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Abstract— The advancement in mobile technologies has led to the production of mobile devices (e.g. smartphone) with rich innovative 
features. This has enabled the development of mobile applications that offer users an advanced and extremely localized context-aware 
content. The recent dependence of people on mobile applications for various computational needs poses a significant concern on the 
quality of mobile applications. In order to build a high quality and more reliable applications, there is a need for effective testing 
techniques to test the applications. Most existing testing technique focuses on GUI events only without sufficient support for context 
events. This makes it difficult to identify other defects in the changes that can be inclined by context in which an application runs. 
This paper presents an approach named TEGDroid for generating test case for Android Apps considering both context and GUI 
Events. The GUI and context events are identified through the static analysis of bytecode, and the analysis of app’s permission from 
the XML file. An experiment was performed on real world mobile apps to evaluate TEGDroid. Our experimental results show that 
TEGDroid is effective in identifying context events and had 65%-91% coverage across the eight selected applications. To evaluate the 
fault detection capability of this approach, mutation testing was performed by introducing mutants to the applications. Results from 
the mutation analysis shows that 100% of the mutants were killed. This indicates that TEGDroid have the capability to detect faults 
in mobile apps. 
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I. INTRODUCTION 

In recent year’s mobile apps are developed to address 
more critical areas of people’s daily computing needs, which 
brought concern on the quality of applications. In order to 
build high quality and more reliable applications that can 
gain recognition in the high-level competitive application’s 
(app) market, there is a need for effective testing techniques 
to validate the quality of the applications. The techniques 
should be able to validate different types of events supported 
by mobile apps [1-4] in order to improve users’ confidence 
in the mobile apps [5-7]. Testing event-driven applications 
present a great challenge to software testers such as the need 
to generate a huge number of possible event sequences that 
could sufficiently cover the application’s state space [8, 9].  

Several techniques are used to generate test cases that can 
be run to detect faults. Test cases must be generated from 
some information, specifically some software artifacts. The 
software artifacts that is used includes: software 
specification documents/or design models; software 
program/source; information about input/output space, and 
information dynamically obtain from program execution 
[10]. Most of the approaches dedicated to mobile apps 
dynamically analyze an application to generate events 
sequence that can later be used as test cases to test an 
application.  

Nowadays test automation is becoming increasingly 
popular among the software engineering community in 
recent times [11-13].  Numerous testing techniques have 
been proposed for testing mobile apps in the past few years. 
However, most of the testing techniques for mobile apps 
generate test cases considering only GUI events such as [14, 
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15] without sufficient support for testing context events [16, 
17]. Therefore, it will be difficult to identify other defects in 
the changes in the contexts, which can be inclined by the 
context in which an application runs [16]. In order to ensure 
that these applications behave correctly, external context 
events must be considered during testing such as those from 
GPS location data, sensors, network in addition to the GUI 
events.   

There are few testing approaches and techniques that 
addressed testing context events for mobile apps such as [16, 
18-20]. 

A. Related Works 

There are only few studies that considered context events 
in the literature. Smart-monkey [7] is a testing approach for 
mobile apps that integrates features of event-based testing 
with random testing. It uses an ART algorithm adapted from 
[21] to automatically generate test cases that are composed 
of both GUI events and context events based on event 
sequence distance it measure the distance between the test 
cases of mobile applications. The aim of the approach is to 
reduce both the number of test cases and the time needed to 
expose the first fault. Extended Ripper [18] is proposed for 
automating testing of Android apps which considers both 
context events and GUI events for testing Android mobile 
apps. It is based on reusable event patterns that were 
manually defined after an initial analysis conducted on the 
bug reports of open source applications. Test cases can be 
generated based on the defined event patterns using three 
scenario-based mobile testing approaches: manual, mutation-
based and exploration based. Since the event patterns are 
derived manually by an expert from analyses of bug history, 
the events that may trigger a faulty behavior in an app may 
not be identified accurately. Moreover, when testing other 
types of applications, these event patterns may need to be 
redefined. 

Greibe et al, [22] propose a model-based approach to 
improve the testing of context-aware mobile apps by 
deducing test cases from design-time system models. 
Android tool [23] implements a technique to address the 
context changes in mobile apps called block-based context-
sensitive testing. Test cases are split blocks that can be 
reused and combined with context changes that are used in 
testing different scenarios without duplicating the test cases. 
This reduces the effort of writing cases. Yu and Takada [24] 
proposed an approach for generating test cases for both GUI 
and context events from android mobile apps using events 
pattern that are derived manually similar to that in [18], 
according to the authors their results were inconclusive 
because no bug was found for the set of generated test cases.  

An approach is proposed by [16] to systematically 
generate several executing contexts from the permission of 
an Android app. Their approach analyses the lists of 
permissions and the resources that an application uses. 
Various contexts are generated from a mobile app by 
permuting resource conditions. The permutations of the 
contexts are prioritized and selected for test case generation. 
Few selected apps’ permissions were considered to identify 
their related resources and possible states. As such some 
faulty behavior may not be detected and there is no clear 

means of detecting context from the dynamically changing 
environment. 

Dynodroid [20] uses the Adaptive Random technique 
(ART) to generate a sequence of events that can be used to 
systematically explore an application. The approach is based 
on the observe-select-execute sequence to generate both user 
and system events by checking the ones that are relevant to 
the app. However, one of the limitations of the approach is 
the restriction of the apps under test from communicating 
with other apps. As many Android apps communicate with 
other apps for shared functionality and some context could 
not be detected. 

EHBDroid [19] is an approach for testing Android apps 
that simulate a large number of events by invoking the event 
handlers directly. The event handlers of an activity are 
invoked randomly which only consider event coverage. The 
approach is not based on event sequence. 

II. MATERIAL AND METHOD 

This paper focused on test case generation for mobile 
apps. Most mobile testing technique focused on GUI events 
only. This contributes to insufficient coverage of mobile 
apps during testing. While, testing context events of mobile 
apps have numerous challenges. The major challenge is how 
to identify the context events from an application. Thus, in 
this research both GUI events and context events supported 
by mobile apps are considered. The bytecode and 
manifest.xml file is analysed to extract GUI events and 
context events respectively. Considering GUI analysis in 
combination with mobile apps’ permission analysis can 
generate comprehensive events that can be used to generate 
test cases in order to provide better test coverage.  The 
TEGDroid consists of five main steps as shown in Figure1. 

 

 
Fig. 1 Framework of TEGDroid 

 

A. Step 1:Resource Extraction 

Android apps are developed in Java and compiled to the 
dex file which runs on a special virtual machine called 
Dalvik Virtual Machine (DVM). They are zipped into a 
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single application package file (APK) that is distributed in 
stores from where mobile device users can download to their 
devices. An APK is a compressed file format which contains 
various resources that comprises an Android application. It 
consists of the program code (dex file), Android 
Manifest .xml  file and resources. To analyse the 
required resources such as bytecode and manifest.xml , 
the APK file needs to be de-compressed to extract the 
required resources. The outputs generated from this stage are 
the application’s Dalvik Executable file (DEX) that contain 
the Java bytecode of an application and the 
AndroidManifest.xml file which contains all the permissions 
used by an app. The next step is to decompile DEX file and 
de-code the Android Manifest .xml for further analysis. 

In order to obtain the bytecode and source code, reverse 
engineering is applied directly to the DEX file. This file is 
further de-compile to the Java bytecode using Dexpler [25] 
for the further analysis. The Java bytecode is used as input 
for the TEGDroid.  

AndroidManifest.xml file is an encoded file format by the 
Android system. In order to extract app’s permission, the 
extracted AndroidManifest.xml file needs to be de-coded to 
enable reading its information. The file is de-coded using 
apktool’s decode function to enable reading the information 
of permission. The output of this stage is a readable 
AndroidManifest.xml file that contains declarations of 
permissions which an app must have in order to access 
protected resources. 

B. Step 2: Static Analysis 

Static program analysis is the analysis of software that is 
performed on the source code or bytecode without executing 
the programs to extract some information about the software 
[26, 27]. Program analysis is usually performed by a special 
automated tool that is designed to extract specific 
information. The static analysis targets the GUI events and 
the set of context events that can be detected vias the 
analysis of Intent message through the app’s code.  

In Android apps, there is the class which defines an 
Activity; the main app component that is responsible for 
presenting a GUI window that the user interacts with. The 
GUI widgets are linked to the listener object which is in turn 
connected to the eventHandlers that are responsible for 
executing user events. By analysing the GUI and event 
handlers, information about all the GUI events can be 
obtained. The context events (otherwise known as system 
events) are generated by the Android system in response to 
the device context [24]. Information about these events can 
be obtained by analysing the callback and Intent messaging 
system. The analysis performed Intent tracking to identify 
the system generated events by the device. The Intent 
messaging system is analysed to obtain information about 
the context events.  

The control-flow analysis focuses on an essential aspects 
Android, which are the callbacks for a variety of interactions. 
It comprises lifecycle and interactions of user event-driven 
components that executes in the app's UI thread (the main 
thread). The analysis also targets activities, dialogs, and 
menus as the main components of an app. Two categories of 
callbacks: Lifecycle callbacks that manage the lifetime of 
app components and Lifecycle callbacks for activities, 

dialogs, and menus are considered in the analysis. The 
Lifecycle callbacks for activities, dialogs, and menus 
describe key changes to the observable state and to the 
possible run-time events and behaviour.  

Static analysis is generally used by developers and 
researchers such as [27-29] to analyse software and extract 
information that can be used for software testing, software 
redocumentation and software understanding. There are 
several open source tools for static analysis of source code/ 
bytecode targeting different programming languages and 
platform. Examples are WALA framework used in [28] and 
GATOR used in [29]. This study employs static program 
analysis in GATOR [30] tool to obtain the vital information 
about an app that is required to identify supported events for 
test case generation, because it is designed specifically for 
java and android platform. GATOR is a Program Analysis 
Toolkit for Android that performs control flow analysis on 
application’s GUIs, callback methods and Intent. A static 
control flow analysis is performed on the Java bytecode 
which tracks the callback methods and Intent messages. The 
control flow analysis is represented in form of a graph called 
Windows Transition Graph (WTG). The WTG represents 
both the events from the GUI and context events extracted 
through the analysis of callbacks and Intent messaging 
respectively. We used the WTG to obtain information about 
the supported events which is further used as input for test 
case generation. A fragment of the generated WTG is shown 
in Figure 2 below.  

 

 
Fig. 2 Example of WTG Generated 

 
The WTG comprises nodes and edges representing app’s 

window/activity and events respectively. The 
window/activity comprises GUI and their properties which 
can be used to trigger an event on the app. In order to extract 
information (eS) about mobile app supported events from the 
WTG, a graph search algorithm is used on the WTG. 
Algorithm 1 was designed based on the concept of Dijkstra’s 
algorithm that considers weighted edges to traverse the 
WTG. 

The algorithm traverses the WTG from the start node to 
explore each path p in the graph as shown in Lines 3-5. 
Paths p in the graph represents an event that can be executed 
on an application where label assigned to the path indicates 
the sequence of execution. Based on this, a list of 
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application’s supported events is generated with their 
sequence of execution. The algorithm continues by 
backtracking of each p to identify the source node (Lines 6-
7). In order to fire the events on an app, information about 
the events that includes handler method and GUI widgets is 
required. Therefore, the algorithm gets the GUI widgets 
contained in each source node and extracts their properties 
that are view ids and handlers and add the properties to the 
event summaries as in Lines 8-11.  

At this point, the output is a summary of all events 
supported by an app. The event summary comprises an event 
id, the source of event, destination, event type and 
processing method. However, due to nature of static analysis 
it does not identify the dynamic behaviour of the resources 
(hardware) from which scenarios of context events are 
generated. This is main goal of the application of 
combination in order to generate the different states of 
resources. 

 
Algorithm 1: Static Analysis 
Input:  AUT: App under test 
Input : WTG: Windows transition graph (AUT) 
Output:  eS: Events Summaries 
1     Procedure analyseApp(wtg) 
2      eS ← GetEvnetSummaries(w,p) 
3      for  all paths P in graph do 
4     while p ≠ explored then 
5            Event e ← getPath(g) 
6            for all e ∈ EventsSet do 
7     sourceWindow W ← getSourceOfPath() 
8     foreach w ∈ sourceWindow do 
9            eh ← getEventHandler() 
10            gw ← getGUIWidgets() 
11            id ← getProperties(GW) 
12            eS.add(e,id,gw,eh) 
13                        End  
14                  End                  
15           End           
16    End 
 
 

C. Step 3: Permission Extraction 

The xml file contains all permissions assigned to an 
application. The permission list comprises all the resources 
e.g., camera, GPS that a mobile app may potentially require 
to run and the context events usually occur from the 
resources used by a mobile app [31]. Therefore, by analysing 
these permissions, the resources can be detected and 
subsequently the context events triggered by the resources 
can be identified. 

The permissions assigned to an application are declared in 
a <uses permission> tag in the manifest file as shown in the 
example below:  

<uses permission  
Android:name=”android.permission.INTERN

ET” 
/>  
The extracted output is a list of all permissions declared 

for the app. Table I shows a list of the permissions from 

manifest.xml  for Beem app. Using the permission list 
generated for an app, the resources used by the app can be 
identified. The resources are then identified manually by 
considering what does the permission requires in order to 
run. 

TABLE I 
PERMISSION PROPERTIES 

Permission  Resource State  

INTERNET Radio,  

GPRS,  

Wifi 

on/off 

on/off 

on/off 

VIBRATE  Vibrator on/off 

WRITE_EXTERNAL_STORAGE  Sd card Free/full 

READ_EXTERNAL_STORAGE  Sd card Free/full 

ACCESS_NETWORK_STATE  Radio 

Receiver 

on/off 

 
In order to generate various scenarios of the executing 

context of an app, combination technique is applied on the 
resource conditions. For all resources that have links, the 
candidate states can be combined to generate the set of 
executing scenarios. This information is subsequently used 
to generate test cases that are capable of testing the context 
events. Based on the state of each resource, they are 
combined.  

In order make sure that app functions correctly, there is 
need to have knowledge of the possible states of resource in 
order to know the different behaviours that can be triggered 
by the resource state [32]. This can help a tester to know the 
root cause of test failure during testing. The results of the 
combination are used to manually and add the conditions for 
the test scenarios to the test cases. 

 

D. Step 4: Test Case Generation 

In software engineering a test case is regarded as a set of 
conditions under which a tester will determine whether an 
application software system or one of its features is working 
as it was originally established for it to do. It may take many 
test cases to determine that a software program or system is 
considered sufficiently analyzed to be released. 

There are several test generation techniques for test 
automation such as script based, random, capture/replay, 
search based and model based. Each technique uses a 
specific formalism of algorithm to process the application’s 
information to generate test cases. In this study, search-based 
testing technique is utilized for generating test cases. Search-
based testing technique help in reducing the costs of testing 
using the smallest set of test cases that can cover all the 
branches in a program. The event summaries (eS) extracted 
by Algorithm 1 is used as input for test case generation. 
Robotium testing framework is used to generate JUnit test 
cases that can be run test an app. The rule guiding the test 
case generation is defined as follows. 

Rule: [Test generation]. For each event e = e1, e2, 
e3 , . . . the event id e(ei)  is translated to a matching 
Robotium API call which can trigger the event.  
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 The description of the test case generation process is 
described in algorithm 2. The algorithm receives the eS as 
input for test case generation. Each event in the event 
summaries is a test path that can be translated to a test case. 
Beginning from the start state (event with id 1), the 
Algorithm extracts each event with the event id, widget and 
handler and translate it to a test case as shown in (Lines 2-4). 
The algorithm adds each generated test case to the list of test 
cases with the triggers in lines 6-9. 

 
Algorithm 2: Generate TestCases 

Input:  AUT: App under test, eS: Event Summaries 
Output:  TC: Test Cases 
1 Procedure Generate Test case() 
2 testPath Pt ← getEvent(eS) 
3 while Pt not empty do 
4  testCase Tc ← genTestCase() 
5  foreach Tc ϵ Tc set do 
6   Wp ← getWidgetProperties() 
7   W ← getWidget() 
8    h ← getHandler() 
9   Tc.add(e,wp,h) 
10           End  
11    End  
 
 The eS is used as input for the test generation algorithm 
to generate test cases for a given app by picking each event 
from the eS to generate sequence of test cases as described 
above. The output from the test generation algorithm is a set 
of test cases for each given app. However, script-based 
technique is used to manually write test condition for the test 
scenarios obtained from the resource combination and add it 
to the test cases generated. The scripted-based testing 
technique offers scripting languages which control an app 
programmatically that help a tester to write test scripts 
manually. It is done by giving a set of instructions that will 
be performed on the system under test to trigger events in 
order to test that the system functions as expected. 

III.  RESULTS AND DISCUSSION 

In order to measure the effectiveness of the TEGDroid, a 
case study was conducted on real-world Android application 
from GitHub and SourceForge.  Eight (8) open source apps 
were selected across different categories such as, tools, 
communication, music and audio. These apps were used by 
other researchers for testing to evaluate their approach.  

Experimental Setup. An Android device (real or 
emulated device) is needed in order to test a mobile app. In 
this research, an emulator was configured based on x86 Intel 
configuration with Android version 5.1 for the experiment. 
1GB of memory was configured on the emulator to host the 
applications and logs. Specifically, Ubuntu 16.04 was used 
in running the experiments. The PC used is equipped with an 
i7 Intel processor with 8GB of RAM. 

Benchmark. Table II presents list of the selected 
applications used for evaluation of TEGDroid. The apps are 
downloaded from GitHub and Sourceforge, which are 

popular benchmarks with different functionalities. The 
source lines of code of the apps ranges from 1.6K to 97K 
with average of 20.8K. With average of 1432 classes, 2458 
methods and 14.4 activities.  

 
TABLE II 

BENCHMARKS OF THE APP’S USED FOR EVALUATION  
App Name SLOC ELOC Class Method Activity 

Barcodescaner 6549 3477 110 565 9 

Beem 21179 9123 227 1640 12 

Marine 
Compass 

1654 904 92 150 4 

Open Camera 4862 2263 25 195 2 

Pedometer 14654 6380 2208 11487 2 

Subsonic 17779 8798 702 4602 13 

TippyTipper 2284 1004 67 225 6 

WordPress 97891 70596 8029 1309 68 

Average 20856 12818 1432 2458    14.5 

 
Two experiments were conducted to evaluate TEGDroid: 

code coverage analysis and mutation testing. Subsequent 
sections present discussion on the results of the experiment 
tal evaluation. 

 
A. Coverage Result 
This study has the main aim of checking the effectiveness 

of TEGDroid in terms of the coverage achieved on 
applications. Code coverage is used by several researchers 
and practitioners as a system of evaluating the effectiveness 
of testing techniques. Code coverage is a measure used to 
describe the degree to which the source code of a program is 
executed when a particular test case runs [33, 34]. When the 
percentage measure of a program has high code coverage, it 
has had more of its source code executed during testing. This 
suggests it has a lower chance of containing undetected 
software bugs compared to a program with low code 
coverage. 

 

 
Fig. 3 Coverage of TEGDroid 

 
There are several tools used for measuring code coverage 

for different programming languages such as jacoco and 
Emma. Emma code coverage library has now been built-in 
to the Android SDK which makes it easy to use for 
measuring the coverage during testing of Android mobile 
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apps. This has made Emma [35] popular and is used by a 
variety of mobile apps testing techniques to measure the 
code coverage.  

Figure 3 show the results obtained by the TEGDroid on 
the seven selected apps. Based on the results, TEGDroid has 
achieved LOC coverage of 79% for BarcodeScanner app, 83% 
for Beem app, 91% for MarineCompass, 78% for 
OpenCamera, 86% for Pedometer, 78% for Subsonic, 82% 
for TippyTipper and 65% for WordPress. TEGDroid 
achieved LOC coverage of 65% -91% across the eight (8) 
apps used. 

 

 
Fig. 4 Comparison of Coverage Results 

 
We statistically performed a comparison of code coverage 

results of TEGDroid with other approaches as shown in 
Figure 4. The y-axis represents the code coverage result in 
percentage and x-axis shows the approaches used in the 
comparison. When we look at the spread of the coverage, it 
shows that the coverage achieved for most of the 
applications is 57% - 83% by EHBDroid, 57% - 82% by 
E.Ripper, 61% - 77% by Dynodroid, 45% - 47% by Song et 
al., TEGDroid obtained 79% - 84%. For the median of the 
coverage EHBDroid obtained 78.3%, E.Ripper 67%, 
Dynodroid 76.6%, Song et al. 46.5% and TEGDroid 
achieved 80.5. In comparison to the other approaches, 
TEGDroid obtains higher coverage above the median for 
most of the applications. This indicates that TEGDroid have 
higher code coverage compared to all the approaches. 
 
B. Fault Detection using Mutation Testing 

Code coverage has been recently criticized by many 
researchers [36-38] for validating the quality of software. 
Mutation testing changes a software artifact such as a 
program, requirements specification, or a configuration file 
to create new versions called mutants [39]. It is also called 
fault-based testing technique which measures the fault 
detection ability of a given test set by measuring the number 
of mutants being killed [40]. The general principle 
underlying mutation testing work is that the faults used by 
mutation testing represent the mistakes that programmers 
often make [41]. By Comparing mutation with other 
traditional testing technique like line coverage which only 
measures the percentage of code being executed, mutation 
testing could actually identify the ability of fault detection 

for tests [42]. The mutation analysis is represented as 
mutation scores (MS) 

In this study, muDroid [40] is used for mutants generation 
and running mutation. MuDroid is an open source mutation 
testing technique for android apps that generates mutants 
based on six operators Arithmetic Operator Replacement 
(AOR), Inline Constant Replacement (ICR), Logical 
Connector Replacement (LCR), Negative Operator Inversion 
(NOI), Return Value Replacement (RVR) and Relational 
Operator Replacement (ROR). It performs an analysis during 
testing to determine if the generated mutants are alive or 
killed. The test cases generated from the TEGDroid are 
injected into the muDroid to run test on an app. During 
testing, when the test cases detect a mutant in an app, then 
the mutant is said to be killed. Once the mutants are killed, it 
shows that the generated test cases have the capability to 
reveal many faults in mobile apps. 

muDroid generates several mutants in hundreds or 
thousands based on the size of a mobile app. To run 
thousands of mutants on an app, it requires a lot of resources 
and time [40]. To make the testing practical, muDroid 
employs several selection criteria which a tester can choose 
for the mutant selection. The random selection criterion is 
configured for mutant selection, because it is an efficient 
way to reduce the number of mutants by randomly selecting 
x% from the total mutants and it is the most  common used 
cost reduction strategy [40]. Based on the experiment for the 
eight apps, MuDroid generates a total number of 34,275 
mutants for the six mutation operators, as shown in Table III. 
Based on the criterion, some mutants were selected for each 
mutation operators.  

Based on the results, all the selected mutants for the 
operators were killed with ROR having the highest mutation 
score of 2.402 for the total number of all the applications 
mutation score as shown in Table IV. A total of 6314 
mutants were selected for the test for all the applications. 
Based on the results, all the selected mutants were killed 
with a mutation score MS=1.000 for each application. It can 
be concluded that the test sets generated from our approach 
have high mutant coverage, therefore it has the capability to 
reveal many faults in mobile apps. 

IV.  CONCLUSION 

In this paper, we have presented an approach called 
TEGDroid for generating test case for Android Apps 
considering context and GUI Events. An experiment was 
performed on real world open source mobile apps to 
evaluate TEGDroid. Experimental result indicated that 
TEGDroid can significantly achieve high coverage as 
compared to other state-of-the-art approaches. We applied 
mutation testing to evaluate the fault detection capability of 
our approach. The mutation analysis result shows that 100% 
of the generated mutants were killed. This indicates that 
TEGDroid have the capability to detect faults in mobile 
apps. 
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TABLE III 

MUTANTS GENERATED FOR EIGHT SELECTED APPS 
Application Mutants Mutant operators 

Generated Selected AOR ICR LCR NOI ROR RVR 
BarcodeScanner 5130 536 34 165 45 0 83 209 
Beem 4949 401 48 118 81 0 59 95 
MarineCompass 926 92 36 15 0 0 40 1 
Open Camera 4664 320 95 55 8 0 157 5 
Pedometer 9499 1476 378 439 0 0 578 84 
SubsonicMusic 8118 665 77 160 121 0 112 195 
TippyTipper 989 178 27 57 10 0 41 43 
WordPress 17643 2646 410 222 169 0 1029 815 
Total 52918 6314 1105 1231 434 0 2099 1447 

 
TABLE IV 

MUTATION SCORE 

Application Mutants Mutation Score of the operators MS  

Selected Killed AOR ICR LCR NOI ROR RVR 

BarcodeScanner 536 536 0.063 0.307 0.084 0.000 0.154 0.389 1.000 

Beem 401 401 0.119 0.294 0.202 0.000 0.147 0.236 1.000 

MarineCompass 92 92 0.391 0.163 0.000 0.000 0.434 0.010 1.000 

OpenCamera 320 320 0.297 0.172 0.025 0.000 0.491 0.016 1.000 

Pedometer 1476 1476 0.256 0.297 0.000 0.000 0.389 0.056 1.000 

SubsonicMusicStreamer 665 665 0.115 0.240 0.182 0.000 0.168 0.293 1.000 

TippyTipper 178 178 0.152 0.320 0.056 0.000 0.230 0.242 1.000 

WordPress 2646 2646 0.155 0.084 0.064 0.000 0.389 0.308 1.000 

Total 6314 6134 1.548 1.877 0.613 0.000 2.402 1.550 1.000 
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