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Abstract: We derive exact closed-form expressions for Long Range (LoRa) bit error probability
and diversity order for channels subject to Nakagami-m, Rayleigh and Rician fading.
Analytical expressions are compared with numerical results, showing the accuracy of our proposed
exact expressions. In the limiting case of the Nakagami and Rice parameters, our bit error probability
expressions specialize into the non-fading case.
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1. Introduction

Low Power Wide Area Networks (LPWAN) are the new trend in the development of wireless
communication technologies in the era of the Internet of Things (IoT) [1]. Long Range (LoRa) [2]
technology has awakened the interest of the research community due to its growing usage for LPWAN
deployments [2–5].

As clearly stated in [6–9], LoRa technology is mainly based on the features of the chirp spread
spectrum (CSS) modulation. In [10], it establishes a more solid mathematical representation of the
modulation/demodulation process addressing the bit error rate (BER) performance for AWGN and
frequency selective channels. In [11], the BER was derived assuming CSS modulation and the use
of moment matching to obtain analytical BER approximations for AWGN and Rayleigh scenarios.
The BER performance under the perspective of orthogonal signaling described in [12] can be used to
assess the performance of chirp spread spectrum modulation, as pointed out in [10].

The primary motivation of this investigation is to find new expressions for the bit error
rate of chirp spread spectrum (CSS) modulation in the essential fading scenarios. For instance,
Rayleigh statistics models well the signal power in a multipath environment [13]. On the other hand,
Rice appropriately models multipath in situations with a dominant line-of-sight signal. In complex
dense urban environments, we expect all kinds of small-scale fading, i.e., Ricean fading for strong,
static links, and a smooth transition from Rayleigh fading down to Double-Rayleigh fading for
moving links. A mathematically convenient method to approximate these distributions is by using the
Nakagami distribution [14]. The use of Nakagami mathematical method is broad and can describe
the amplitude of a received signal after maximum ratio diversity combining, since the k-branch MRC
with Rayleigh-fading signals results in a Nakagami with m = k. In this way, it is possible to use
the Nakagami-m distribution to investigate the use of multiple antennas (MIMO) in LoRa gateway
(or LoRa base station). The Nakagami distribution is also the best match for many fading measured
data, as related in [15–17].

The main contribution of our work is the derivation of exact closed-form expressions to calculate
the CSS BER performance in diverse scenarios such as Rayleigh, Rician, and Nakagami fading channels.
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We believe that our main results extend the knowledge in this topic by including two new scenarios:
the performance analysis under the Nakagami-m case and the Rice case. As it is well known in the
literature, as the Nakagami parameter m = 1, or the Rice parameter κ = 0, our results specialize into
the Rayleigh case. Also, the authors in [11] provided an approximate expression for the Rayleigh case,
whereas we have provided an exact and elegant result.

We organize the remainder of this paper as follows: Section 2 refers to the underlying system
model; Section 3 refers to the exact bit error probability performance derivation. Section 4 confirms
the accuracy of the proposed exact expressions. Finally, Section 5 points out the main aspects of
our achievements.

2. System Model

Figure 1 illustrates the system model in which the designer can choose one out of three options of
essential fading environments. LoRa devices use shift chirp modulation scheme for communication.
The modulation consists of a signal which chirps within a frequency range in a given period. It is also
known as spread spectrum modulation, and different symbols can be composed by varying bandwidth
and spread spectrum parameters. The spreading factor (SF) determinates the number of samples
within a symbol duration such that Ts =

2SF

B , where B is the signal bandwidth and SF ∈ {6, 7, . . . , 12}
which are the values available for typical commercial devices [18].

Wireless channel

RAYLEIGH

RICE

NAKAGAMI

Figure 1. System Model.

The encoder maps every SF bits to a symbol sk, such that k ∈ {0, 1, . . . , 2SF − 1}. We then
understand that k is related to a fk = B k

2SF offset frequency. Each chirp signal has a specific starting
frequency, and it wraps around bandwidth B as long as frequency keeps increasing. The chirping rate
is given by B2

2SF and signal decodes according to the position offset of fk. The transmitted waveform
can be written as [11]

sk(nT) =
√

Esωk(nT)

=

√
Es

2SF ej2π[(k+n) mod 2SF] n
2SF ,

(1)

where T = 1
B is the sampling period, n = 0, 1, 2, . . . , (2SF − 1) is the sample index at time nT, Es is

the signal energy, and ωk(nT) are the 2SF orthonormal basis functions. The receiver demodulates the
signal using the outputs of the correlator as [11]

2SF−1

∑
n=0

rk(nT) ·ω∗i (nT) =

{√
Es + φi, i = k

φi, i 6= k
, (2)

where rk(·) is the received signal, φi depicts a complex Gaussian noise process, and ω∗i (nT) is the
complex conjugate of the i-th basis function.

As shown by (2), the chirp signal demodulation is based on orthogonality properties.
Thus, the detection of the symbols happens with the index selection of the basis waveform that
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has the highest correlation magnitude with respect to the received signal. Therefore, for a received
waveform of rk(nT), the detected index symbol is computed as [11]

k̃ = {i | argimax
(
|δk,i
√

Es + φi|
)
}, (3)

where | · | is the absolute value operator, δi,k = 1 for i = k and δi,k = 0 otherwise. We also must define
γ as the signal-to-noise ratio (SNR) which is expressed as [11]

γ =
Es

Ts

1
N0B

=
Es

N0 · 2SF . (4)

3. Bit Error Probability

3.1. Error Probability for AWGN channels

From (2), we can derive a random variable such that ρi = |φi|i 6=k. Since φi is a complex zero-mean
Gaussian noise process, then ρi will be a Rayleigh random distributed variable such that [12]

Fρi (x) = 1− exp
[
− x2

2σ2

]
, (5)

where σ2 = N0
2 and N0 is the noise spectral density. The symbol error probability is given such that

Pe|k = Pr
[

max
i,i 6=k

(ρi) > βk

]
, (6)

where βk = |
√

Es + φk| follows a Rician distribution with shape parameter K = Es
2σ2 = Es

N0
. In this way,

the probability density function of βk can be written as

fβk (y) =
y
σ2 exp

[
− (y2 + Es)

2σ2

]
I0

(
y
√

Es

σ2

)
. (7)

The random variable ρ = max(ρi)|i 6=k is defined as the maximum of (2SF − 1) i.i.d. Rayleigh
random variables. Since the (2SF − 1) variables are independent, the cumulative distribution function
for ρ can be given as [12]

Fρ(x) =
[

1− exp
[
− x2

2σ2

]]2SF−1

. (8)

Using (6)–(8), and equally probable symbols, we can express the average bit error probability Pb as

Pe|k =
∫ ∞

0

1−
[

1− exp
[
− y2

2σ2

]]2SF−1
 fβk (y)dy. (9)

Expression (9) is the average bit error rate probability for AWGN channels. We can further
simplify (9) using the Newton’s binomial identity

1− (1− ex)N =
N

∑
q=1

(
N
q

)
(−1)q+1exq, (10)

then (9) can be written as

Pe|k =
2SF−1

∑
q=1

(−1)q+1
(

2SF − 1
q

) ∫ ∞

0
e−

qy2

2σ2 fβk (y)dy. (11)
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Now, if we replace (7) into (11), we have

Pe|k =
2SF−1

∑
q=1

(−1)q+1
(

2SF − 1
q

)
e−

Es
2σ2

q
q+1×

∫ ∞

0

y
σ2 I0

(√
Esy
σ2

)
e−

(q+1)y2+ Es
q+1

2σ2 dy.

(12)

Fortunately, the integral in (12) can be computed as

∫ ∞

0

y
σ2 I0

(√
Esy
σ2

)
e−

(q+1)y2+ Es
q+1

2σ2 dy =
1

1 + q
, (13)

Then, using (4), we find a closed-form expression for the error probability given the symbol k [12]

Pe|k =
2SF−1

∑
q=1

(−1)q+1

q + 1

(
2SF − 1

q

)
exp

[
− q

q + 1
γ · 2SF

]
. (14)

Then, according to [12], we finally find the average bit error rate such that

Pb =
2SF−1

2SF − 1

2SF−1

∑
q=1

(−1)q+1

q + 1

(
2SF − 1

q

)
exp

[
− q

q + 1
γ · 2SF

]
. (15)

3.2. Error Probability for Nakagami-m Channels

We first consider that a random variable α ∼ Gamma(k, θ). Then, we relate the Nakagami-m
parameter to this distribution such that k = m and θ = Ω/m. In the case of Nakagami-m channels,
the correlation output at the demodulator is given as

2SF−1

∑
n=0

rk(nT) ·ω∗i (nT) =

{√
αEs + φi, i = k,

φi, i 6= k
(16)

where
√

α follows a Nakagami-m distribution. Accordingly, (6) can be modified to include the
Nakagami-m random variable as

Pe|α = Pr
[
ρ > |

√
αEs + φi|

]
. (17)

Following similar rationale as in (9), the bit error probability for Nakagami-m can now be
expressed as

Pe|α =
∫ ∞

0

∫ ∞

0

1−
[

1− e−
y2

2σ2

]2SF−1
Ψm(y, α)dydα, (18)

where
Ψm(y, α) = fβk |α(y)

mm

Γ(m)
αm−1e−mα, (19)

and

fβk |α(y) =
y
σ2 exp

[
− (y2 + αEs)

2σ2

]
I0

(
y
√

αEs

σ2

)
. (20)

Note that Ω = 1 in the term mm

Γ(m)
xm−1e−mx is the normalized channel power for Nakagami-m

distribution. The expression in (18) is the average bit error rate probability for Nakagami-m channels
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in the integral form. A closed-form expression of (18) can be obtained following the same rationale in
the steps of (10)–(13), so that

Pe|α =
2SF−1

∑
q=1

∫ ∞

0

∫ ∞

0

(
2SF − 1

q

)
(−1)q+1e−

qy2

2σ2 ×Ψm(y, α)dydα, (21)

In the sequel, we must apply a change of variable of the form z = y2 and perform the integration
in order to get

Pe|α =
2SF−1

∑
q=1

∫ ∞

0

(2SF−1
q )(−1)q+1e−

γq2SF
q+1

(q + 1)
mmαm−1e−mα

Γ(m)
dα (22)

finally, integrating with respect to the x variable, we can get the following expression

Pe|α =
2SF−1

∑
q=1

(−1)q+1

q + 1

(
2SF − 1

q

) [
1 +

q
m(q + 1)

γ · 2SF
]−m

(23)

where γ was defined in (4). Note that

lim
m→∞

[
1 +

q
m(q + 1)

γ · 2SF
]−m

= exp
(
− q

q + 1
γ2SF

)
(24)

and for this case (23) coincides exactly with (14), that is, the Gaussian case is the limit when the
Nakagami-m parameter tends to infinity.

Again, according to [12], we finally find the average bit error rate for Nakagami-m such that

Pb =
2SF−1

2SF − 1

2SF−1

∑
q=1

(−1)q+1

q + 1

(
2SF − 1

q

) [
1 +

q
m(q + 1)

γ · 2SF
]−m

(25)

3.3. Error Probability for Rayleigh channels

Our new expression (23) is general and valid for any positive m parameter. The symbol error
probability for Rayleigh channels can be obtained for the particular case of m = 1 in (23), thus

Pe|α =
2SF−1

∑
q=1

(−1)q+1
(

2SF − 1
q

)[1 + q
q+1 γ · 2SF

]−1

q + 1
(26)

The Gaussian hypergeometrical function is defined as [19]

2F1

[
−m b

c
; z
]
=

m

∑
n=0

(−1)n
(

m
n

)
(b)n

(c)n
zn, (27)

where (ζ)n is the Pochhammer symbol defined as

(ζ)n =

{
1 , n = 0

ζ(ζ + 1)...(ζ + n− 1) , n > 0
(28)
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We can rewrite (26) as

Pe|α = 1 +

−1−
2SF−1

∑
q=1

(−1)q+1
(

2SF − 1
q

)[1 + q
q+1 γ · 2SF

]−1

q + 1


= 1−

2SF−1

∑
q=0

(−1)q
(

2SF − 1
q

)
1

1 + q + q2SFγ
.

(29)

Notice that(
1

1+2SFγ

)
q(

1
1+2SFγ

+ 1
)

q

=

(
1

1+2SFγ

) (
1

1+2SFγ
+ 1
) (

1
1+2SFγ

+ 2
)
· · ·
(

1
1+2SFγ

+ q− 1
)

(
1

1+2SFγ
+ 1
) (

1
1+2SFγ

+ 2
)
· · ·
(

1
1+2SFγ

+ q− 1
) (

1
1+2SFγ

+ q
) . (30)

Except for the first term in the numerator, and the last term in the denominator, all the terms in the
numerator and denominator are the same and therefore can be canceled. We can finally, write (30) as(

1
1+2SFγ

)
q(

1
1+2SFγ

+ 1
)

q

=

(
1

1+2SFγ

)
(

1
1+2SFγ

+ q
) =

1
1 + q + q2SFγ

. (31)

If we consider that z = 1 from (27) and use (31), we can write

Pe|α = 1−
2SF−1

∑
q=0

(−1)q
(

2SF − 1
q

)
1

1 + q + q2SFγ

= 1− 2F1

1− 2SF 1
1+2SFγ

2+2SFγ
1+2SFγ

; 1

 = 1−
Γ(2SF)Γ

(
2+γ·2SF

1+γ·2SF

)
Γ
(

1+2SF+γ·22SF

1+(γ·2SF)

) .

(32)

The average error bit probability for Rayleigh is derived such that [12]

Pb =
2SF−1

2SF − 1

1−
Γ(2SF)Γ

(
2+γ·2SF

1+γ·2SF

)
Γ
(

1+2SF+γ·22SF

1+(γ·2SF)

)
 . (33)

It is important to emphasize that our closed-form solution given in (33) is exact, whereas (33)
in [11], although very accurate, provides an approximation.

The new expression in (33), obtained here, allows getting some intuition with respect the
equivalent signal to noise ratio γ. Note that when γ→ 0, that is for very low values of the equivalent

signal to ratio, the ratio given by
Γ(2SF)Γ

(
2+γ·2SF

1+γ·2SF

)
Γ

(
1+2SF+γ·22SF

1+(γ·2SF)

) tends to 0 and therefore Pb → 1
2 (for SF > 6),

as expected. On the other hand, for high values of γ, the same ratio tends to 1 and therefore Pb → 0.

3.4. Rician Fading

In the case of Rician fading channels, the correlation output at the demodulator is given as

2SF−1

∑
n=0

rk(nT) ·ω∗i (nT) =

{√
(α + ν)Es + φi, i = k,

φi, i 6= k
(34)



Sensors 2019, 19, 4412 7 of 11

where ν is related to the direct path component. Following similar rationale as in (9), the bit error
probability for Rician can now be expressed as

Pe|ν =
∫ ∞

0

∫ ∞

0

1−
[

1− e−
y2

2σ2

]2SF−1
Ψr(y, α)dydα, (35)

where

Ψr(y, α) = fβk |α(y)
α

σ2
r

e
−−α2+ν2

2σ2
r I0

(
να

σ2
r

)
. (36)

where fβk |α(·) is given in (20), ν2 is the direct component power, σ2
r is the variance of the Rice

distribution. We introduce the variable κ as the shape parameter which is the ratio of the power
contributions by line-of-sight path to the remaining multi-paths, and Ω as the scale parameter related
with the total power received in all paths. Furthermore, we can establish the following relations

ν2 =
κ

κ + 1
Ω,

σ2
r =

Ω
2(1 + κ)

.
(37)

Expression (35) is the average bit error rate probability for Rician channels in the integral form.
A closed-form expression of (35) can be obtained following the same rationale in the steps of (10)–(13),
and substituting (37) so that

Pe|ν =
2SF−1

∑
q=1

(−1)q+1

1 + q + 2SFqγΩ
1+κ

(
2SF − 1

q

)
× exp

[
− γ2SFqκΩ

1 + κ + q (1 + κ + γ2SFΩ)

]
(38)

Note, when Ω = 1, we have that

lim
κ→∞

[
exp

(
− γ2SFqκΩ

1 + κ + q (1 + κ + γ2SFΩ)

)]
= exp

(
− q

q + 1
γ · 2SF

)
, (39)

and

lim
κ→∞

 (−1)q+1

1 + q + 2SFqγΩ
1+κ

 =
(−1)q+1

q + 1
(40)

which agrees with the limit case given in (14) for AWGN scenario when the Rician shape parameter
tends to infinity. On the other hand, we have that

lim
κ→0

[
exp

(
− γ2SFqκΩ

1 + κ + q (1 + κ + γ2SFΩ)

)]
= 1, (41)

and

lim
κ→0

 (−1)q+1

1 + q + 2SFqγΩ
1+κ

 =
(−1)q+1

1 + q + 2SFqγ
(42)

which agree with the limit case in the (26) of Rayleigh scenario when the Rician shape parameter tends
to zero.
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The average error bit probability for Rice case is derived such that [12]

Pb =
2SF−1

2SF − 1

2SF−1

∑
q=1

(−1)q+1

1 + q + 2SFqγΩ
1+κ

(
2SF − 1

q

)
× exp

[
− γ2SFqκΩ

1 + κ + q (1 + κ + γ2SFΩ)

]
. (43)

4. Numerical Results

In this section, we will evaluate the numerical expressions and compare the results. Figure 2a
presents comparisons of the derived Nakagami BER given in (23) and (33) versus the theoretical
BER performance solved numerically using the integrals in (18) and (26), respectively. We choose
SF ∈ {6, 12} as the lowest and highest spread factor values to produce two sets of curves and each
group with m ∈ {1, 2, 10}. As shown in Figure 2a, the expressions in (23) and (33) are indistinguishable
from (18) and (26). Also, note that as m increases, the bit error rate curve gets very close to the AWGN
curve, as expected. With SF = 12 and m = 10, there is a gain of almost 30 dB for a BER of 10−4 in
a multipath environment.

-35 -30 -25 -20 -15 -10 -5 0 5 10

SNR (dB)

10-6

10-5

10-4

10-3

10-2

10-1

P
b

m=1
m=2
m=10
AWGN

SF=12 SF=6

(a)

-35 -30 -25 -20 -15 -10 -5 0 5 10

SNR(dB)

2

4

6

8

10

12

14

16

P
er

ce
nt

 E
rr

or
 (

%
)

SF=4

SF=6

SF=8

SF=10

SF=12

(b)
Figure 2. (a) Bit Error Rate for Nakagami-m and Rayleigh cases. The continuous blue curve is given
by (26) (Rayleigh Integral) and the blue stars are computed using (33) (Rayleigh Exact). The green
and red curves are the BER for the Nakagami-m case, the continuous and star lines are given by (18)
(Nakagami-m Integral) and (23) (Nakagami-m Exact), respectively. Analytic AWGN curve is provided
for reference. (b) Percentage error between the Rayleigh BER approximation in [11] and our exact
analytical solution given in (33).

Figure 2b shows the percentage error of the difference between the Rayleigh BER approximation
in [11] and (33). The difference can vary from 6% (when SF = 12) to 15% (when SF = 4).

Next, we focus on the accuracy of the results given by numerical methods considering integrals
and a finite series. We calculated the percentage error between on (18) and (23). The data is summarized
in the Table 1. The data was generated such that parameters assume SNR(dB) ∈ {−30,−10, 10},
SF ∈ {12, 10, 8, 6, 4}, and m ∈ {1, 3, 5}. The numbers in the table are tiny, and therefore, it is necessary
to multiply by a factor of 10−6 to get the percentage error.

Figure 3 presents the derived BER in (38) versus simulation for Rician environments.
Again, we choose SF ∈ {6, 12} as the lowest and highest spread factor values to produce two sets of
curves and each group with κ ∈ {0, 5, ∞}. As shown in the figure, the expression in (38) superposes
with the discrete values found through simulation. Note that simulated and theoretical curves are
almost indistinguishable. Also, note that as κ tends to infinity, the bit error rate curve gets very close to
the AWGN curve, as expected.
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Table 1. Table with percentage error values between (18) and (23). The value of each cell corresponds
to the number times 10−6 %.

SNR = −30 dB SNR = −10 dB SNR = 10 dB
HH

HHHSF
m 1 3 5

HH
HHHSF

m 1 3 5
HH

HHHSF
m 1 3 5

12 0.7 2 0.0 12 0.5 5.0 4.0 12 2.1 11.0 4.0

10 1.5 8.0 0.1 10 2.2 1.0 1.2 10 0.2 7.8 80.0

8 65.6 1.9 1.5 8 0.1 0.2 2.6 8 23.4 0.6 13.3

6 25.4 0.7 0.2 6 2.7 2.3 1.9 6 0.9 4.6 3.3

4 21.7 0.4 0.7 4 0.8 13.0 4.2 4 2.4 1.2 3.5

-35 -30 -25 -20 -15 -10 -5 0 5 10

SNR (dB)

10-6

10-5

10-4

10-3

10-2

10-1

P
b

= 0
= 5

= 
AWGN

SF=12 SF=6

Figure 3. Bit error rate for the Rician case. The continuous lines is given by (38) and stars are given by
the Matlab simulations. Analytic AWGN curve is provided for reference.

5. Application Case

Since the signal to noise ratio γ in (23) is related to the maximum link distance, we can compute
this distance in a system using the LoRa technology where the communication link is under the
Nakagami-m distribution.

We choose the device SX1272 [18] as reference. For instance, the datasheet report that the receiver
sensitivity is PRX = −137 dBm for B = 125 kHz and SF = 12. Using (23), we can set a target bit error
probability of Pb = 10−4 and analyze what is the impact of the Nakagami-m factor in the maximum
link distance.

We choose Okumura-Hata [20] as our path-loss model with urban area parameters. The heights
of the base station and mobile stations are 40 meters and 1 m, respectively. The system operates in the
900 MHz frequency, which agree with the limits presented in Table 2.

Table 2. Regions and Operating Frequencies for LoRa devices [18].

Region Frequency (MHz)

EU 863–870

US 902–928

AU 915–928

CN 779–787 and 470–510
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Figure 4 presents the maximum link distance for different values of SF and m. When we compare
these curve against the AWGN curve (no fading case) given in (14), we notice that the distance decreases
from 5 km to 200 m for SF = 12, which indicates a loss of about 96% of link range. For scenarios where
the Nakagami-m parameter ranges from 2 to 6, the link range loss reduces to 80% and 60%, respectively.
For m = 10, the performance becomes closer to the AWGN performance.

6 7 8 9 10 11 12

SF

10-2

10-1

100

101

d 
(k

m
)

m=1
m=2
m=6
m=10
AWGN

Figure 4. Maximum distance using the Okumura-Hata path-loss model for an urban area and a bit
error probability of Pb = 10−4.

6. Conclusions

In this paper, we derived new expressions to assess the BER performance of CSS in the essential
fading scenarios, i.e., Rayleigh, Rician, and Nakagami-m fading channels. All the results are in terms
of LoRa parameters such as spreading factor SF, bandwidth B, and symbol to noise ratio Es/N0.
The derived bit error probability expressions will be handy for any IoT provider that aims to predict
the network coverage for different scenarios where the fading may vary. Also, we have addressed
the limiting cases where m → ∞ (Nakagami parameter) and κ → ∞ (Rice parameter), showing
that they converge to the non-fading case or the case under the influence only of the additive white
Gaussian noise. All the expressions have been validated by simulation and when applicable, compared
with previous results.
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