�er from those patches. However,

these works propose solutions for patch-based building detection which cannot be directly

used to automatically update maps of open mapping services, like OSM and Wikimapia 4,

because those maps store vectorial footprints that delineate individual buildings.

Although OSM data has been used to train machine learning methods for some appli-

cations, the OSM annotations are very often of not good quality [93, 60, 3, 135]. In [60],

the authors observed that there exist errors in the tags associated with di�erent types

of road networks in OSM data. Other works [3, 2] found several green areas of di�er-

ent classes (e.g., meadows, grass, parks and gardens) that have incorrect labels in OSM.

In the case of building annotations, the authors in [135] identi�ed three main issues in

building annotations of OSM: i) location inaccuracies (see an example in Figure 4.1d), ii)

annotations not related to a building (see Figure 4.1e) and iii) missing annotations (see

Figure 4.1f).

In addition to the problem of low data quality in OSM, the amount of available labeled

data is small in rural areas as compared to urban regions. This happens because the

number of volunteers that update OSM data drops outside cities [97]. This makes more

di�cult to train accurate models for the segmentation of buildings in rural areas. The

authors in [135] propose a methodology to automatically correct rural building annotations

with the aforementioned problems in OSM. However, the accuracies attained by this

method are not su�cient for production-ready automatic updates of OSM.

An additional problem for the methods that try to automate the process of updating

automatically OSM building data is that the output of such methods should be vectorial

building footprints. Recently, the authors in [87] proposed a method that outputs vectorial

building delineations using a method based on Active Contour Models (ACM), which uses

a Convolutional Neural Network (CNN) to learn the parameters of the ACM model. A

di�erent approach is proposed in [122] via a mesh-based approximation method that

converts binary building classi�cation maps into polygonized buildings. Authors in [135]

propose a CNN that detects rural buildings of prede�ned shapes, which can be easily

exported to vectorial format. All these methods strongly depend on the accuracy of the

previously computed building map.

In this work, we propose a methodology for interactive correction of rural buildings in

OSM. Our proposed method starts by correcting misalignment errors of the annotations,

using a Markov Random Field (MRF) [20] approach. From that moment on, the model

interacts with a human operator for digitizing objects in OSM. The model selects the

image locations that maximize the chances of editing corrections.

In this way, the user just analyzes a small set of selected regions of a large geo-

graphical area. Our aim is to reduce the e�ort of the user for mapping buildings in a

certain geographical area, by intelligently selecting just the regions that require user cor-

2https://mapswipe.org/
3https://osmand.net/
4http://wikimapia.org



63

rections/annotations. The selection of these regions is determined by analyzing a building

probability map obtained by a CNN method on aerial images and the current OSM anno-

tations. Given that large areas need to be analyzed to select the most interesting regions

for annotation, we propose an e�cient CNN model for building segmentation that per-

forms fast inference. To do so, we enrich our CNN with a branch for early stopping when

there are no buildings in the analyzed image patch. Whenever a considerable amount

of new labeled data is available, the CNN model is retrained to improve the accuracy

of the building predictor, and so the accuracy of the selection of tiles that need anno-

tations/corrections. Experiments performed by simulation and real human annotations

show that the proposed approach e�ectively reduces the number of tiles that need to be

screened and therefore the human workload.

In Section 4.2, we present the proposed methodology for interactive annotation/correction

of OSM rural building annotations. Section 4.3 presents the data set and the setup used

in our experiments, and Section 4.4 shows the experimental results. Finally, Section 4.5

presents the conclusions of the paper.

4.2 Methodology

Our proposed methodology is illustrated in Figure 4.2. First, we train a CNN building

segmentation model to obtain a building probability map, which is used to perform the

alignment of the original OSM polygons. Then, the image being analyzed is split into tiles,

in order to select a small number of regions that need manual editing in OSM. This is done

based on the probability map and the currently aligned polygons. After the annotation

of the selected samples, a stopping criterion is veri�ed to �nish the process of annotation.

If this criterion is not met, the new building annotations are used to improve the building

classi�cation CNN, which in turn improves the process of selection of tiles in the next

iteration. The next sections explain in detail the steps of the proposed methodology.

4.2.1 Computation of the building probability map

Given that our model is applied to large areas where rural buildings are sparsely located,

we propose an e�cient CNN-based method for building segmentation. Our proposed

model is based on the U-Net architecture proposed in [108]. U-Net has shown good perfor-

mance in several applications and recently an ensemble of U-Net models has obtained the

best performance in a building segmentation competition, the DeepGlobe challenge [29].

The U-Net model (illustrated in the gray boxes of Figure 4.3) consists of several operations

that extract image features and capture contextual information, alongside a symmetric

set of operations that upsample the feature maps, therefore enabling precise pixel-level

semantic labeling. We extend the U-Net model by adding an extra branch after the third

set of convolution groups (see Figure 4.3a). This branch of the model considers that

the image features extracted until that point are su�cient to identify whether the image

contains buildings. A fully connected layer, denoted as FC, is applied over the afore-

mentioned features to perform binary classi�cation (i.e., there are buildings in the patch

or not). In order to train the model with the additional branch, we de�ne a new loss
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Probability map computation

CNN

Alignment of annotations

MRF

Split the aerial image in tiles

Select tiles
for correction

User

Selected tiles

Evaluate
Stopping
Criteria

Update 
CNN model

Classifier

Verified/corrected
annotations of tiles

Figure 4.2: The proposed methodology for interactive correct OSM rural building anno-
tations. The orange circles represent misaligned OSM building annotations while the blue
circles represent the annotations after the misalignment correction.
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function illustrated in Figure 4.3b. Our loss function is de�ned as the sum of a detection

and segmentation loss, both computed using binary cross entropy:

Lseg(ŷ
s, ys) = − 1

N

N∑
i

ysi log(σ(ŷ
s
i )) + (1− ysi ) log(1− σ(ŷsi )) (4.1)

Ldet(ŷ
d, yd) = − 1

M

M∑
j

ydj log(σ(ŷ
d
j )) + (1− ydj ) log(1− σ(ŷdj )) (4.2)

L(ŷs, ŷd, ys, yd) = Lseg(ŷ
s, ys) + Ldet(ŷ

d, yd), (4.3)

where σ is the sigmoid function, ŷs is the output of the last convolutional layer of the

U-Net model and ys is the segmentation ground truth map, ŷd is the detection prediction

obtained from FC and yd is the detection ground truth, N is the number of samples in

the processed batch of pixels (segmentation output) and M is the number of samples in

the processed batch of images.

During inference, the proposed model computes sequentially the �rst three groups of

convolutions followed by a fully connected layer and a sigmoid function that outputs the

building presence probability value. If this value is higher than a certain threshold θ, then

we consider that there exist buildings in the analyzed patch and the rest of the U-Net

model is executed to obtain a building segmentation map. Otherwise, we consider that

there are no buildings in the image patch and the model outputs an empty probability

map. In this way, the inference time is reduced.

4.2.2 Correction of misalignment errors

In order to correct alignment errors in OSM, we use the approach proposed in [135] that

showed good performances for the alignment of rural building annotations. In that work,

the OSM polygons of rural buildings are grouped based on spatial proximity. Then, groups

of buildings are aligned with a single shift vector. Aligning groups of polygons makes the

method more robust to building probability maps of bad quality. The correlation of the

aligned annotations and building probability maps is used to measure the performance of

a given alignment vector. Given that nearby groups of buildings have similar registration

errors, authors in [135] used MRF to �nd the alignment vectors d = {d0, d1, . . . , dn} that
can correct the current annotation locations x using a building probability map y. The

optimum alignment vectors minimize the following energy function:

d̂ = arg min
d∈vN

∑
i

− logC(A(xi, di), yi) + β
∑
j∈hi

1

Z
||di − dj||2, (4.4)

where the unary term, that measures the matching between the annotations and proba-

bility map, is computed by using the normalized dot product C(A(xi, di), yi) between the

aligned annotations A(xi, di) (A is a function that shifts the position of the annotation

xi using the alignment vector di) and the probability map yi, while the pairwise term

is obtained by computing the vector norm of the di�erence of the alignment vector di
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Figure 4.3: Proposed method for building segmentation: a) Loss computation based on a
detection and segmentation loss b) Fast inference by using a early exiting brach.

and the neighboring alignment vectors dj (j ∈ hi). In equation 4.4 v = {v1, v2, . . . , vp}
represents the set of all the alignment vectors, Z is a normalization term computed as the

maximum possible distance between two alignment vectors in v and β is a regularization
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parameter. We use the Iterative Conditional Modes (ICM) algorithm to �nd the solution

of equation 4.4.

4.2.3 Selection of tiles for correction/veri�cation

Once the building probability map has been generated and the existing OSM annotations

have been aligned to it, volunteers can start the editing process in OSM. The aim of

this section is to de�ne a criterion to focus the volunteers' e�orts where it really matters

(regions with wrong or missing annotations). In this respect, it is crucial to obtain a

measure of how incorrect an annotation is, based on the current OSM annotations and a

building probability map. Such measure is used to create an ordered list of tiles L, where

those whose annotations have more chances to be incorrect are ranked higher. Then, the

top t tiles from L are selected for correction/veri�cation by a user. We convert the OSM

vectorial polygons to images with value one in the positions that are inside a building

annotation, otherwise, zero everywhere else. This is done in order to be able to compare

the OSM annotations with the building probability map. In the next sections, we describe

the measures proposed.

Mutual information

Mutual information (MI) has been used as an e�ective similarity metric to compare

images [102]. The MI of two variables measures the amount of information that one

variable carries about the other. The mutual information of two images A and B can be

de�ned as follows:

MI(A;B) =
∑
b∈B

∑
a∈A

p(a, b) log

(
p(a, b)

p(a) p(b)

)
, (4.5)

where p(a, b) is the joint probability distribution of the pixels that correspond to A and

B and p(a) and p(b) are the marginal probability distributions of A and B, respectively.

For the MI metric, the lower the value the higher the priority to be selected for veri�ca-

tion/correction.

Normalized dot product

In [135] authors used the normalized dot product (NDP) to measure the degree of

matching between the building annotations and the building probability map. This mea-

sure is de�ned as follows:

NDP (A;B) =
A ·B
size(A)

, (4.6)

where A and B are images of the same size, (·) represents the dot product operation and

size(A) is the number of pixels in image A. For the NDP metric, the lower the value the

higher the priority to be selected for veri�cation/correction.

Sum of absolute di�erences

The sum of absolute di�erences (SAD) of the pixel values of two images is an e�cient

and e�ective way to measure the degree of matching of two images, as shown in [4]. For
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the SAD metric, the higher the value the higher the priority to be selected for veri�ca-

tion/correction.

4.2.4 User annotation and evaluation of the stopping criteria

The user veri�es/corrects the annotations in the selected tiles. In order to correct annota-

tions, the user applies three types of manual operations that are available in a Graphical

User Interface (GUI), for example, the web-based iD editor 5 of OSM: align (drag and drop

annotations into the right position), remove and add (digitize manually new polygons).

The user performs these operations by visually inspecting the original OSM annotations

superimposed over the aerial imagery.

After the user veri�cation/correction of the selected tiles, a stopping criterion is evalu-

ated. We propose as criterion the percentage of tiles that required correction since the last

k analyzed tiles, denoted as pk. This measure is updated after every tile is analyzed by

the user. Note that the tiles are selected from a list L, sorted in ascending order in terms

of expected correctness of the annotations available, estimated with measures presented

in Section 4.2.3. Thus, the more tiles are analyzed by the user, the lower the value of pk.

This happens because, eventually, the majority of the tiles with incorrect annotations will

be already analyzed and the majority of the remaining tiles will not need any correction.

Once pk is lower than a given threshold rk the process of user veri�cation/correction ends.

After a considerable amount of tiles are veri�ed/annotated by the user, the proposed

CNN building segmentation model is �ne-tuned with the new annotated data. This up-

dated model is then used to improve the building probability maps, which in turn improves

the performance of the annotation correctness measures described in Section 4.2.3.

4.3 Data and experimental setup

4.3.1 Datasets

For the validation of our proposed methodology, we used data obtained from the coun-

tries of the United Republic of Tanzania and the Republic of Zimbabwe. The CNN

building segmentation model was trained with 3134 OSM rural buildings annotations

from several regions of Tanzania. These OSM annotations for these regions were manu-

ally veri�ed/corrected on a set of Bing aerial images, that cover 23.75 km2, with 30cm

spatial resolution, acquired over the Geita, Singida, Mara, Mtwara, and Manyara regions

of Tanzania.

To evaluate our proposed methodology with simulations of user annotation corrections

we collected two test datasets, spatially disjoint with respect to the training set. The �rst

dataset is collected in the country of Tanzania and is composed of 1267 OSM building

footprints that contain annotation errors. These annotations were located close to the

region of Mugumu in Tanzania, this data is called as Tanzania dataset in Section 4.4. The

second dataset contains 1392 OSM annotations, that also contains errors, is collected in

the region of Midlands in Zimbabwe, called Zimbabwe dataset in Section 4.4. In order to

5http://ideditor.com/
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perform simulations of user annotations, we manually corrected the annotations in these

two datasets.

In order to perform experiments with real user interactions, we used OSM annotations

from two regions. The �rst one located close to Mugumu region in Tanzania, denominated

as Mugumu dataset. The second evaluation area is located in the Gweru region, in

Zimbabwe, denominated as Gweru dataset.

4.3.2 Model setup

The CNN model was trained for 20 epochs with an initial learning rate of 0.001 decreased

by a factor of 0.1 after every 10 epochs. During the interactive annotation process, we

�netuned the CNN model for 10 additional epochs and a learning rate of 0.0001 with the

new annotated data. For our proposed CNN model, we used θ = 0.1 to predict if an image

patch contains or not buildings. As in [135], we used β = 2.0 for the alingment correction

process. We split the images corresponding to the selected geographical regions in tiles

of size 256 × 256 pixels. This tile size was chosen because we observed that it is large

enough to cover groups of rural buildings with little background information. In order

to evaluate the proposed stopping criteria, we �xed the parameter value k = 100 and

evaluated the performance of di�erent values rk ∈ {0.02, 0.05, 0.10}. For the experiments

performed to choose the tile selection strategy, we took into consideration a common tricky

case that a�ects the metrics MI and NDP. In the case where there are no annotations

in a tile but there are a small amount of false positive predictions, the aforementioned

metrics will output zero. Then, the method will assign a high priority to the tiles to be

veri�ed/corrected by a user, which is not correct since there is nothing to edit in that tile.

Thus, for MI and NDP, we veri�ed if the tile does not contain OSM annotations, and if

the CNN prediction has a building with size shorter than a very small building in our

dataset (20 pixels of size). If that is the case we output the value one which will assign a

low selection priority to the tile.

4.3.3 Setup for experiments with real user annotation corrections

So far, the proposed methodology has considered simulated annotation corrections to ob-

tain perfect annotations. In order to evaluate our proposed methodology in a realistic

scenario, we also performed a set of experiments with real volunteers performing annota-

tions. To run those tests we deloped a web application that allows several users to correct

annotations in OpenStreetMap, by using the iD editor 6 API. Given a geographical area

where we want to correct the rural building annotations, our method selects the tiles that

need to be veri�ed/corrected by the user with higher priority. When a user asks for a tile

for analysis, the web application loads a tile highlighted with a bounding box in magenta

in the iD editor. Figure 4.4a depicts the bounding box of the selected tile superimposed

over aerial imagery and the current rural building annotation at that location. The user

is asked to correct/verify existing annotations, and also to add new building annotations

if needed. For instance Figure 4.4b shows the annotations after user corrections, where

6http://ideditor.com/
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(a) (b)

Figure 4.4: Gaphical User Interface of the iD editor for editing OpenStreetMap an-
notations: a) Tile (deliminted by the bounding box in magenta) loaded for veri�ca-
tion/correction of rural building annotations, b) OSM map after the annotation of two
new buildings in the bottom left part of the tile.

two missing buildings were added on the bottom left of the bounding box. For these

experiments, 9 volunteers used the web application to interactively correct OSM rural

building annotations.

4.4 Results

In this section, we present the results obtained by the proposed methodology. Section 4.4.1

compare the proposed CNN model with the standard U-Net model. Using the computed

probability maps obtained by our proposed CNN method we correct alignment errors,

as explained in Section 4.2.2. Section 4.4.2 evaluates the alignment results. Then, after

correcting existing alignment errors in Section 4.4.3 we compare several approaches to

select the tiles that require correction. Section 4.4.4 evaluates the proposed stopping

criteria by analyzing the percentage of wrong annotations corrected and the percentage

of analyzed tiles when the stopping criteria is met. In Section 4.4.5, we report the results

of the experiments including real annotation corrections.
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Table 4.1: Performance of the proposed CNN method for building detection and segmen-
tation as compared to the standard U-Net model.

Methods Tanzania dataset
Precision Recall F1-score Time(sec) Detection recall

Proposed 0.47 0.84 0.60 90.0 0.99
U-Net 0.43 0.72 0.54 157.0 -

4.4.1 Evaluation of the proposed CNN method to compute a

building probability map

We compared the e�ciency and e�cacy of the proposed CNN method with the standard

U-Net model, in the Tanzania dataset. The computed probability maps were thresholded

to obtain the pixel-based binary classi�cation map (i.e., greater than 0.5 building pixel

otherwise background pixel). For the comparison, we used precision, recall, and F1-score

at the object-level, as in [135]. Both models were trained with the con�guration explained

in Section 4.3.2. Table 4.1 shows that the proposed method attains better performance

than U-Net, in the three metrics. It is also more than 70% faster than the U-Net model

in the evaluated dataset. Our proposed method performs �rst detection (classifying if

an image patch contains buildings or not) and performs semantic segmentation (pixel-

based classi�cation) just if needed. It might happen that some image patches classi�ed

as not containing buildings actually contain buildings and semantic segmentation should

be applied to them. Thus, we measure the detection recall to verify that our model is

not having many errors of this type. Table 4.1 shows the detection recall of our proposed

CNN method, which attains a very high value.

4.4.2 Evaluation of the alignment method

We applied the alignment method, presented in Section 4.2.2, to the original OSM an-

notations of the Tanzania dataset. In order to measure how well this method performs

we computed the object-level accuracy of overlapping annotations with the ground-truth.

This is computed as the number of annotations that have a strong overlap with a ground-

truth annotation, Intersection over Union (IoU) greater than 0.5 as in [135], divided by

the number of annotations that have at least a very small overlap with a ground-truth

annotation (IoU greater than 0.05). The object-level overlapping accuracy of the aligned

annotations is 93.9%, which is much better than 12.5% obtained by the original OSM

annotations (without alignment). Figure 4.5 presents visual examples of OSM annota-

tions before and after alignment. The �rst two rows in Figure 4.5 show examples that by

aligning the annotations we obtain a correct set of annotations in those locations. The

third row shows an example where there is just one OSM annotation when there are many

buildings in the aerial imagery. Thus, after applying alignment there are still buildings

that need to be digitized by annotators. The fourth row presents an example where all

the buildings seem to have a circular shape but the leftmost annotation have a rectangu-

lar shape. Thus, after performing alignment the annotator will still need to remove the

polygon with wrong shape and digitize a new building annotation.
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Example 1

(a) Image (b) Original annotations (c) Aligned annotations
Example 2

(d) Image (e) Original annotations (f) Aligned annotations
Example 3

(g) Image (h) Original annotations (i) Aligned annotations
Example 4

(j) Image (k) Original annotations (l) Aligned annotations

Figure 4.5: Examples of alignment results in the Tanzania dataset. The original mis-
aligned annotations are presented in orange and the aligned annotations in blue.

4.4.3 Tile selection strategy

After correcting the alignment of the original OSM annotations, we evaluated the dif-

ferent selection strategies presented in Section 4.2.3, to �nd which approach can better

rank the tiles that require corrections, and therefore minimize the e�ort of the user to

verify/correct rural building annotations in OSM. We included as a baseline a method

that randomly selects tiles to be annotated by the user and also show an upper bound

that uses the ground-truth data to select the tiles, denoted as GT. Figure 4.6 shows the
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Figure 4.6: Results on the Tanzania dataset of our proposed methodology for interactive
annotation of rural buildings in OSM using several measures for error annotation detec-
tion. The vertical axis of the plot shows the number of annotation errors detected by the
evaluated strategy and the horizontal axis represents the number of tiles analyzed by the
user.

results of our proposed methodology in the Tanzania dataset using di�erent strategies

to select tiles for annotation: Mutual information (MI), Normalized dot product (NDP)

and Sum of absolute di�erences (SAD). We also show a strategy, called Active SAD, that

uses the SAD to select tiles and then updates the CNN segmentation model with the

new veri�ed/annotated data (i.e., the method using the complete interactive pipeline in

Figure 4.2). We can observe that SAD performs considerably better than MI and NDP

and Active SAD performs better than SAD in the last iterations when a great part of

the tiles with errors have been discovered and corrected. Figure 4.7 shows the results

of the evaluated methods in the Zimbabwe dataset. The same trend can be observed in

this dataset, SAD performs better than the other selection methods. However, in this

dataset Active SAD is considerably better than SAD. This happens because the building

probability maps of the Zimbabwe dataset are less accurate than the probability maps

obtained for the Tanzania dataset. Therefore updating the building segmentation CNN

model has more impact on the improvement of the selection strategy. Retraining the

model with the new corrected annotations adapts the model to the dataset and reduces

domain adaptation problems [89].

4.4.4 Stopping criteria

We evaluated the stopping criteria in the Tanzania and Zimbabwe datasets. For the ex-

periments, we used the method Active SAD, since it showed the best performance among
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Figure 4.7: Results on the Zimbabwe dataset of our proposed methodology for interactive
annotation of rural buildings in OSM using several measures for error annotation detec-
tion. The vertical axis of the plot shows the number of annotation errors detected by the
evaluated strategy and the horizontal axis represents the number of tiles analyzed by the
user.

Table 4.2: Percentage of wrong annotations corrected (% corrected) and percentage of
tiles analyzed for three di�erent values of rk (stopping criteria parameter) in the Tanzania
and Zimbabwe datasets.

rk (%) Tanzania dataset Zimbabwe dataset
% corrected % tiles analyzed % corrected % tiles analyzed

10 99.7 14.8 52.8 6.0
5 99.7 14.9 87.6 16.3
2 99.7 15.0 98.4 20.9

the other analyzed tile selection approaches (see Section 4.4.3). Table 4.2 shows the per-

centage of wrong annotations corrected and the percentage of tiles analyzed when the

stopping criterion is met. Note that % corrected is computed as the number of wrong

annotations shown for user correction divided by the total number of wrong annotations.

We can observe that in the Tanzania dataset, when the annotation process stops, most of

the wrong annotations were already corrected and around 15% of the tiles were analyzed

for all the three values of rk. In the Zimbabwe dataset rk = 10% stops too early the anno-

tation process, and leads to the correction of just around half of the wrong annotations.

Using rk = 2%, almost all the wrong annotations are detected but 20.9% of the tiles are

analyzed. The di�erence in the results in the two datasets is mainly due to the di�erence

in the accuracy of the respective building probability maps.

We also evaluated the behavior of the stopping criteria in datasets that have annota-



75

tions of di�erent quality levels. To do that we validated the performance of the proposed

heuristic in several datasets obtained by simulations of removal, addition and random

small shifts of buildings annotations. For a given initial set of annotations, we randomly

add and remove a certain number of annotations and then randomly shift the annotations

in the horizontal and vertical axis in the range of 0 to 2 pixels. We performed these op-

erations over the Tanzania and Zimbabwe datasets by adding and removing a percentage

of the initial number of annotations.

Figure 4.8 shows the results of our proposed method with di�erent stopping criteria

parameter values on the Tanzania and Zimbabwe datasets with di�erent quality levels of

simulated wrong annotations (di�erent percentages of simulated additions and removals).

In the Tanzania dataset (see Figures 4.8a-b)), we can observe that even in the case of

very low quality annotations our method can �nd almost all the wrong annotations for

the three di�erents rk values (stopping criteria). This at the cost of analyzing around

14-17% of the tiles in the Tanzania dataset.

In the Zimbabwe dataset (see Figures 4.8c-d)), we can observe that the percentage

of wrong annotations corrected varies with the quality level of the annotations and the

rk values. When the quality of the annotations is reasonably good (10% of simulated

additions and removals) the annotation process stops too early because the probability

maps are not of good quality in this dataset and it is more di�cult to �nd tiles with wrong

annotations. Thus, the percentage of wrong annotations corrected does not attain very

high values. When the annotations are of bad quality (e.g., 40% of simulated additions

and removals) it is easier to �nd the tiles with wrong annotations and the percentage of

wrong annotations corrected is very high, at the cost of analyzing around 20% of the tiles

in the Zimbabwe dataset.

In general, when the probability maps are accurate higher values of rk can be used

and therefore less amount of tiles will be analyzed by user annotators. On the other hand,

when the probability maps are not reliable lower values of rk should be used to �nd most

of the tiles with wrong annotations at the cost of correcting/verifying more tiles.

4.4.5 Experiments with real users

Table 4.3 presents the results showing the percentage of wrong annotations corrected and

percentages of tiles analyzed for di�erent values of rk (stopping criteria parameter) in the

two analyzed datasets. For the Mugumu dataset, we can observe that almost all the wrong

annotations were corrected when the annotation process stops using the three values of

rk. The results in the Gweru are similar, but considerably more samples are analyzed

when rk = 0.02 than when rk = 0.10. These results using real user annotation corrections

con�rm the e�ectiveness of the proposed method in a more realistic scenario. During the

experiment, the volunteers commented that at the beginning of the experiment most of

the tiles require some annotation correction and the need for correction decreased over

time.
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Figure 4.8: Stopping criteria performance using simulated addition, removals and small
shifts.

Table 4.3: Results of the experiments with real user interactions. We report the percentage
of wrong annotations corrected (% corrected) and percentages of tiles analyzed for three
di�erent values of rk (stopping criteria parameter) in the Mugumu and Gweru datasets.

Experiments with real user interactions
rk (%) Mugumu dataset (Tanzania) Gweru dataset (Zimbabwe)

% corrected % tiles analyzed % corrected % tiles analyzed
10 99.0 22.7 97.9 23.7
5 99.0 23.6 98.6 24.8
2 99.0 24.6 98.6 28.7

4.5 Conclusions

In this work, we proposed a methodology for the interactive correction/veri�cation of ru-

ral building annotations in OpenStreetMap. The proposed methodology aims to quickly

�nd a small number of regions that need to be veri�ed by a user, avoiding the task of
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exhaustively verifying the large imagery obtained from the analyzed geographical area. In

order to analyze such large images, we proposed an e�cient CNN building segmentation

method to obtain a building probability map. We evaluated several strategies to measure

how wrong the current annotations are, based on both the current annotations and the

generated building probability map. The sum of absolute di�erences between the original

annotations and the probability map leads to better performances, among the evaluated

tile selection strategies. We also observed that the approach of retraining the CNN build-

ing segmentation model with the newly annotated/veri�ed data considerably improves

the accuracy of the method. The experiments that involve real user annotations show

that the proposed stopping criterion allows our method to analyze less than a quarter

of the total number of tiles obtained from the image and correct more than 98% of the

annotation errors. As future work, we will propose a model that can estimate the number

of edits needed to correct a group of annotations and also analyze the annotation skill of

di�erent users.
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Chapter 5

Interactive coconut tree annotation

using feature space projections

Abstract

The detection and counting of coconut trees in aerial images are important tasks for

environment monitoring and post-disaster assessment. Recent deep-learning-based meth-

ods can attain accurate results, but they require a reasonably high number of annotated

training samples. In order to obtain such large training sets with considerably reduced

human e�ort, we present a semi-automatic sample annotation method based on the 2D

t-SNE projection of the sample feature space. The proposed approach can facilitate the

construction of e�ective training sets more e�ciently than using the traditional manual

annotation, as shown in our experimental results with VHR images from the Kingdom of

Tonga.

5.1 Introduction

Coconut trees are the primary food and income source for people in several South Paci�c

countries, especially the developing ones, which makes their detection crucial for environ-

ment monitoring and post-disaster assesment. Chong et al. [25] review existing techniques

that can be used to automate coconut tree detection in aerial imagery. Most techniques

rely on e�ective image feature extraction (e.g., by scale-invariant feature transform) fol-

lowed by pattern classi�cation (e.g., by support vector machines or random forest) [84].

More recently, deep-learning-based methods [145] have shown accurate results for tree

detection [74, 46]. However, these methods require a high number of annotated training

samples, even for �ne-tuning a pre-trained model.

Generally speaking, the accuracy of deep learning and other machine learning methods

strongly depends on the informativeness, diversity, and number of annotated training

samples. The construction of such training sets is not simple, mainly under a limited

budget for manual annotation. Active learning methods can assist the user to focus on

the manual annotation (label supervision) of a small and yet e�ective set of samples [128].

These methods usually involve multiple iterations of sample selection based on a previous
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instance of a classi�er, label veri�cation/correction of the selected samples by the user,

and training of a next instance of the classi�er with a larger set of annotated samples. It

is expected that the classi�er becomes e�ective within a few iterations of active learning.

Sample selection usually exploit uncertainty in classi�cation, but it can also add extra

criteria to ensure diversity within a single batch or along the iterations [129]. In this

work, we propose an interactive approach based on 2D projections for the annotation of

coconut trees in aerial images. We use the t-SNE algorithm (t-Distributed Stochastic

Neighbor Embedding [78]) to project from the original high dimensional feature space to

a 2D coordinate space, for sample annotation. Through navigation in a Graphic User

Interface [18], the user has total freedom to chose the area of the feature space to sample

from and to priorize exploration versus exploitation of the current model.

Experimental results for coconut detection from VHR drone images of the Tongatapu

islands in the Kingdom of Tonga show that more e�ective classi�ers can be obtained by

the proposed approach with considerably less human e�ort than using manual annotation.

5.2 Methodology

Our methodology for coconut tree annotation consists of six steps: i) annotation of a small

initial training set, ii) feature extraction, iii) candidate selection, iv) feature projection,

v) interactive annotation in the projected space and vi) classi�cation. These steps are

detailed in the this section.

i) Annotation of a small initial training set. Initially, the user manually annotates a

small balanced set of training samples (a few tens of image patches) containing examples

of trees and non-trees (referred to as `background' hereafter). Figure 5.1 illustrates the

process of manual annotation of samples in the aerial imagery. The user clicks at the

center of a coconut tree and a bounding box of �xed size is drawn around the tree (red

squares in Figure 5.1). Similarly, the user is asked to annotate some background examples

(blue squares in Figure 5.1). The image patches (samples) represented by the bounding

boxes are used later for feature extraction.

ii) Feature extraction. In order to train an initial classi�er, feature vectors must be

extracted from the annotated image patches. We use Bag of visual Words (BoW) for

feature extraction, since it has shown good performances in remote sensing data [132],

in particular for the problem of object detection in submetric drone images [107]. To

compute BoW features, we use dense sampling inside the image patch and Scale-invariant

feature transform (SIFT) as local region descriptors.

iii) Candidate selection. We train an initial Linear Support Vector Machine (SVM)

classi�er with the small set of manually annotated samples at hand. In order to generate

candidates (unlabeled image patches) for further annotation, we use the sliding-window

approach with a small stride to increase the chances of accurately selecting candidates

centered at coconut trees. Then, we extract the BoW features from all candidates and

classify them with the pre-trained SVM classi�er to obtain a probability of containing a

coconut tree.
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Figure 5.1: Manual annotation of coconut trees (red squares) and background (blue
squares) samples.

Given that the number of candidates obtained by the sliding-window approach is

very large, we select a relatively small number of coconut tree candidates, by choosing

only those with probability greater than θcoco (as given by the SVM posterior probability

score) and removing overlapping candidates using standard non-maximum suppression.

Similarly, we select background candidates with probability less than θbg and perform

non-maximum suppression.

iv) Feature projection. The BoW features extracted from the labeled (samples initially

annotated by the user) and unlabeled samples (selected candidates) are projected on to

a 2D coordinate space by using the t-SNE algorithm [78]. This method performs a non-

linear dimensionality reduction by preserving the position of the samples with respect to

their neighbors when projecting from high to lower dimensions (typically 2D). t-SNE is

known to preserve the distribution of the data on the projection spaces better than other

methods in the literature [78] and can be used to design better classi�ers by exploiting

human-machine interaction [104].

v) Interactive annotation in the 2D coordinate space. Figure 5.2 illustrates the

GUI for interactive annotation of image patches. The features of the unlabeled candidates

are visualized as gray points, while red and blue points represent already labeled patches.

Additionally, we represent the classi�cation probability of the candidates by showing

background regions in the plot with intense red color for regions where candidates are

being classi�ed with high certainty of being a coconut tree (light red when such probability

is small) and intense blue colors for the background class. In this GUI, the user is able

to select a group of candidate patches (orange points in the left panel of Figure 5.2)

and see their images and corresponding predicted label (center panel of Figure 5.2). By

doing so, the selection is driven by the neighborhood in the feature space, rather than

the geographical space used in traditional labeling on the VHR image. This type of
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Figure 5.2: Graphical User Interface (GUI) used for interactive annotation in the 2D
coordinate space.

visualization is desirable since it can exploit the manifold assumption directly: most

samples in a particular region of the feature space should belong to a same class. So,

the manual annotation of selected candidates becomes the task of correcting the labels

of a few samples that do not belong to the predominant class in the selected region.

This facilitates the annotation of several samples at once. Additionally, the user can also

re-center poorly centered patches (right panel of Figure 5.2).

The user has total freedom of the selection strategy: he/she might select samples from

spatially distant unannotated regions in the plot to annotate diverse samples or focus on

uncertain regions, which are those highlighted respectively with light red or blue colors.

After a certain time of annotation, the plot is updated using the new training samples

and the new classi�ers' con�dence scores.

vi) Classi�cation. Once the user is con�dent that the interactive annotation process has

provided a large set of mostly correct annotated samples, we �ne-tune a Convolutional

Neural Network, more speci�cally AlexNet [68], to perform the �nal classi�cation. As

we will show in Section 5.3.2, this approach obtains better numerical results than our

original feature vector (BoW) and classi�er (Linear SVM). Given that usually there are

overlapping patches classi�ed as coconut trees, which correspond to the same coconut

tree, we applied a non-maximum suppression to remove redundancy in the �nal results.
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5.3 Experiments

5.3.1 Dataset and Setup

In order to evaluate our proposed method, we used Unmanned Aerial Vehicle (UAV)

imagery provided by the Open AI challenge of WeRobotics 1. This data was collected by

UAVs for the Disaster Resilience Program on the Tongatapu island in the Kingdom of

Tonga in October 2017. The provided optical imagery has a spatial resolution of 8cm and

contains three bands (Red, Green and Blue). For validation, we used reference data of

coconut trees from OpenStreetMap. In order to perform the annotation and validate the

accuracy of the trained classi�er, we cropped two disjoint regions from the original aerial

imagery. The �rst image crop was used for annotation and contained 1`771 coconut trees,

and the second crop was used as the test set and contained 1`373 coconut trees. The size of

the candidate image patches was set to 90×90 pixels, in order to capture the coconut tree

with a few of background information. To extract the candidates with a sliding window

we used a stride of 15 pixels. We set θcoco = 0.8 and θbg = 0.2 experimentally.

We used a time budget for annotation, corresponding to a maximum time period an

operator is asked to annotate the trees. Annotation is performed in two steps. First,

the user manually annotated for 5 minutes using the original image to obtain the initial

training set. This initial training set was used as starting point for both the approaches

considered: the proposed interactive annotation in the projected t-SNE space and a tra-

ditional annotation by exploring the image without human machine interaction. After

obtaining the initial training set, we performed 20 minutes of annotation. In the pro-

jection space-based approach, we recomputed the t-SNE 2D plot (with the new training

samples) every 5 minutes.

For the classi�cation phase, we performed non-maximum suppression using a threshold

of 0.10 of Intersection over Union to remove redundant candidates for both annotation

approaches and classi�ers. Regarding the CNN, we �netuned the AlexNet model trained

on ImageNet for 15 epochs, with and initial learning rate value of 0.001 and reducing it

by a factor of 0.1 every 5 epochs.

5.3.2 Results

We compared our proposed method with manual annotation performed directly over the

aerial image. By performing traditional annotation in the image space, the user annotated

222 coconut tree samples and 198 background samples. With the feature space-based

approach, 371 coconut tree samples and 420 background samples were collected. Table 5.1

shows the numerical performances. As can be observed the models trained with the

proposed method for coconut tree annotation achieve better performances than the image-

based annotation strategy. As expected, the CNN model largely outperforms the Linear

SVM classi�er with BoW features. The improvement in F-score is due to an impressive

increase in precision (+10% in both cases), but at the price of a small drop in recall.

Figure 5.3 shows some examples of the labels predicted by the CNN models trained with

1https://blog.werobotics.org/2018/01/11/open-ai-challenge-2/
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Table 5.1: Performance of image- and projection space-based annotation strategies using
the Linear SVM classi�er with BoW features and the AlexNet model.

Classi�er sampling Prec. Recall F-score
BoW+SVM Image 0.461 0.733 0.566

Projection space 0.554 0.683 0.612
AlexNet Image 0.797 0.826 0.811

Projection space 0.898 0.791 0.841

I: Coconut tree I: Coconut tree I: Background
P: Coconut tree P: Coconut tree P: Background
TL: Coconut tree TL: Coconut tree TL: Background

I: Coconut tree I: Coconut tree I: Coconut tree
P: Background P: Background P: Background
TL: Background TL: Background TL: Background

I: Coconut tree I: Background I: Background
P: Coconut tree P: Coconut tree P: Coconut tree
TL: Background TL: Coconut tree TL: Coconut tree

Figure 5.3: Examples of predictions of the CNN models trained using examples from the
image approach (I) and the projection space (P) based strategy, together with the true
label (TL).

the image- and projection space-based approaches used for sample annotation.
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5.4 Conclusion

We presented a work�ow for interactive annotation of coconut trees in aerial images. The

proposed approach lets the user perform the annotation of samples in a projected 2D

space of the original image features. Given that samples from the same class are usually

close to each other in the 2D plot, the user is able to annotate several samples in a reduced

time because he/she only needs to correct the labels of few samples. The visualization of

the candidates in a 2D plot and the highlight by the classi�er con�dence allow the user to

annotate more diverse samples and explore new areas of the feature space e�ciently. The

experimental results show that with the proposed strategy for coconut tree annotation

the user can annotate more samples for a given time budget and also lead to classi�er

with higher precision than those trained with samples obtained by traditional annotation

on the images themselves. Note that the proposed methodology can also be applied to

other regularly shaped objects.
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Chapter 6

Conclusion

In this thesis, we investigated how machine learning methods can be used to improve open

geographical data. In particular, we focused our study on improving OpenStreetMap

data since it is one of the largest VGI projects and has an active and large community of

volunteers. We present methods that can greatly reduce the e�ort of human annotators

during the correction of existing annotations and also for the addition of new ones.

In Chapter 2, we described works that have proposed methods based on machine learn-

ing to improve several aspects of OSM, such as the geometry and semantic labels of objects

(points of interest, building footprints, and street networks). The earlier methods used

intrinsic OSM data (i.e., semantic, geometrical and topological data, exclusively extracted

from OSM) and traditional machine learning methods like Support Vector Machines and

Random Forest to perform tasks, such as street type recommendation [60]. Recent works

have used other sources of information, such as aerial imagery together with deep learning

techniques to perform tasks, such as building and road extraction [135, 15].

The use of OSM data for commercial and non-commercial applications is increasing in

recent years. Therefore, some companies like Facebook and Telenav, have created projects

to improve the quality of OSM data since some of their services rely on that quality. As

we show in Chapter 2, OSM data have been used in two ways for applications in other

domains: i) as reference data to train a machine learning model (e.g., landuse classi�-

cation) and ii) as data source to perform feature extraction (e.g., �ne-scale population

estimation).

In Chapter 3, we propose a methodology to correct building annotations in rural areas.

The experimental results show that this methodology can attain a better accuracy than

applying semantic segmentation methods. In contrast with methods that perform per-

pixel classi�cation, the output of our method is a set of polygonal building footprints

that can be easily exported to geographical databases. Despite of the fact that semantic

segmentation methods do not obtain accurate delineations of rural buildings they are very

useful, in our methodology, to correct alignment errors of existing annotations.

Although the method proposed in Chapter 3 attains a considerable level of accuracy

it can not be accurate in some geographical regions. Thus, in Chapter 4, we propose an

interactive approach that instead of trying to fully automate the correction of annotations,

it optimizes the work of human annotators. We perform an experiment with real human

annotators in which most of the annotation errors are corrected by the annotators by
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analyzing just a fraction of the dataset. The proposed methodology can be useful to

optimize the annotators' labor in online mapping projects, such as Missing Maps 1.

The manual annotation of objects in aerial images is usually a time-consuming task,

especially when the number of objects is large. In Chapter 5, we propose an interactive

approach to annotate coconut trees in aerial images. This method extracts image features

and projects them into a 2D space, in which the user selects and annotates the samples.

We observed that usually, the samples of the same classes are close to each other in

the 2D space, which facilitates the annotation of several samples in a few user actions.

Additionally, by showing to the annotators the classi�er con�dence in the 2D plot allows

the exploration of areas, in the feature space, where the classi�er is more uncertain. The

methodology allows the user to annotate more samples than traditional visual inspection

and help to collect a more e�ective set of annotated samples to train a classi�er.

The synergy between automatic and interactive approaches has a great potential for

obtaining up-to-date and accurate OpenStreetMap data, with e�cient use of human anno-

tators' e�ort. Traditionally, information collected in-situ and remote sensing images have

been widely used to update maps, but more recently social media data (e.g., pictures and

tweets) have shown to be promising resources to collect up-to-date mapping information.

6.1 Future work

In this section, we describe some possible future research directions related to the im-

provement of the quality of open geographical data:

Improve the extraction of vectorial building footprints from aerial imagery

CNN-based methods have shown to be e�ective for object detection. However, object

delineation obtained by CNN-based semantic segmentation techniques usually requires

post-processing steps. Furthermore, in order to obtain a vectorial output from raster

classi�cation maps methods like the one proposed in [122] are needed. The method that

outputs vectorial footprints proposed in [135] is restricted to buildings with prede�ned

shapes. The authors in [87] propose a method based on Active Contour models that

can generate vectorial outputs, but highly depends on a pre-computed building classi�ca-

tion map. The results of these methods are not accurate enough for automatic building

extraction.

Improve OSM search query responses

The website of OpenStreetMap provides a tool (called Nominatim) to perform searches

in the OSM map. However, this tool is limited since it was designed mostly to locate a

given address. Other tools, such as Pelias 2 provide additional functionalities like auto-

completing the user query. However, none of these tools can appropriately answer natural

1https://www.missingmaps.org/
2https://pelias.io/
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language queries, such as �Where are ATMs in Campinas downtown?". In [70], the au-

thors propose a method that allows users to perform natural language queries over OSM

data. However, they observe that their algorithms cannot answer more complex natural

language queries.

Learn trust scores of volunteer annotators

The quality of OSM data depends on the annotation skills of the volunteers. OSM does

not have a way to rank the volunteers according to their experience or skills. Trust scores

of annotators are important to �nd possible mislabeled objects or inaccurate geometrical

data. These indices can be computed using a hand-crafted de�nition or by using machine

learning approaches. For the latter, we could obtain reference data by letting other

experienced volunteers to independently re-annotate the same regions that were already

annotated by the analyzed volunteer and compare their annotations.

Learning to recommend points of interest for tourism applications

As shown in [109] the points of interest registered in OSM are very useful for tourism

applications using augmented reality in mobile devices. We believe that collecting user

feedback from the users of such applications are the key to create supervised models to

build more e�ective recommendation systems.

Study the annotation skills of di�erent users

The annotation skills of volunteers are heterogeneous in OSM. There are studies that

analyze the total contributions of volunteers in entire cities or countries. However, the

analysis of the skills of individual annotators has not been performed. We hypothesize

that di�erent annotators are more skilled in particular tasks, for example, some annotators

could be good at editing road networks, while others could be better in delineating building

footprints.

Incentivizing users to become active volunteers through gami�cation

In each month between January and May of 2019 less than 1% of the volunteers

registered in OSM edited data 3. A few e�orts are made to encourage volunteers to

actively annotate data in OSM. Actively assigning annotation tasks to volunteers with a

game-like interface and scoring systems could help to increment the number of volunteers

that edit data. Some independent gami�cation projects have been listed in the OSM wiki

website 4. Another interesting project, inspired in reCAPTCHA 5, is Geo-reCAPTCHA

that was proposed in [55] to help to delineate building footprints using aerial imagery.

3https://osmstats.neis-one.org/
4https://wiki.openstreetmap.org/wiki/Gami�cation
5https://en.wikipedia.org/wiki/ReCAPTCHA



88

Bibliography

[1] R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules in Large

Databases. In Proceedings of the 20th International Conference on Very Large Data

Bases, VLDB '94, pages 487�499. Morgan Kaufmann Publishers Inc., 1994.

[2] A. L. Ali, Z. Falomir, F. Schmid, and C. Freksa. Rule-guided human classi�cation

of Volunteered Geographic Information. ISPRS Journal of Photogrammetry and

Remote Sensing, 127:3�15, 2017.

[3] A. L. Ali, F. Schmid, R. Al-Salman, and T. Kauppinen. Ambiguity and plausi-

bility: managing classi�cation quality in volunteered geographic information. In

Proceedings of the 22nd ACM SIGSPATIAL international conference on advances

in geographic information systems, pages 143�152, 2014.

[4] F. Alsaade. Fast and accurate template matching algorithm based on image pyramid

and sum of absolute di�erence similarity measure. Research Journal of Information

Technology, 4(4):204�211, 2012.

[5] J. Andreas, A. Vlachos, and S. Clark. Semantic parsing as machine translation.

In Proceedings of the 51st Annual Meeting of the Association for Computational

Linguistics (Volume 2: Short Papers), volume 2, pages 47�52, 2013.

[6] J. J. Arsanjani, P. Mooney, M. Helbich, and A. Zipf. An exploration of future

patterns of the contributions to OpenStreetMap and development of a Contribution

Index. Transactions in GIS, 19(6):896�914, 2015.

[7] J. J. Arsanjani and E. Vaz. An assessment of a collaborative mapping approach for

exploring land use patterns for several european metropolises. International Journal

of Applied Earth Observation and Geoinformation, 35:329�337, 2015.

[8] N. Audebert, B. Le Saux, and S. Lefèvre. Joint Learning from Earth Observation

and OpenStreetMap Data to Get Faster Better Semantic Maps. In IEEE Conference

on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2017,

Honolulu, HI, USA, July 21-26, 2017, pages 1552�1560, 2017.

[9] M. Bakillah, S. Liang, A. Mobasheri, J. Jokar Arsanjani, and A. Zipf. Fine-resolution

population mapping using OpenStreetMap points-of-interest. International Journal

of Geographical Information Science, 28(9):1940�1963, 2014.



89

[10] A. Ballatore, M. Bertolotto, and D. C. Wilson. Geographic knowledge extraction

and semantic similarity in OpenStreetMap. Knowledge and Information Systems,

37(1):61�81, 2013.

[11] C. Barrington-Leigh and A. Millard-Ball. The world's user-generated road map is

more than 80% complete. PloS one, 12(8):e0180698, 2017.

[12] C. Barron, P. Neis, and A. Zipf. A comprehensive framework for intrinsic Open-

StreetMap quality analysis. Transactions in GIS, 18(6):877�895, 2014.

[13] A. Basiri, P. Amirian, and P. Mooney. Using crowdsourced trajectories for auto-

mated osm data entry approach. Sensors, 16(9):1510, 2016.

[14] A. Basiri, M. Jackson, P. Amirian, A. Pourabdollah, M. Sester, A. Winstanley,

T. Moore, and L. Zhang. Quality assessment of OpenStreetMap data using trajec-

tory mining. Geo-spatial Information Science, 19(1):56�68, 2016.

[15] F. Bastani, S. He, S. Abbar, M. Alizadeh, H. Balakrishnan, S. Chawla, and S. Mad-

den. Machine-assisted map editing. In Proceedings of the 26th ACM SIGSPATIAL

International Conference on Advances in Geographic Information Systems, SIGSPA-

TIAL '18, pages 23�32. ACM, 2018.

[16] F. Bastani, S. He, S. Abbar, M. Alizadeh, H. Balakrishnan, S. Chawla, S. Madden,

and D. DeWitt. Roadtracer: Automatic extraction of road networks from aerial

images. In IEEE Conference on Computer Vision and Pattern Recognition, pages

4720�4728, 2018.

[17] O. Benarchid, N. Raissouni, S. El Adib, A. Abbous, A. Azyat, N. Ben Achhab,

M. Lahraoua, and A. Chahboun. Building extraction using object-based classi�ca-

tion and shadow information in very high resolution multispectral images, a case

study: Tetuan, morocco. Canadian Journal on Image Processing and Computer

Vision, 4:3�14, 2013.

[18] B. C. Benato, A. C. Telea, and A. X. Falcão. Semi-supervised learning with inter-

active label propagation guided by feature space projections. In SIBGRAPI Conf.

Graphics, Patterns and Images, 2018.

[19] R. F. Berriel, F. S. Rossi, A. F. de Souza, and T. Oliveira-Santos. Automatic large-

scale data acquisition via crowdsourcing for crosswalk classi�cation: A deep learning

approach. Computers & Graphics, 68:32�42, 2017.

[20] J. Besag. On the statistical analysis of dirty pictures. Journal of the Royal Statistical

Society, 68:259�302, 1986.

[21] M. A. Brovelli, M. Minghini, M. E. Molinari, and G. Zamboni. Positional accuracy

assessment of the OpenStreetMap buildings layer through automatic homologous

pairs detection: The method and a case study. International Archives of the Pho-

togrammetry, Remote Sensing and Spatial Information Sciences, 41:615�620, 2016.



90

[22] J. Chen, Y. Zhou, A. Zipf, and H. Fan. Deep Learning From Multiple Crowds:

A Case Study of Humanitarian Mapping. IEEE Transactions on Geoscience and

Remote Sensing, pages 1�10, 2018.

[23] J. Chen and A. Zipf. DeepVGI: Deep learning with volunteered geographic infor-

mation. In Proceedings of the 26th International Conference on World Wide Web

Companion, pages 771�772. International World Wide Web Conferences Steering

Committee, 2017.

[24] G. Cheng, Y. Wang, S. Xu, H. Wang, S. Xiang, and C. Pan. Automatic road

detection and centerline extraction via cascaded end-to-end convolutional neural

network. IEEE Transactions on Geoscience and Remote Sensing, 55(6):3322�3337,

2017.

[25] K. L. Chong, K. D. Kanniah, C. Pohl, and K. P. Tan. A review of remote sensing

applications for oil palm studies. Geo-spatial Info. Sci., 20(2):184�200, 2017.

[26] B. Ciepªuch, R. Jacob, P. Mooney, and A. C. Winstanley. Comparison of the accu-

racy of openstreetmap for ireland with google maps and bing maps. In Proceedings

of the Ninth International Symposium on Spatial Accuracy Assessment in Natural

Resuorces and Enviromental Sciences, page 337, 2010.

[27] M. M. Crawford, D. Tuia, and L. H. Hyang. Active learning: Any value for classi-

�cation of remotely sensed data? Proceedings of the IEEE, 101(3):593�608, 2013.

[28] B. D. de Vos, F. F. Berendsen, M. A. Viergever, M. Staring, and I. I²gum. End-

to-end unsupervised deformable image registration with a convolutional neural net-

work. In Deep Learning in Medical Image Analysis and Multimodal Learning for

Clinical Decision Support, pages 204�212. Springer, 2017.

[29] I. Demir, K. Koperski, D. Lindenbaum, G. Pang, J. Huang, S. Basu, F. Hughes, D.

Tuia, and R. Raskar. Deepglobe 2018: A challenge to parse the earth through satel-

lite images. In Computer Vision and Pattern Recognition Workshops (CVPRW),

2018.

[30] M. J. Egenhofer and R. D. Franzosa. On the equivalence of topological relations.

International Journal of Geographical Information Systems, 9(2):133�152, 1995.

[31] J. Estima and M. Painho. Exploratory analysis of OpenStreetMap for land use

classi�cation. In ACM SIGSPATIAL International Workshop on Crowdsourced and

Volunteered Geographic Information, New York, NY, 2013.

[32] H. Fan, A. Zipf, Q. Fu, and P. Neis. Quality assessment for building footprints data

on OpenStreetMap. International Journal of Geographical Information Science,

28:700�719, 04 2014.

[33] P. Fleischmann, T. P�ster, M. Oswald, and K. Berns. Using OpenStreetMap for

autonomous mobile robot navigation. In Intelligent Autonomous Systems 14, 2017.



91

[34] G. Floros, B. van der Zander, and B. Leibe. OpenStreetSLAM: Global vehicle

localization using OpenStreetMaps. In 2013 IEEE International Conference on

Robotics and Automation, pages 1054�1059, May 2013.

[35] C. C. Fonte, L. Bastin, L. See, G. Foody, and F. Lupia. Usability of VGI for

validation of land cover maps. International Journal of Geographical Information

Science, 29(7):1269�1291, 2015.

[36] S. Funke, R. Schirrmeister, and S. Storandt. Automatic extrapolation of missing

road network data in OpenStreetMap. In Proceedings of the 2nd International

Conference on Mining Urban Data-Volume 1392, pages 27�35, 2015.

[37] S. Funke and S." Storandt. Automatic Tag Enrichment for Points-of-Interest in

Open Street Map. In Web and Wireless Geographical Information Systems, pages

3�18, Cham, 2017. Springer International Publishing.

[38] L. Gervasoni, S. Fenet, R. Perrier, and P. Sturm. Convolutional neural networks for

disaggregated population mapping using open data. In 2018 IEEE 5th International

Conference on Data Science and Advanced Analytics (DSAA), pages 594�603. IEEE,

2018.

[39] J. F. Girres and G. Touya. Quality assessment of the French OpenStreetMap

dataset. Transactions in GIS, 14(4):435�459, 2010.

[40] C. A. Glasbey. An analysis of histogram-based thresholding algorithms. CVGIP:

Graphical models and image processing, 55(6):532�537, 1993.

[41] B. Glocker, A. Sotiras, N. Komodakis, and N. Paragios. Deformable medical image

registration: Setting the state of the art with discrete methods. Annual Review of

Biomedical Engineering, 12:219�244, 2011.

[42] M. Goetz and A. Zipf. Using Crowdsourced Geodata for Agent-Based Indoor Evacu-

ation Simulations. ISPRS International Journal of Geo-Information, 1(2):186�208,

2012.

[43] R. Gomes, P. Welinder, A. Krause, and P. Perona. Crowdclustering. In Proceedings

of Advances in Neural Information Processing Systems (NIPS), 2011.

[44] M. F. Goodchild. Citizens as sensors: the world of volunteered geography. Geo-

Journal, 69(4):211�221, 2007.

[45] A. Graser. Integrating Open Spaces into OpenStreetMap Routing Graphs for Re-

alistic Crossing Behaviour in Pedestrian Navigation. 1:217�230, 06 2016.

[46] E. Guirado, S. Tabik, D. Alcaraz-Segura, J. Cabello, and F. Herrera. Deep-learning

versus obia for scattered shrub detection with google earth imagery: Ziziphus lotus

as case study. Remote Sens., 9(12), 2017.



92

[47] C. Haas and S. Riezler. A Corpus and Semantic Parser for Multilingual Natural

Language Querying of OpenStreetMap. In Proceedings of the 2016 Conference of the

North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, pages 740�750, 2016.

[48] S. Hahmann, J. Miksch, B. Resch, J. Lauer, and A. Zipf. Routing through open

spaces � A performance comparison of algorithms. Geo-spatial Information Science,

21(3):247�256, 2018.

[49] M. Haklay. How good is volunteered geographical information? A comparative study

of OpenStreetMap and Ordnance Survey datasets. Environment and planning B:

Planning and design, 37(4):682�703, 2010.

[50] Ryuhei Hamaguchi and Shuhei Hikosaka. Building detection from satellite imagery

using ensemble of size-speci�c detectors. In IEEE/CVF Conference on Computer

Vision and Pattern Recognition Workshops (CVPRW), pages 223�2234, 2018.

[51] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hypercolumns for object

segmentation and �ne-grained localization. In Conference on Computer Vision and

Pattern Recognition (CVPR), pages 447�456, 2015.

[52] P. Hashemi and R. A. Abbaspour. Assessment of Logical Consistency in Open-

StreetMap Based on the Spatial Similarity Concept, pages 19�36. Springer, 2015.

[53] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.

In IEEE Conference on Computer Vision and Pattern Recognition, pages 770�778,

2016.

[54] R. Hecht, C. Kunze, and S. Hahmann. Measuring completeness of building foot-

prints in openstreetmap over space and time. ISPRS International Journal of Geo-

Information, 2(4):1066�1091, 2013.

[55] F. Hillen and B. Hö�e. Geo-reCAPTCHA: Crowdsourcing large amounts of geo-

graphic information from earth observation data. International Journal of Applied

Earth Observation and Geoinformation, 40:29�38, 2015.

[56] S. Huber and C. Rust. Calculate travel time and distance with openstreetmap data

using the open source routing machine (osrm). The Stata Journal, 16(2):416�423,

2016.

[57] M. Jilani, M. Bertolotto, P. Corcoran, and A. Alghanim. Traditional vs. Machine-

Learning Techniques for OSM Quality Assessment. In Geospatial Intelligence: Con-

cepts, Methodologies, Tools, and Applications, pages 469�487. IGI Global, 2019.

[58] M. Jilani, P. Corcoran, and M. Bertolotto. Automated quality improvement of

road network in OpenStreetMap. In Agile Workshop (Action and Interaction in

Volunteered Geographic Information), page 19, 2013.



93

[59] M. Jilani, P. Corcoran, and M. Bertolotto. Multi-granular street network represen-

tation towards quality assessment of OpenStreetMap data. In Proceedings of the

Sixth ACM SIGSPATIAL International Workshop on Computational Transporta-

tion Science, page 19. ACM, 2013.

[60] M. Jilani, P. Corcoran, and M. Bertolotto. Automated highway tag assessment

of OpenStreetMap road networks. In Proceedings of the 22nd ACM SIGSPATIAL

International Conference on Advances in Geographic Information Systems, pages

449�452, 2014.

[61] M. Jilani, P. Corcoran, and M. Bertolotto. Probabilistic graphical modelling for

semantic labelling of crowdsourced map data. In Intelligent Systems Technologies

and Applications, pages 213�224. Springer, 2016.

[62] M. Jilani, P. Corcoran, and M. Bertolotto. A Multi-layer CRF Based Methodology

for Improving Crowdsourced Street Semantics. In Proceedings of the 11th ACM

SIGSPATIAL International Workshop on Computational Transportation Science,

pages 29�38. ACM, 2018.

[63] B. A. Johnson and K. Iizuka. Integrating OpenStreetMap crowdsourced data and

Landsat time-series imagery for rapid land use/land cover (LULC) mapping: Case

study of the Laguna de Bay area of the Philippines. Applied Geography, 67:140�149,

2016.

[64] P. Kaiser, J. D. Wegner, A. Lucchi, M. Jaggi, T. Hofmann, and K. Schindler. Learn-

ing aerial image segmentation from online maps. IEEE Transactions on Geoscience

and Remote Sensing, 55(11):6054�6068, 2017.

[65] N. Karagiannakis, G. Giannopoulos, D. Skoutas, and S. Athanasiou. OSMRec tool

for automatic recommendation of categories on spatial entities in OpenStreetMap.

In Proceedings of the 9th ACM Conference on Recommender Systems, pages 337�

338. ACM, 2015.

[66] A. Kashian, A. Rajabifard, K. F. Richter, and Y. Chen. Automatic analysis of

positional plausibility for points of interest in OpenStreetMap using coexistence

patterns. International Journal of Geographical Information Science, 33(7):1420�

1443, 2019.

[67] T. Koukoletsos, M. Haklay, and C. Ellul. Assessing Data Completeness of VGI

through an Automated Matching Procedure for Linear Data. Transactions in GIS,

16, 08 2012.

[68] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classi�cation with deep con-

volutional neural networks. In NIPS, pages 1097�1105, 2012.

[69] C. Kuntzsch, M. Sester, and C. Brenner. Generative models for road network recon-

struction. International Journal of Geographical Information Science, 30(5):1012�

1039, 2016.



94

[70] C. Lawrence and S. Riezler. NLmaps: A Natural Language Interface to Query Open-

StreetMap. In Proceedings of COLING 2016, the 26th International Conference on

Computational Linguistics: System Demonstrations, pages 6�10, 2016.

[71] C. Lawrence and S. Riezler. Improving a neural semantic parser by counterfactual

learning from human bandit feedback. arXiv preprint arXiv:1805.01252, 2018.

[72] S. U. Lee, S. Y. Chung, and R. H. Park. A comparative performance study of several

global thresholding techniques for segmentation. Computer Vision, Graphics, and

Image Processing, 52(2):171�190, 1990.

[73] Q. Li, H. Fan, X. Luan, B. Yang, and L. Liu. Polygon-based approach for extracting

multilane roads from OpenStreetMap urban road networks. International Journal

of Geographical Information Science, 28(11):2200�2219, 2014.

[74] W. Li, H. Fu, L. Yu, and A. Cracknell. Deep learning based oil palm tree detection

and counting for high-resolution remote sensing images. Remote Sens., 9(1):22,

2016.

[75] B. Y. Lin, F. F. Xu, E. Q. Liao, and K. Q. Zhu. Transfer Learning for Tra�c

Speed Prediction: A Preliminary Study. In Workshops at the Thirty-Second AAAI

Conference on Arti�cial Intelligence, 2018.

[76] S. Lobry, J. Murray, D. Marcos, and D. Tuia. Polygonization of Binary Classi�-

cation Maps Using Mesh Approximation with Right Angle Regularity. In IEEE

International Geoscience and Remote Sensing Symposium (IGARSS), 2019. to ap-

pear.

[77] D. Luxen and C. Vetter. Real-time Routing with OpenStreetMap Data. In Pro-

ceedings of the 19th ACM SIGSPATIAL International Conference on Advances in

Geographic Information Systems, GIS '11, pages 513�516, 2011.

[78] L. Maaten and G. Hinton. Visualizing data using t-SNE. J. Mach. Learn. Res.,

9(Nov):2579�2605, 2008.

[79] E. Maggiori, G. Charpiat, Y. Tarabalka, and P. Alliez. Recurrent neural networks

to correct satellite image classi�cation maps. IEEE Transaction on Geoscience and

Remote Sensing, 55(9):4962�4971, Sept 2017.

[80] E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez. Can semantic labeling

methods generalize to any city? The Inria aerial image labeling benchmark. In

IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE,

2017.

[81] E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez. Convolutional Neural Net-

works for Large-Scale Remote-Sensing Image Classi�cation. IEEE Transaction on

Geoscience and Remote Sensing, 55(2):645�657, Feb 2017.



95

[82] E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez. Polygonization of remote

sensing classi�cation maps by mesh approximation. In IEEE International Confer-

ence on Image Processing (ICIP), pages 560�564, 2017.

[83] I. Majic, S. Winter, and M. Tomko. Finding Equivalent Keys in Openstreetmap:

Semantic Similarity Computation Based on Extensional De�nitions. In Proceedings

of the 1st Workshop on Arti�cial Intelligence and Deep Learning for Geographic

Knowledge Discovery, GeoAI '17, pages 24�32, New York, NY, USA, 2017. ACM.

[84] S. Malek, Y. Bazi, N. Alajlan, H. Hichri, and F. Melgani. E�cient framework

for palm tree detection in uav images. IEEE J. Sel. Topics Appl. Earth Obs. and

Remote Sens., 7:4692�4703, 12 2014.

[85] L. A. Manfré, E. Hirata, J. B. Silva, E. J. Shinohara, M. A. Giannotti, A. P. C.

Larocca, and J. A. Quintanilha. An analysis of geospatial technologies for risk and

natural disaster management. ISPRS International Journal of Geo-Information,

1(2):166�185, 2012.

[86] D. Marcos, R. Hamid, and D. Tuia. Geospatial correspondences for multimodal

registration. In Conference on Computer Vision and Pattern Recognition (CVPR),

2016.

[87] D. Marcos, D. Tuia, B. Kellenberger, L. Zhang, M. Bai, R. Liao, and R. Urta-

sun. Learning deep structure active contours end-to-end. In Computer Vision and

Pattern Recognition (CVPR), 2018.

[88] D. Marcos, M. Volpi, B. Kellenberger, and D. Tuia. Land cover mapping at very

high resolution with rotation equivariant CNNs: towards small yet accurate models.

ISPRS Journal of Photogrammetry and Remote Sensing, 2018.

[89] G. Matasci, D. Tuia, and M. Kanevski. Svm-based boosting of active learning strate-

gies for e�cient domain adaptation. IEEE Journal of Selected Topics in Applied

Earth Observations and Remote Sensing, 5(5):1335�1343, Oct 2012.

[90] G. Máttyus, W. Luo, and R. Urtasun. Deeproadmapper: Extracting road topology

from aerial images. In IEEE International Conference on Computer Vision, pages

3438�3446, 2017.

[91] G. Máttyus, S. Wang, S. Fidler, and R. Urtasun. Enhancing road maps by parsing

aerial images around the world. In IEEE International Conference on Computer

Vision, pages 1689�1697, 2015.

[92] G. Máttyus, S. Wang, S. Fidler, and R. Urtasun. Hd maps: Fine-grained road seg-

mentation by parsing ground and aerial images. In IEEE Conference on Computer

Vision and Pattern Recognition, pages 3611�3619, 2016.

[93] V. Mnih and G. E. Hinton. Learning to label aerial images from noisy data. In

International Conference on Machine Learning, pages 567�574, 2012.



96

[94] P. Mooney and P. Corcoran. The annotation process in OpenStreetMap. Transac-

tions in GIS, 16(4):561�579, 2012.

[95] P. Neis. Measuring the Reliability of Wheelchair User Route Planning based on

Volunteered Geographic Information. Transactions in GIS, 19(2):188�201, 2015.

[96] P. Neis, M. Goetz, and A. Zipf. Towards automatic vandalism detection in Open-

StreetMap. ISPRS International Journal of Geo-Information, 1(3):315�332, 2012.

[97] P. Neis and D. Zielstra. Recent developments and future trends in volunteered

geographic information research: The case of OpenStreetMap. Future Internet,

6(1):76�106, 2014.

[98] P. Neis, D. Zielstra, and A. Zipf. The street network evolution of crowdsourced

maps: OpenStreetMap in Germany 2007�2011. Future Internet, 4(1):1�21, 2011.

[99] P. Neis and A. Zipf. Analyzing the contributor activity of a volunteered geographic

information project�The case of OpenStreetMap. ISPRS International Journal of

Geo-Information, 1(2):146�165, 2012.

[100] N. Otsu. A threshold selection method from gray-level histograms. IEEE Transac-

tions on Systems, Man, and Cybernetics, 9(1):62�66, Jan 1979.

[101] M. Over, A. Schilling, S. Neubauer, and A. Zipf. Generating web-based 3D City

Models from OpenStreetMap: The current situation in Germany. Computers, En-

vironment and Urban Systems, 34(6):496�507, nov 2010.

[102] J. P. W. Pluim, J. B. A. Maintz, and M. A. Viergever. Mutual-information-based

registration of medical images: a survey. IEEE transactions on medical imaging,

22(8):986�1004, 2003.

[103] S. Quinn and L. Yapa. Openstreetmap and food security: A case study in the city

of philadelphia. The Professional Geographer, 68(2):271�280, 2016.

[104] P. E. Rauber, A. X. Falcão, and A. C. Telea. Projections as visual aids for classi�-

cation system design. Information Visualization, 17(4):282�305, 2018.

[105] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object

detection with region proposal networks. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 39(6):1137�1149, June 2017.

[106] Y. Ren, T. Cheng, and Y. Zhang. Deep spatio-temporal residual neural networks

for road-network-based data modeling. International Journal of Geographical In-

formation Science, 0(0):1�19, 2019.

[107] N. Rey, M. Volpi, S. Joost, and D. Tuia. Detecting animals in african savanna with

UAVs and the crowds. Remote Sens. Environ., 200C:341�351, 2017.



97

[108] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for

biomedical image segmentation. In International Conference on Medical image com-

puting and computer-assisted intervention, pages 234�241, 2015.

[109] M. Ruta, F. Scioscia, D. De Filippis, S. Ieva, M. Binetti, and E. Di Sciascio.

A semantic-enhanced augmented reality tool for OpenStreetMap POI discovery.

Transportation Research Procedia, 3:479�488, 2014.

[110] S. Saito, T. Yamashita, and Y. Aoki. Multiple object extraction from aerial imagery

with convolutional neural networks. Electronic Imaging, 2016(10):1�9, 2016.

[111] A. Schilling, M. Over, S. Neubauer, P. Neis, G. Walenciak, and A. Zipf. Interoper-

able Location Based Services for 3D cities on the Web using user generated content

from OpenStreetMap. Urban and regional data management: UDMS annual, pages

75�84, 2009.

[112] S. Schmitz, A. Zipf, and P. Neis. New applications based on collaborative geo-

data�the case of routing. In Proceedings of XXVIII INCA international congress

on collaborative mapping and space technology, 2008.

[113] H. Senaratne, A. Mobasheri, A. L. Ali, C. Capineri, and M. Haklay. A review

of volunteered geographic information quality assessment methods. International

Journal of Geographical Information Science, 31(1):139�167, 2017.

[114] B. Settles. Active learning literature survey. Technical report, University of

Wisconsin-Madison Department of Computer Sciences, 2009.

[115] J. Severinsen, M. de Roiste, F. Reitsma, and E. Hartato. VGTrust: measuring

trust for volunteered geographic information. International Journal of Geographical

Information Science, pages 1�19, 2019.

[116] B. Sirmacek and C. Unsalan. Urban-area and building detection using sift key-

points and graph theory. IEEE Transactions on Geoscience and Remote Sensing,

47(4):1156�1167, April 2009.

[117] S. Srivastava, J. E. Vargas-Muñoz, S. Lobry, and D. Tuia. Fine-grained landuse

characterization using ground-based pictures: a deep learning solution based on

globally available data. International Journal of Geographical Information Science,

0(0):1�20, 2018.

[118] S. Srivastava, J. E. Vargas-Muñoz, S. Lobry, and D. Tuia. Land-use characterisation

using Google Street View pictures and OpenStreetMap. In 21st AGILE Conference

on Geographic Information Science (2018), Lund, 2018.

[119] S. Srivastava, J. E. Vargas-Muñoz, and D. Tuia. Understanding urban landuse from

the above and ground perspectives: A deep learning, multimodal solution. Remote

Sensing of Environment, 228:129�143, 2019.



98

[120] B. Suger and W. Burgard. Global outer-urban navigation with OpenStreetMap. In

IEEE International Conference on Robotics and Automation (ICRA), pages 1417�

1422, May 2017.

[121] F. Sunar Erbek, A. Ulubay, D. Maktav, and E. Ya§iz. The use of satellite im-

age maps for urban planning in turkey. International Journal of Remote Sensing,

26(4):775�784, 2005.

[122] O. Tasar, E. Maggiori, P. Alliez, and Y. Tarabalka. Polygonization of Binary Clas-

si�cation Maps Using Mesh Approximation with Right Angle Regularity. In IEEE

International Geoscience and Remote Sensing Symposium (IGARSS), pages 6404�

6407, 7 2018.

[123] G. Touya, V. Antoniou, A. M. Olteanu-Raimond, and M. D. Van Damme. Assessing

crowdsourced POI quality: Combining methods based on reference data, history,

and spatial relations. ISPRS International Journal of Geo-Information, 6(3):80,

2017.

[124] Q. Truong, G. Touya, and C. De Runz. Towards Vandalism Detection in Open-

StreetMap Through a Data Driven Approach. In GIScience 2018, 2018.

[125] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods

for structured and interdependent output variables. Journal of Machine Learning

Research, 6(Sep):1453�1484, 2005.

[126] D. Tuia, G. Moser, M. Wurm, and H. Taubenböck. Land use modeling in North

Rhine-Westphalia with interaction and scaling laws. In Joint Urban Remote Sensing

Event (JURSE), pages 1�4, March 2017.

[127] D. Tuia and J. Muñoz-Marí. Learning user's con�dence for active learning. IEEE

Trans. Geosci. Remote Sens., 51(2):872�880, 2013.

[128] D. Tuia, F. Ratle, F. Paci�ci, M. F. Kanevski, and W. J. Emery. Active learning

methods for remote sensing image classi�cation. IEEE Trans. Geosci. Remote Sens.,

47(7):2218�2232, 2009.

[129] D. Tuia, M. Volpi, L. Copa, M. Kanevski, and J. Muñoz-Marí. A survey of active

learning algorithms for supervised remote sensing image classi�cation. IEEE J. Sel.

Topics Signal Proc., 5(3):606�617, 2011.

[130] M. Vakalopoulou, K. Karantzalos, N. Komodakis, and N. Paragios. Graph-based

registration, change detection, and classi�cation in very high resolution multitem-

poral remote sensing data. IEEE Journal of Selected Topics in Applied Earth Ob-

servations and Remote Sensing, 9(7):2940�2951, 2016.

[131] A. Vandecasteele and R. Devillers. Improving volunteered geographic information

quality using a tag recommender system: the case of OpenStreetMap. In Open-

StreetMap in GIScience, pages 59�80. Springer, 2015.



99

[132] J. E. Vargas, A. X. Falcão, J. A. dos Santos, J. C. D. M. Esquerdo, A. C. Coutinho,

and J. F. G. Antunes. Contextual superpixel description for remote sensing image

classi�cation. In IGARSS, pages 1132�1135, 2015.

[133] J. E. Vargas-Muñoz, A. S. Chowdhury, E. B. Alexandre, F. L. Galvão, P. A. Vechi-

atto Miranda, and A. X. Falcão. An Iterative Spanning Forest Framework for Su-

perpixel Segmentation. IEEE Transactions on Image Processing, 28(7):3477�3489,

July 2019.

[134] J. E. Vargas-Muñoz, D. Marcos, S. Lobry, J. A. dos Santos, A. X. Falcão, and

D. Tuia. Correcting misaligned rural building annotations in OpenStreetMap using

convolutional neural networks evidence. In IEEE International Geoscience and

Remote Sensing Symposium (IGARSS), 2018.

[135] J. E. Vargas-Muñoz, S. Lobry, A. X. Falcão, and D. Tuia. Correcting rural building

annotations in OpenStreetMap using convolutional neural networks. ISPRS Journal

of Photogrammetry and Remote Sensing, 147:283 � 293, 2019.

[136] J. E. Vargas-Muñoz, P. Zhou, A. X. Falcão, and D. Tuia. Interactive coconut tree

annotation using feature space projections. In IEEE International Geoscience and

Remote Sensing Symposium (IGARSS), 2019. to appear.

[137] C. Ventura, J. Pont-Tuset, S. Caelles, K. K. Maninis, and L. Van Gool. Iterative

deep learning for road topology extraction. In British Machine Vision Conference,

2018.

[138] M. Volpi and D. Tuia. Dense semantic labeling of subdecimeter resolution images

with convolutional neural networks. IEEE Transactions on Geoscience and Remote

Sensing, 55(2):881�893, Feb 2017.

[139] Z. Wang and A. Zipf. Using OpenStreetMap Data to Generate Building Models with

Their Inner Structures for 3d Maps. ISPRS Annals of Photogrammetry, Remote

Sensing and Spatial Information Sciences, pages 411�416, Sep 2017.

[140] F. F. Xu, B. Y. Lin, Q. Lu, Y. Huang, and K. Q. Zhu. Cross-region tra�c prediction

for China on OpenStreetMap. In Proceedings of the 9th ACM SIGSPATIAL Inter-

national Workshop on Computational Transportation Science, pages 37�42. ACM,

2016.

[141] Y. Xu, Z. Chen, Z. Xie, and L. Wu. Quality assessment of building footprint data us-

ing a deep autoencoder network. International Journal of Geographical Information

Science, 31(10):1929�1951, 2017.

[142] Y. Xu, Z. Xie, L. Wu, and Z. Chen. Multilane roads extracted from the

OpenStreetMap urban road network using random forests. Transactions in GIS,

23(2):224�240, 2019.



100

[143] Y. Yao, X. Liu, X. Li, J. Zhang, Z. Liang, K. Mai, and Y. Zhang. Mapping �ne-scale

population distributions at the building level by integrating multisource geospatial

big data. International Journal of Geographical Information Science, 31(6):1220�

1244, 2017.

[144] J. Yuan, P. K. R. Chowdhury, J. McKee, H. L. Yang, J. Weaver, and B. Bhaduri.

Exploiting deep learning and volunteered geographic information for mapping build-

ings in Kano, Nigeria. Scienti�c data, 5:180217, 2018.

[145] X. Zhu, D. Tuia, L. Mou, G. Xia, L. Zhang, F. Xu, and F. Fraundorfer. Deep

learning in remote sensing: A comprehensive review and list of resources. IEEE

Geosci. Remote Sens. Mag., 5(4):8�36, 2017.

[146] X. Zhuo, F. Fraundorfer, F. Kurz, and P. Reinartz. Optimization of OpenStreetMap

Building Footprints Based on Semantic Information of Oblique UAV Images. Re-

mote Sensing, 10(4):624, 2018.



101

Appendix A

Copyright Permission



Title: Correcting rural building annotations in
OpenStreetMap using convolutional
neural networks

Author: John E. Vargas-Muñoz,Sylvain
Lobry,Alexandre X. Falcão,Devis Tuia

Publication: ISPRS Journal of Photogrammetry and
Remote Sensing

Publisher: Elsevier

Date: January 2019
© 2018 International Society for Photogrammetry and
Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V.
All rights reserved.

  Logged in as:

  John Edgar Vargas Muñoz

  Account #:
  3001467131

Please note that, as the author of this Elsevier article, you retain the right to include it in a thesis or dissertation,
provided it is not published commercially.  Permission is not required, but please ensure that you reference the journal
as the original source.  For more information on this and on your other retained rights, please
visit: https://www.elsevier.com/about/our-business/policies/copyright#Author-rights

Copyright © 2019 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions.
Comments? We would like to hear from you. E-mail us at customercare@copyright.com

Rightslink® by Copyright Clearance Center https://s100.copyright.com/AppDispatchServlet

1 of 1 6/10/19, 8:47 PM

102



103

Appendix B

Subsection �3.2.2 Aligning OSM rural

building annotations� with better

standardized mathematical symbols

The building registration problem is considered as the problem of aligning the vector

shapes from OSM to the predictions of the CNN (Figure 3.2b). Such alignment is per-

formed by estimating alignment vectors, basically shifting every OSM polygon to an area

of high building probability in the CNN map.

In order to compute these alignment vectors, we need to measure how well a given

shift performs. To this end, we use the correlation between the aligned annotations and

the building probability map obtained previously using the image on which the annota-

tions need to be registered. Making the hypothesis that rural buildings are gathered in

small groups where each building has the same misalignment error, we align groups of

buildings instead of individual buildings. This reduces greatly the computational load

and is numerically more e�ective (see the results Section 3.4). Moreover, using groups

of buildings instead of single ones makes the results less dependent on the quality of the

building probability map.

Additionally, we observed that nearby groups of buildings have similar registration

errors. Based on this observation, we build our building registration module on a MRF

model using this prior together with the evidence provided by the building probability

map. Our method aims at �nding the alignment vectors d = {d0, d1, . . . , dn} that need
to be applied to the annotation locations x based on the a probability map y. Groups

of buildings, or sites, are used as nodes of the MRF graph (See Figure 3.3), where sites i

and j are neighbors (i.e., j ∈ hi) in the graph if they are spatially close (see Section 3.3.2

for more details on the MRF graph de�nition).

In our MRF formulation, the unary term is obtained by using the normalized corre-

lation C(A(xi, di), yi) between the annotation after alignment A(xi, di) (A is a function

that moves the annotation xi using the alignment vector di) and the building probability

map yi. This term is equal to the average of the predicted probability values yi of the

pixels contained in the aligned annotation A(xi, di). The pairwise term is de�ned by the

dissimilarity (vector norm of the di�erence of two vectors) between the alignment vector

di of the annotation i and the alignment vectors dj of neighboring annotations j ∈ hi [86].
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Algorithm 2 � MRF-based alignment algorithm

Input: Original OSM annotations m and building probability map

y
Output: Alignment vectors d

1. Group the original rural building annotations m according to their

spatial distance from each other, obtaining the set of building groups x.
2. De�ne the neighbors hi of each site i as spatially close sites.

3. Initialize each di to argmax
v∈v

C(A(xi, v), yi)

4. Run Iterated Conditional Modes (ICM) for MaxIters iterations

5. For t← 1...MaxIters, do
6. For each xi ∈ x, do
7. For each v ∈ v, do
8. Compute energy U(v|xi, yi), equation (B.1)

9. If U(v|xi, yi) < U(di|xi, yi), then
10. di ← v
11. Return d

The optimal set of alignment vectors d̂ for the annotations is de�ned by:

d̂ = arg min
d∈vN

∑
i

U(di|xi, yi) (B.1)

= arg min
d∈vN

∑
i

− logC(A(xi, di), yi) + β
∑
j∈hi

1

Z
||di − dj||2,

where v = {v1, v2, . . . , vp} is the set of all possible p alignment vectors, β is the spatial

regularization parameter and Z is a normalization factor, de�ned as the maximum possible

distance between two alignment vectors in v. To compute the optimal d̂ by minimizing

the energy function U , we use the Iterative Conditional Modes (ICM) [20] algorithm

initialized with di = argmax
v∈v

C(A(xi, v), yi). As this initialization is already a good

heuristic (see Section 3.4), the ICM algorithm allows to obtain a good solution in a few

iterations. The inclusion of a distance-based weight in the pairwise term does not lead

to better performances, so it is omitted for clarity. We presented preliminary results of

our proposed method for alignment of OSM annotations in the conference paper [134].

Algorithm 2 summarizes the proposed method for aligning OSM annotations.
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