

Vol.7 (2017) No. 4-2

ISSN: 2088-5334

Comparative Analysis of Data Redundancy and Execution Time
between Relational and Object-Oriented Schema Table

Salim Tahir Alakari#, Mohd Zainuri Saringat#, Aida Mustapha#, Ahmad Najmi Amerhaider Nuar*
#Soft Computing and Data Mining Centre, Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia,

86400 Batu Pahat, Johor, Malaysia
E-mail: zainuri@uthm.edu.my

*Tagme Solutions, No 24 -1, Jalan Universiti 1, Taman Universiti 86400 Parit Raja, Batu Pahat Johor, Malaysia

Abstract— Database design is one of the important phases in designing software because the database is where the data is stored in the
system. One of the most popular techniques used in database design is the relational technique, which focuses on entity relationship
diagram and normalization. The relational technique is useful for eliminating data redundancy because normalization produces
normal forms on the schema tables. The second technique is the object-oriented technique, which focuses on a class diagram and
generating schema tables. An advantage of the object-oriented technique is its close implementation to programming languages like
C++ or Java. This paper is set to compare the performance of both relational and object-oriented techniques in terms of solving data
redundancy during the database design phase as well as measuring query execution time. The experimental results based on a course
database case study traced 186 redundant records using the relational technique and 204 redundant records when using the object-
oriented technique. The query execution time measured was 46.75ms and 31.75ms for relational and object-oriented techniques,
respectively.

Keywords— database design; relational technique; object-oriented technique; data redundancy; query execution time

I. INTRODUCTION

A database is a mechanism to store data or information in
an organized manner. When data are stored in a database, the
information has to be easily accessible and optimized for
searching, modifying and removal [1]. A good database
design is imperative for two reasons. One, poor design
results in unwanted data redundancy. Two, it also generates
errors leading to bad decisions. A practical approach to
database design is to focus on principles and concepts of
database design that will result in effective performance.

At present, database design is supported by many
methodologies and techniques that strive for a perfect design
[2]. One of the most established methodologies is the
relational data model concept introduced by Codd [3].
However, because the core of the model is the collection of
tables, this design is prone to redundancy among the tables.
Data redundancy is the term used to describe databases that
contain data fields are redundant in the database. Data
redundancy may occur either when the field is repeated
multiple times in a database for a variety of reasons.

Data redundancy is wasteful and inefficient. To solve the
redundancy problem, normalization technique has been
widely used [1], [4]. Normalization is an important

technique for the design of relational databases. During
normalization, the functional dependencies in the tables are
first determined to match the normal forms with a
breakdown of the tables. The benefits of normalization
include as follows.

• It eliminates data redundancy.
• It eliminates to insertion, modification and deletion

anomalies.
• It results in the saving of more space in storing.
• It allows adding new tables to the database and new

rows to the table without any difficulty.
• It ensures data consistency.
• It ensures referential integrity.

Normalization is a technique of breaking down the given

relational schemas focused around their functional
dependencies and primary keys in an effort to decrease
duplication. It focuses on producing a set of relational tables
with the least amount of information redundancy by
facilitating correct insertion, deletion, and modification. At
present, it is very much time-consuming to use an automated
technique to do this data analysis, as opposed to manual.

However, the main drawback of the normalized form is
that the higher normal forms applied, the less vulnerable the
update anomalies, but the more tables will be produced.

1562

Consequently, this will affect the efficiency of a database
since the updating process is more complex apart from the
complexity in programming itself [5].

Another approach to solving data redundancy is by
designing a relational database system based on the object-
oriented methodology. In the object-oriented approach, the
database system is created by the schema table generated
from the class diagrams. The rules applied to adhere to the
object-oriented concept, which is based on the relationships
among the classes, multiplicity, attributes name, class name,
data type and the behaviours of the classes [6].

The objective of this paper is to analyze the redundancy
problem by examining two approaches in database design,
which are the relational technique and the object-oriented
technique. The analysis will measure the total data
redundancy based on Structured Query Language (SQL).
The important concepts considered in SQL are entities,
relationships, and attributes, as well as the data schema
while using the SQL query language. Aside from measuring
the total data redundancy, the experiment will also measure
the query execution time in terms of milliseconds.

II. MATERIAL AND METHOD

In order to compare the performance of both relational
and object-oriented techniques in terms of solving data
redundancy, an undergraduate database course at Universiti
Tun Hussein Onn Malaysia (UTHM) has been chosen as the
case study. Fig. 1 shows the process of applying the
relational technique and the object-oriented technique in
designing the database course.

In this figure, two different schema tables will be
generated based on the Entity Relation Diagram (ERD) from
the relational approach and the class diagrams from the
object-oriented approach. The schema table from the
relational approach will undergo another process called the
normalization to produce up to the third normal forms from
the tables. Total data redundancy from both schema tables
will then calculated and analyzed. Next, a user-friendly
window [7] is used to measure the query execution times for
both relational and object-oriented database designs.

Start

Course Database

SupplierID
Name
ContactName
Phone
Address
ZipCode
CityID

Supplier

PONumber
OrderDate
ReceiveDate
SupplierID
EmployeeID
ShippingCost

Merchandise
Order

OrderID
OrderDate
ReceiveDate
SupplierID
ShippingCost
EmployeeID

AnimalOrder

OrderID
AnimalID
Cost

Animal
OrderItem

CityID
ZipCode
City
State
AreaCode
Population1990
Population1980
Country
Latitude
Longitude

City

EmployeeID
LastName
FirstName
Phone
Address
ZipCode
CityID
TaxPayerID
DateHired
DateReleased

Employee

PONumber
ItemID
Quantity
Cost

OrderItem

Category
Registration

Category

Category
Breed

Breed

AnimalID
Name
Category
Breed
DateBorn
Gender
Registered
Color
ListPrice
Photo

Animal

SaleID
SaleDate
EmployeeID
CustomerID
SalesTax

Sale

SaleID
ItemID
Quantity
SalePrice

SaleItem

ItemID
Description
QuantityOnHand
ListPrice
Category

Merchandise

SaleID
AnimalID
SalePrice

SaleAnimal

CustomerID
Phone
FirstName
LastName
Address
ZipCode
CityID

Customer

Entity Relationship Diagram

……
User Friendly Windows

Class Diagram

Generating Schema Table Generating Schema Table

Normalization Technique

 Relational Database Object-oriented Database

Comparative Analysis based on Query Execution Time between Relational and Object-
oriented Database

End

Fig. 1 Research methodology

1563

A. Relational Technique

In the relational technique, the database was designed
based on the Entity Relationship Diagram (ERD), and
schema tables were generated from these diagrams. Once
the schema tables were ready, they are implemented into a
physical database system. The steps to produce the database
are as follows.

• Step 1. Create entity relationship diagram based on

the Course Database case study using Visual
Paradigm program as shown in Fig. 2.

• Step 2. Generate SQL schema table from ER
diagram as shown in Fig. 3.

• Step 3. Apply normalization technique until third
normal forms as shown in Fig. 4.

• Step 4. Generate schema table from normalization
technique until 3NF as shown in Fig. 5.

Fig. 2 Entity relationship diagram database course [8]

Create table Student (
Student_number int,
Name varchar (10),
Class varchar (10),
Major varchar (7),
Primary key
(Student_number));

Create table Course (
Course_number int,
Course_name varchar (7),
Credit_hourseint,
Department varchar (7),
Primary key
(Course_number));

Create table Section (
Section_identifier int,
Course_number int,
Primary key
(Section_identifier),
Foreign key
(Course_number));

Create table Grade_report (
Student_number int,
Section_identifier int,
Grade int,
Foreign key
(Student_number),
Foreign key
(Section_identifier));

Create table Prerequisite (
Course_number int,
Prerequisite_number int,
Primary key
(Prerequisite_number),
Foreign key
(Course_number));

Fig. 3 Generate schema table for database course

Fig. 4 Normalization technique [9]

Create table Student (
Student_number int,
Name varchar (10),
Class varchar (10),
Major varchar (7),
Primary key
(Student_number));

Create table Course (
Course_number int,
Course_name varchar (7),
Credit_hourse int,
Primary key
(Course_number));

Create table Course_Dept (
Course_number int,
Department varchar (7),
Foreign key
(Course_number));

Create table Section (
Section_identifier int,
Course_number int,
Primary key
(Section_identifier),
Foreign key
(Course_number));

Create table
Section_semester (
Section_identifier int,
Semester date,
Year date,
Instructor varchar (10),
Foreign key
(Section_identifier));

Create table Grade_report
(
Student_number int,
Section_identifier int ,
Grade int,
Foreign key
(Student_number),
Foreign key
(Section_identifier));

Create table Prerequisite
(
Course_number int,
Prerequisite_number int,
Primary key
(Prerequisite_number),
Foreign key
(Course_number));

Fig. 5 Schema tables normalization until 3NF in Database course

B. Object-oriented Technique

The steps in object-oriented technique began by first
translating the ER diagram into a class diagram. The Visual
Paradigm program [10] supports generating class diagram
from existing ER diagrams. This program mapped the
entities and relationships into the corresponding classes and
associations. In the object-oriented technique, the each class
is then translated into schema tables.

• Step 1. Generating Class Diagrams from ERD by

using Synchronize to Class Diagram in Visual
Paradigm program as shown in Fig. 6.

Remove Repeating Group

1NF

2NF

Remove partial Dependency

Remove transitive

Schema Table Unnormalized as in Fig. 3

Schema Table 3NF as in Fig. 4

1564

• Step 2. Generate SQL schema table from a class
diagram by using Object Relational Mapping (ORM)
as in Fig. 7.

Fig. 6 Class diagram for Database course

Create table Student (
Student_number int,
Name varchar (10),
Class varchar (10),
Major varchar (7),
Primary key
(Student_number));

Create table Course (
Course_number int,
Course_name varchar (7),
Credit_hourse int,
Department varchar (7),
Primary key
(Course_number));

Create table Section (
Section_identifier int,
Course_number int,
Primary key
(Section_identifier),
Foreign key
(Course_number));

Create table
Grade_report (
Student_number int,
Section_identifier int ,
Grade int,
Foreign key
(Student_number),
Foreign
key(Section_identifier));

Create table Prerequisite
(
Course_number int,
Prerequisite_number int,
Primary key
(Prerequisite_number),
Foreign key
(Course_number));

Fig. 7 Generate schema table for Course class diagram

III. RESULTS AND DISCUSSION

The comparative analysis measured two items; the
number of data redundancy produced by each technique and
the query execution time for both database designs.

A. Data Redundancy

The total data redundancy inside the attributes from both
relational and object-oriented schema tables was calculated
using the SQL query as shown in Fig. 8.

Fig. 8 SQL Query to calculate data redundancy

Table 1 shows the total data redundancy resulting from

the SQL query using both relational and object-oriented
techniques. From the table, the database design using
object-oriented technique produced higher data redundancy
in the Department attribute. This is because the tables in the
Database Course were transferred from class diagram [10].
The class diagram in object-oriented refers to the entities in
the system requirements.

B. Query Execution Times

The second objective of this paper is to compare query
execution times between the two different databases. In
measuring the execution time, a user-friendly window using
C# was used to calculate the query duration based on four
queries each in the case study. Fig. 9 shows the user-
friendly window, which displays and calculate query
execution time using both relational and object-oriented
techniques.

Next, the results of query execution time from running
the user-friendly window are shown for four queries using
the hospital object-oriented database. The queries were a
student, marks, course, and requisite. The result of running
these queries is shown in Table 2 where the query execution
times are measured in milliseconds (Ms). Finally, Fig. 10
illustrates the average execution times for all queries in the
relational and object-oriented database resulting from the
case study.

TABLE I
RESULTS OF DATA REDUNDANCY IN DATABASE COURSE

Relational Technique Object-Oriented Technique

Schema Table Attribute
Data

Redundancy
Schema Table Attribute

Data
Redundancy

Student
Class 30

Student
Class 30

Major 28 Major 28
Course Credit_ hours 17

Course
Credit_hours 17

Course_dept Department 0 Department 18

Section_semester
Semester 29

Section
Semester 29

Year 29 Year 29
Instructor 25 Instructor 25

Grade_report Grade 28 Grade_report Grade 28
Total Data Redundancy 186 Total Data Redundancy 204

1565

Fig. 9 User-friendly window

TABLE II
COMPARISON OF QUERY EXECUTION TIMES

Query
Execution

Time: (MS)
Query Relational Object-

Oriented

Courses
database

Student 51 Ms 27 Ms
Marks 44 Ms 36 Ms
Course 43 Ms 40 Ms

Requisite 49 Ms 24 Ms
Average 46.75 31.75

Fig. 10 Query execution times forJ both relational and object-oriented
database

IV. CONCLUSIONS

The core benefit of adopting a common database in a big
data system is reducing the data redundancy, hence reducing
the man-hours for maintaining the database, as well as
maximizing the database throughput. The basic idea is to
reduce the number of associations between objects and to
promote object reuse so that the database performance is
optimized. This, in turn, will have a positive effect on the
size of storage space. The important objective is to reduce
data redundancy over databases. This paper focused on
considering allotments of the relational and identical classes
that share relations. Object-oriented approach detects
redundancy more easily and efficiently by using comparable
classes.

Data redundancy problem is analysed in this paper when
designing the database. The comparative results showed that

the relational database design technique achieved a bigger
reduction in data redundancy as compared to the object-
oriented technique. This is because the relational technique
uses normalization to avoid this problem through the
normalization rules. From the case study using the database
course, the relational technique produced only 186 data
redundancy as opposed to 204 data redundancy from the
object-oriented technique. However, in terms of query
execution times when performing the SQL queries via the
user-friendly window, the object-oriented database produced
faster results of 31.75ms as compared to 46.75ms by the
relational database.

In conclusion, both techniques are accepted in designing
database and applied in current system development in
worldwide. However, the database designer must be really
understood when the technique should be used. For example,
in the big database which is involved with many tables, it not
recommended to applied relational technique.

ACKNOWLEDGMENT

This project is sponsored by Universiti Tun Hussein Onn
Malaysia and partially supported by Research Gates IT
Solution Sdn. Bhd.

REFERENCES
[1] Coronel, C. and Morris, S., “Database Systems: Design,

Implementation Management”, Cengage Learning, New York, 2013.
[2] Stephens, R. K. and Plew, R. R. “Database design book by Sams

Publishing. SABAU, G. (2007). Comparison of RDBMS, OODBMS
and ORDBMS. Revista Informatica Economica (44), 2001.

[3] Codd, E. F. “Further Normalization of the Database Relational
Model”, Database System, Englewood Cliffs, N.J.: Prentice Hall,
33:64, 1972.

[4] Connolly, T. and Begg, C., “Database Systems: A Practical
Approach to Design, Implementation and Management”, Pearson,
England, 2015.

[5] Saringat, M. Z., “Attributes Sanitization in Object-oriented Design to
Improve Database Structure”, Ph.D Thesis, Universiti Tun Hussein
Onn Malaysia, 2014.

[6] Saringat, M. Z., Herawan, T. and Ibrahim, R., “A Proposal for
Constructing Relational Database from Class Diagram”, Canadian
Journal: Computer and Information Science, Vol. 3, No. 2, pp. 38-46,
2010.

[7] Voore S. R. and Chavan, V., “A User Friendly Window Based
Application for Calculation of Query Execution Time for Relational
Databases”, International Journal of Engineering and Advanced
Technology (IJEAT), ISSN: 2249 – 8958, Volume-2, Issue-2, 2012.

[8] Elmasri, R. and Navathe, S., “Fundamentals of Database Systems”,
Sixth Edition, Singapore: Pearson, 2011.

[9] Connolly, T. and Begg, C., “Database systems: A practical approach
to design, implementation and management”, 6th ed. Essex:
Addison-Wesley, 2014.

[10] Saringat, M. Z., Ibrahim, R., Ibrahim, N., & Adeshina, A.,
“Constructing Schema Table from Class Diagram”, 2nd World
Conference on Information Technology (WCIT 2011). AWER
Procedia Information Technology and Computer Science, Vol. 1,
May 2012, pp 699-70, 2012.

1566

