

Vol.10 (2020) No. 1

ISSN: 2088-5334

TEGDroid: Test Case Generation Approach for Android Apps
Considering Context and GUI Events
Asmau Usman#+, Noraini Ibrahim+, Ibrahim A. Salihu+&

#Faculty of Sciences, Department of Computer Science, Abdu Gusau Polytechnic Talata Mafara, 892, Zamfara State, Nigeria.
E-mail: asmee08@gmail.com

+Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia

E-mail: norain@uthm.edu.my

&Department of Software Engineering, Faculty of Natural and Applied Sciences, Nile University of Nigeria, Abuja, Nigeria

E-mail: ibrahim.salihu@nileuniversity.edu.ng

Abstract— The advancement in mobile technologies has led to the production of mobile devices (e.g. smartphone) with rich innovative
features. This has enabled the development of mobile applications that offer users an advanced and extremely localized context-aware
content. The recent dependence of people on mobile applications for various computational needs poses a significant concern on the
quality of mobile applications. In order to build a high quality and more reliable applications, there is a need for effective testing
techniques to test the applications. Most existing testing technique focuses on GUI events only without sufficient support for context
events. This makes it difficult to identify other defects in the changes that can be inclined by context in which an application runs.
This paper presents an approach named TEGDroid for generating test case for Android Apps considering both context and GUI
Events. The GUI and context events are identified through the static analysis of bytecode, and the analysis of app’s permission from
the XML file. An experiment was performed on real world mobile apps to evaluate TEGDroid. Our experimental results show that
TEGDroid is effective in identifying context events and had 65%-91% coverage across the eight selected applications. To evaluate the
fault detection capability of this approach, mutation testing was performed by introducing mutants to the applications. Results from
the mutation analysis shows that 100% of the mutants were killed. This indicates that TEGDroid have the capability to detect faults
in mobile apps.

Keywords— context event; GUI event; mobile application test case generation; software testing.

I. INTRODUCTION

In recent year’s mobile apps are developed to address
more critical areas of people’s daily computing needs, which
brought concern on the quality of applications. In order to
build high quality and more reliable applications that can
gain recognition in the high-level competitive application’s
(app) market, there is a need for effective testing techniques
to validate the quality of the applications. The techniques
should be able to validate different types of events supported
by mobile apps [1-4] in order to improve users’ confidence
in the mobile apps [5-7]. Testing event-driven applications
present a great challenge to software testers such as the need
to generate a huge number of possible event sequences that
could sufficiently cover the application’s state space [8, 9].

Several techniques are used to generate test cases that can
be run to detect faults. Test cases must be generated from
some information, specifically some software artifacts. The
software artifacts that is used includes: software
specification documents/or design models; software
program/source; information about input/output space, and
information dynamically obtain from program execution
[10]. Most of the approaches dedicated to mobile apps
dynamically analyze an application to generate events
sequence that can later be used as test cases to test an
application.

Nowadays test automation is becoming increasingly
popular among the software engineering community in
recent times [11-13]. Numerous testing techniques have
been proposed for testing mobile apps in the past few years.
However, most of the testing techniques for mobile apps
generate test cases considering only GUI events such as [14,

16

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal on Advanced Science, Engineering and Information Technology

https://core.ac.uk/display/296922462?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

15] without sufficient support for testing context events [16,
17]. Therefore, it will be difficult to identify other defects in
the changes in the contexts, which can be inclined by the
context in which an application runs [16]. In order to ensure
that these applications behave correctly, external context
events must be considered during testing such as those from
GPS location data, sensors, network in addition to the GUI
events.

There are few testing approaches and techniques that
addressed testing context events for mobile apps such as [16,
18-20].

A. Related Works

There are only few studies that considered context events
in the literature. Smart-monkey [7] is a testing approach for
mobile apps that integrates features of event-based testing
with random testing. It uses an ART algorithm adapted from
[21] to automatically generate test cases that are composed
of both GUI events and context events based on event
sequence distance it measure the distance between the test
cases of mobile applications. The aim of the approach is to
reduce both the number of test cases and the time needed to
expose the first fault. Extended Ripper [18] is proposed for
automating testing of Android apps which considers both
context events and GUI events for testing Android mobile
apps. It is based on reusable event patterns that were
manually defined after an initial analysis conducted on the
bug reports of open source applications. Test cases can be
generated based on the defined event patterns using three
scenario-based mobile testing approaches: manual, mutation-
based and exploration based. Since the event patterns are
derived manually by an expert from analyses of bug history,
the events that may trigger a faulty behavior in an app may
not be identified accurately. Moreover, when testing other
types of applications, these event patterns may need to be
redefined.

Greibe et al, [22] propose a model-based approach to
improve the testing of context-aware mobile apps by
deducing test cases from design-time system models.
Android tool [23] implements a technique to address the
context changes in mobile apps called block-based context-
sensitive testing. Test cases are split blocks that can be
reused and combined with context changes that are used in
testing different scenarios without duplicating the test cases.
This reduces the effort of writing cases. Yu and Takada [24]
proposed an approach for generating test cases for both GUI
and context events from android mobile apps using events
pattern that are derived manually similar to that in [18],
according to the authors their results were inconclusive
because no bug was found for the set of generated test cases.

An approach is proposed by [16] to systematically
generate several executing contexts from the permission of
an Android app. Their approach analyses the lists of
permissions and the resources that an application uses.
Various contexts are generated from a mobile app by
permuting resource conditions. The permutations of the
contexts are prioritized and selected for test case generation.
Few selected apps’ permissions were considered to identify
their related resources and possible states. As such some
faulty behavior may not be detected and there is no clear

means of detecting context from the dynamically changing
environment.

Dynodroid [20] uses the Adaptive Random technique
(ART) to generate a sequence of events that can be used to
systematically explore an application. The approach is based
on the observe-select-execute sequence to generate both user
and system events by checking the ones that are relevant to
the app. However, one of the limitations of the approach is
the restriction of the apps under test from communicating
with other apps. As many Android apps communicate with
other apps for shared functionality and some context could
not be detected.

EHBDroid [19] is an approach for testing Android apps
that simulate a large number of events by invoking the event
handlers directly. The event handlers of an activity are
invoked randomly which only consider event coverage. The
approach is not based on event sequence.

II. MATERIAL AND METHOD

This paper focused on test case generation for mobile
apps. Most mobile testing technique focused on GUI events
only. This contributes to insufficient coverage of mobile
apps during testing. While, testing context events of mobile
apps have numerous challenges. The major challenge is how
to identify the context events from an application. Thus, in
this research both GUI events and context events supported
by mobile apps are considered. The bytecode and
manifest.xml file is analysed to extract GUI events and
context events respectively. Considering GUI analysis in
combination with mobile apps’ permission analysis can
generate comprehensive events that can be used to generate
test cases in order to provide better test coverage. The
TEGDroid consists of five main steps as shown in Figure1.

Fig. 1 Framework of TEGDroid

A. Step 1:Resource Extraction

Android apps are developed in Java and compiled to the
dex file which runs on a special virtual machine called
Dalvik Virtual Machine (DVM). They are zipped into a

17

single application package file (APK) that is distributed in
stores from where mobile device users can download to their
devices. An APK is a compressed file format which contains
various resources that comprises an Android application. It
consists of the program code (dex file), Android
Manifest .xml file and resources. To analyse the
required resources such as bytecode and manifest.xml ,
the APK file needs to be de-compressed to extract the
required resources. The outputs generated from this stage are
the application’s Dalvik Executable file (DEX) that contain
the Java bytecode of an application and the
AndroidManifest.xml file which contains all the permissions
used by an app. The next step is to decompile DEX file and
de-code the Android Manifest .xml for further analysis.

In order to obtain the bytecode and source code, reverse
engineering is applied directly to the DEX file. This file is
further de-compile to the Java bytecode using Dexpler [25]
for the further analysis. The Java bytecode is used as input
for the TEGDroid.

AndroidManifest.xml file is an encoded file format by the
Android system. In order to extract app’s permission, the
extracted AndroidManifest.xml file needs to be de-coded to
enable reading its information. The file is de-coded using
apktool’s decode function to enable reading the information
of permission. The output of this stage is a readable
AndroidManifest.xml file that contains declarations of
permissions which an app must have in order to access
protected resources.

B. Step 2: Static Analysis

Static program analysis is the analysis of software that is
performed on the source code or bytecode without executing
the programs to extract some information about the software
[26, 27]. Program analysis is usually performed by a special
automated tool that is designed to extract specific
information. The static analysis targets the GUI events and
the set of context events that can be detected vias the
analysis of Intent message through the app’s code.

In Android apps, there is the class which defines an
Activity; the main app component that is responsible for
presenting a GUI window that the user interacts with. The
GUI widgets are linked to the listener object which is in turn
connected to the eventHandlers that are responsible for
executing user events. By analysing the GUI and event
handlers, information about all the GUI events can be
obtained. The context events (otherwise known as system
events) are generated by the Android system in response to
the device context [24]. Information about these events can
be obtained by analysing the callback and Intent messaging
system. The analysis performed Intent tracking to identify
the system generated events by the device. The Intent
messaging system is analysed to obtain information about
the context events.

The control-flow analysis focuses on an essential aspects
Android, which are the callbacks for a variety of interactions.
It comprises lifecycle and interactions of user event-driven
components that executes in the app's UI thread (the main
thread). The analysis also targets activities, dialogs, and
menus as the main components of an app. Two categories of
callbacks: Lifecycle callbacks that manage the lifetime of
app components and Lifecycle callbacks for activities,

dialogs, and menus are considered in the analysis. The
Lifecycle callbacks for activities, dialogs, and menus
describe key changes to the observable state and to the
possible run-time events and behaviour.

Static analysis is generally used by developers and
researchers such as [27-29] to analyse software and extract
information that can be used for software testing, software
redocumentation and software understanding. There are
several open source tools for static analysis of source code/
bytecode targeting different programming languages and
platform. Examples are WALA framework used in [28] and
GATOR used in [29]. This study employs static program
analysis in GATOR [30] tool to obtain the vital information
about an app that is required to identify supported events for
test case generation, because it is designed specifically for
java and android platform. GATOR is a Program Analysis
Toolkit for Android that performs control flow analysis on
application’s GUIs, callback methods and Intent. A static
control flow analysis is performed on the Java bytecode
which tracks the callback methods and Intent messages. The
control flow analysis is represented in form of a graph called
Windows Transition Graph (WTG). The WTG represents
both the events from the GUI and context events extracted
through the analysis of callbacks and Intent messaging
respectively. We used the WTG to obtain information about
the supported events which is further used as input for test
case generation. A fragment of the generated WTG is shown
in Figure 2 below.

Fig. 2 Example of WTG Generated

The WTG comprises nodes and edges representing app’s

window/activity and events respectively. The
window/activity comprises GUI and their properties which
can be used to trigger an event on the app. In order to extract
information (eS) about mobile app supported events from the
WTG, a graph search algorithm is used on the WTG.
Algorithm 1 was designed based on the concept of Dijkstra’s
algorithm that considers weighted edges to traverse the
WTG.

The algorithm traverses the WTG from the start node to
explore each path p in the graph as shown in Lines 3-5.
Paths p in the graph represents an event that can be executed
on an application where label assigned to the path indicates
the sequence of execution. Based on this, a list of

18

application’s supported events is generated with their
sequence of execution. The algorithm continues by
backtracking of each p to identify the source node (Lines 6-
7). In order to fire the events on an app, information about
the events that includes handler method and GUI widgets is
required. Therefore, the algorithm gets the GUI widgets
contained in each source node and extracts their properties
that are view ids and handlers and add the properties to the
event summaries as in Lines 8-11.

At this point, the output is a summary of all events
supported by an app. The event summary comprises an event
id, the source of event, destination, event type and
processing method. However, due to nature of static analysis
it does not identify the dynamic behaviour of the resources
(hardware) from which scenarios of context events are
generated. This is main goal of the application of
combination in order to generate the different states of
resources.

Algorithm 1: Static Analysis
Input: AUT: App under test
Input : WTG: Windows transition graph (AUT)
Output: eS: Events Summaries
1 Procedure analyseApp(wtg)
2 eS ← GetEvnetSummaries(w,p)
3 for all paths P in graph do
4 while p ≠ explored then
5 Event e ← getPath(g)
6 for all e ∈ EventsSet do
7 sourceWindow W ← getSourceOfPath()
8 foreach w ∈ sourceWindow do
9 eh ← getEventHandler()
10 gw ← getGUIWidgets()
11 id ← getProperties(GW)
12 eS.add(e,id,gw,eh)
13 End
14 End
15 End
16 End

C. Step 3: Permission Extraction

The xml file contains all permissions assigned to an
application. The permission list comprises all the resources
e.g., camera, GPS that a mobile app may potentially require
to run and the context events usually occur from the
resources used by a mobile app [31]. Therefore, by analysing
these permissions, the resources can be detected and
subsequently the context events triggered by the resources
can be identified.

The permissions assigned to an application are declared in
a <uses permission> tag in the manifest file as shown in the
example below:

<uses permission
Android:name=”android.permission.INTERN

ET”
/>
The extracted output is a list of all permissions declared

for the app. Table I shows a list of the permissions from

manifest.xml for Beem app. Using the permission list
generated for an app, the resources used by the app can be
identified. The resources are then identified manually by
considering what does the permission requires in order to
run.

TABLE I
PERMISSION PROPERTIES

Permission Resource State

INTERNET Radio,

GPRS,

Wifi

on/off

on/off

on/off

VIBRATE Vibrator on/off

WRITE_EXTERNAL_STORAGE Sd card Free/full

READ_EXTERNAL_STORAGE Sd card Free/full

ACCESS_NETWORK_STATE Radio

Receiver

on/off

In order to generate various scenarios of the executing

context of an app, combination technique is applied on the
resource conditions. For all resources that have links, the
candidate states can be combined to generate the set of
executing scenarios. This information is subsequently used
to generate test cases that are capable of testing the context
events. Based on the state of each resource, they are
combined.

In order make sure that app functions correctly, there is
need to have knowledge of the possible states of resource in
order to know the different behaviours that can be triggered
by the resource state [32]. This can help a tester to know the
root cause of test failure during testing. The results of the
combination are used to manually and add the conditions for
the test scenarios to the test cases.

D. Step 4: Test Case Generation

In software engineering a test case is regarded as a set of
conditions under which a tester will determine whether an
application software system or one of its features is working
as it was originally established for it to do. It may take many
test cases to determine that a software program or system is
considered sufficiently analyzed to be released.

There are several test generation techniques for test
automation such as script based, random, capture/replay,
search based and model based. Each technique uses a
specific formalism of algorithm to process the application’s
information to generate test cases. In this study, search-based
testing technique is utilized for generating test cases. Search-
based testing technique help in reducing the costs of testing
using the smallest set of test cases that can cover all the
branches in a program. The event summaries (eS) extracted
by Algorithm 1 is used as input for test case generation.
Robotium testing framework is used to generate JUnit test
cases that can be run test an app. The rule guiding the test
case generation is defined as follows.

Rule: [Test generation]. For each event e = e1, e2,
e3 , . . . the event id e(ei) is translated to a matching
Robotium API call which can trigger the event.

19

 The description of the test case generation process is
described in algorithm 2. The algorithm receives the eS as
input for test case generation. Each event in the event
summaries is a test path that can be translated to a test case.
Beginning from the start state (event with id 1), the
Algorithm extracts each event with the event id, widget and
handler and translate it to a test case as shown in (Lines 2-4).
The algorithm adds each generated test case to the list of test
cases with the triggers in lines 6-9.

Algorithm 2: Generate TestCases

Input: AUT: App under test, eS: Event Summaries
Output: TC: Test Cases
1 Procedure Generate Test case()
2 testPath Pt ← getEvent(eS)
3 while Pt not empty do
4 testCase Tc ← genTestCase()
5 foreach Tc ϵ Tc set do
6 Wp ← getWidgetProperties()
7 W ← getWidget()
8 h ← getHandler()
9 Tc.add(e,wp,h)
10 End
11 End

 The eS is used as input for the test generation algorithm
to generate test cases for a given app by picking each event
from the eS to generate sequence of test cases as described
above. The output from the test generation algorithm is a set
of test cases for each given app. However, script-based
technique is used to manually write test condition for the test
scenarios obtained from the resource combination and add it
to the test cases generated. The scripted-based testing
technique offers scripting languages which control an app
programmatically that help a tester to write test scripts
manually. It is done by giving a set of instructions that will
be performed on the system under test to trigger events in
order to test that the system functions as expected.

III. RESULTS AND DISCUSSION

In order to measure the effectiveness of the TEGDroid, a
case study was conducted on real-world Android application
from GitHub and SourceForge. Eight (8) open source apps
were selected across different categories such as, tools,
communication, music and audio. These apps were used by
other researchers for testing to evaluate their approach.

Experimental Setup. An Android device (real or
emulated device) is needed in order to test a mobile app. In
this research, an emulator was configured based on x86 Intel
configuration with Android version 5.1 for the experiment.
1GB of memory was configured on the emulator to host the
applications and logs. Specifically, Ubuntu 16.04 was used
in running the experiments. The PC used is equipped with an
i7 Intel processor with 8GB of RAM.

Benchmark. Table II presents list of the selected
applications used for evaluation of TEGDroid. The apps are
downloaded from GitHub and Sourceforge, which are

popular benchmarks with different functionalities. The
source lines of code of the apps ranges from 1.6K to 97K
with average of 20.8K. With average of 1432 classes, 2458
methods and 14.4 activities.

TABLE II

BENCHMARKS OF THE APP’S USED FOR EVALUATION
App Name SLOC ELOC Class Method Activity

Barcodescaner 6549 3477 110 565 9

Beem 21179 9123 227 1640 12

Marine
Compass

1654 904 92 150 4

Open Camera 4862 2263 25 195 2

Pedometer 14654 6380 2208 11487 2

Subsonic 17779 8798 702 4602 13

TippyTipper 2284 1004 67 225 6

WordPress 97891 70596 8029 1309 68

Average 20856 12818 1432 2458 14.5

Two experiments were conducted to evaluate TEGDroid:

code coverage analysis and mutation testing. Subsequent
sections present discussion on the results of the experiment
tal evaluation.

A. Coverage Result
This study has the main aim of checking the effectiveness

of TEGDroid in terms of the coverage achieved on
applications. Code coverage is used by several researchers
and practitioners as a system of evaluating the effectiveness
of testing techniques. Code coverage is a measure used to
describe the degree to which the source code of a program is
executed when a particular test case runs [33, 34]. When the
percentage measure of a program has high code coverage, it
has had more of its source code executed during testing. This
suggests it has a lower chance of containing undetected
software bugs compared to a program with low code
coverage.

Fig. 3 Coverage of TEGDroid

There are several tools used for measuring code coverage

for different programming languages such as jacoco and
Emma. Emma code coverage library has now been built-in
to the Android SDK which makes it easy to use for
measuring the coverage during testing of Android mobile

20

apps. This has made Emma [35] popular and is used by a
variety of mobile apps testing techniques to measure the
code coverage.

Figure 3 show the results obtained by the TEGDroid on
the seven selected apps. Based on the results, TEGDroid has
achieved LOC coverage of 79% for BarcodeScanner app, 83%
for Beem app, 91% for MarineCompass, 78% for
OpenCamera, 86% for Pedometer, 78% for Subsonic, 82%
for TippyTipper and 65% for WordPress. TEGDroid
achieved LOC coverage of 65% -91% across the eight (8)
apps used.

Fig. 4 Comparison of Coverage Results

We statistically performed a comparison of code coverage

results of TEGDroid with other approaches as shown in
Figure 4. The y-axis represents the code coverage result in
percentage and x-axis shows the approaches used in the
comparison. When we look at the spread of the coverage, it
shows that the coverage achieved for most of the
applications is 57% - 83% by EHBDroid, 57% - 82% by
E.Ripper, 61% - 77% by Dynodroid, 45% - 47% by Song et
al., TEGDroid obtained 79% - 84%. For the median of the
coverage EHBDroid obtained 78.3%, E.Ripper 67%,
Dynodroid 76.6%, Song et al. 46.5% and TEGDroid
achieved 80.5. In comparison to the other approaches,
TEGDroid obtains higher coverage above the median for
most of the applications. This indicates that TEGDroid have
higher code coverage compared to all the approaches.

B. Fault Detection using Mutation Testing

Code coverage has been recently criticized by many
researchers [36-38] for validating the quality of software.
Mutation testing changes a software artifact such as a
program, requirements specification, or a configuration file
to create new versions called mutants [39]. It is also called
fault-based testing technique which measures the fault
detection ability of a given test set by measuring the number
of mutants being killed [40]. The general principle
underlying mutation testing work is that the faults used by
mutation testing represent the mistakes that programmers
often make [41]. By Comparing mutation with other
traditional testing technique like line coverage which only
measures the percentage of code being executed, mutation
testing could actually identify the ability of fault detection

for tests [42]. The mutation analysis is represented as
mutation scores (MS)

In this study, muDroid [40] is used for mutants generation
and running mutation. MuDroid is an open source mutation
testing technique for android apps that generates mutants
based on six operators Arithmetic Operator Replacement
(AOR), Inline Constant Replacement (ICR), Logical
Connector Replacement (LCR), Negative Operator Inversion
(NOI), Return Value Replacement (RVR) and Relational
Operator Replacement (ROR). It performs an analysis during
testing to determine if the generated mutants are alive or
killed. The test cases generated from the TEGDroid are
injected into the muDroid to run test on an app. During
testing, when the test cases detect a mutant in an app, then
the mutant is said to be killed. Once the mutants are killed, it
shows that the generated test cases have the capability to
reveal many faults in mobile apps.

muDroid generates several mutants in hundreds or
thousands based on the size of a mobile app. To run
thousands of mutants on an app, it requires a lot of resources
and time [40]. To make the testing practical, muDroid
employs several selection criteria which a tester can choose
for the mutant selection. The random selection criterion is
configured for mutant selection, because it is an efficient
way to reduce the number of mutants by randomly selecting
x% from the total mutants and it is the most common used
cost reduction strategy [40]. Based on the experiment for the
eight apps, MuDroid generates a total number of 34,275
mutants for the six mutation operators, as shown in Table III.
Based on the criterion, some mutants were selected for each
mutation operators.

Based on the results, all the selected mutants for the
operators were killed with ROR having the highest mutation
score of 2.402 for the total number of all the applications
mutation score as shown in Table IV. A total of 6314
mutants were selected for the test for all the applications.
Based on the results, all the selected mutants were killed
with a mutation score MS=1.000 for each application. It can
be concluded that the test sets generated from our approach
have high mutant coverage, therefore it has the capability to
reveal many faults in mobile apps.

IV. CONCLUSION

In this paper, we have presented an approach called
TEGDroid for generating test case for Android Apps
considering context and GUI Events. An experiment was
performed on real world open source mobile apps to
evaluate TEGDroid. Experimental result indicated that
TEGDroid can significantly achieve high coverage as
compared to other state-of-the-art approaches. We applied
mutation testing to evaluate the fault detection capability of
our approach. The mutation analysis result shows that 100%
of the generated mutants were killed. This indicates that
TEGDroid have the capability to detect faults in mobile
apps.

21

TABLE III

MUTANTS GENERATED FOR EIGHT SELECTED APPS
Application Mutants Mutant operators

Generated Selected AOR ICR LCR NOI ROR RVR
BarcodeScanner 5130 536 34 165 45 0 83 209
Beem 4949 401 48 118 81 0 59 95
MarineCompass 926 92 36 15 0 0 40 1
Open Camera 4664 320 95 55 8 0 157 5
Pedometer 9499 1476 378 439 0 0 578 84
SubsonicMusic 8118 665 77 160 121 0 112 195
TippyTipper 989 178 27 57 10 0 41 43
WordPress 17643 2646 410 222 169 0 1029 815
Total 52918 6314 1105 1231 434 0 2099 1447

TABLE IV

MUTATION SCORE

Application Mutants Mutation Score of the operators MS

Selected Killed AOR ICR LCR NOI ROR RVR

BarcodeScanner 536 536 0.063 0.307 0.084 0.000 0.154 0.389 1.000

Beem 401 401 0.119 0.294 0.202 0.000 0.147 0.236 1.000

MarineCompass 92 92 0.391 0.163 0.000 0.000 0.434 0.010 1.000

OpenCamera 320 320 0.297 0.172 0.025 0.000 0.491 0.016 1.000

Pedometer 1476 1476 0.256 0.297 0.000 0.000 0.389 0.056 1.000

SubsonicMusicStreamer 665 665 0.115 0.240 0.182 0.000 0.168 0.293 1.000

TippyTipper 178 178 0.152 0.320 0.056 0.000 0.230 0.242 1.000

WordPress 2646 2646 0.155 0.084 0.064 0.000 0.389 0.308 1.000

Total 6314 6134 1.548 1.877 0.613 0.000 2.402 1.550 1.000

ACKNOWLEDGMENT

We would like to acknowledge the support from Ministry
of Higher Education and university Tun Hussein Onn
Malaysia (UTHM) in undertaking the research under the
Graduate Research Assistant for Postgraduate Research
Grants (GPPS) and Fundamental Research Grant (FRGS)
Vot number 1610.

REFERENCES

[1] H. Muccini, A. Di Francesco, and P. Esposito, "Software testing of

mobile applications: Challenges and future research directions," in
7th International Workshop on Automation of Software Test (AST),
2012, pp. 29-35.

[2] T. Tamilarasi and M. Prasanna, "Research and Development on
Software Testing Techniques and Tools," in Encyclopedia of
Information Science and Technology, Fourth Edition, ed: IGI Global,
2018, pp. 7503-7513.

[3] I.-A. Salihu, R. Ibrahim, B. S. Ahmed, K. Z. Zamli, and A. Usman,
"AMOGA: A Static-Dynamic Model Generation Strategy for Mobile
Apps Testing," IEEE Access, vol. 7, pp. 17158-17173, 2019.

[4] I. Qasim, F. Azam, M. W. Anwar, H. Tufail, and T. Qasim, "Mobile
User Interface Development Techniques: A Systematic Literature
Review," in IEEE 9th Annual Information Technology, Electronics
and Mobile Communication Conference (IEMCON), 2018, pp. 1029-
1034.

[5] D. Amalfitano, A. R. Fasolino, and P. Tramontana, "A gui crawling-
based technique for android mobile application testing," in Fourth
International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), IEEE, 2011, pp. 252-261.

[6] B. N. Nguyen, B. Robbins, I. Banerjee, and A. Memon, "GUITAR:
an innovative tool for automated testing of GUI-driven software,"
Automated Software Engineering, vol. 21, pp. 65-105, 2014.

[7] Z. Liu, X. Gao, and X. Long, "Adaptive random testing of mobile
application," in 2nd International Conference on Computer
Engineering and Technology (ICCET), 2010, pp. V2-297-V2-301.

[8] I. C. Morgado, A. C. Paiva, and J. P. Faria, "Automated pattern-
based testing of mobile applications," in 9th International Conference
on the Quality of Information and Communications Technology
(QUATIC), 2014, pp. 294-299.

[9] I. A. Salihu and R. Ibrahim, "Comparative Analysis of GUI Reverse
Engineering Techniques," in Advanced Computer and
Communication Engineering Technology, ed: Springer, 2016, pp.
295-305.

[10] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W.
Grieskamp, et al., "An orchestrated survey of methodologies for
automated software test case generation," Journal of Systems and
Software, vol. 86, pp. 1978-2001, 2013.

[11] P. Aho, M. Suarez, A. Memon, and T. Kanstrén, "Making GUI
Testing Practical: Bridging the Gaps," in 12th International
Conference on Information Technology-New Generations (ITNG),
2015, pp. 439-444.

[12] D. Amalfitano, N. Amatucci, P. Tramontana, A. R. Fasolino, and A.
M. Memon, "A General Framework for comparing Automatic
Testing Techniques of Android Mobile Apps," Journal of Systems
and Software, 2016.

[13] P. Kong, L. Li, J. Gao, K. Liu, T. F. Bissyandé, and J. Klein,
"Automated testing of android apps: A systematic literature review,"
IEEE Transactions on Reliability, vol. 68, pp. 45-66, 2018.

[14] I. A. Salihu and R. Ibrahim, "Systematic Exploration of Android
Apps' Events for Automated Testing," in Proceedings of the 14th
International Conference on Advances in Mobile Computing and
Multi Media, 2016, pp. 50-54.

22

[15] N. Mirzaei, J. Garcia, H. Bagheri, A. Sadeghi, and S. Malek,
"Reducing combinatorics in GUI testing of android applications," in
Proceedings of the 38th International Conference on Software
Engineering, 2016, pp. 559-570.

[16] K. Song, A.-R. Han, S. Jeong, and S. D. Cha, "Generating various
contexts from permissions for testing Android applications," in
SEKE, 2015, pp. 87-92.

[17] A. Méndez-Porras, C. Quesada-López, and M. Jenkins, "Automated
testing of mobile applications: a systematic map and review," in
XVIII Ibero-American Conference on Software Engineering, Lima-
Peru, 2015, pp. 195-208.

[18] D. Amalfitano, A. R. Fasolino, P. Tramontana, and N. Amatucci,
"Considering context events in event-based testing of mobile
applications," in IEEE Sixth International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), 2013, pp.
126-133.

[19] W. Song, X. Qian, and J. Huang, "Ehbdroid: beyond GUI testing for
android applications," in Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering, 2017,
pp. 27-37.

[20] A. Machiry, R. Tahiliani, and M. Naik, "Dynodroid: An input
generation system for android apps," in Proceedings of the 9th Joint
Meeting on Foundations of Software Engineering, 2013, pp. 224-234.

[21] T. Y. Chen, F.-C. Kuo, R. G. Merkel, and T. Tse, "Adaptive random
testing: The art of test case diversity," Journal of Systems and
Software, vol. 83, pp. 60-66, 2010.

[22] T. Griebe and V. Gruhn, "A model-based approach to test automation
for context-aware mobile applications," in Proceedings of the 29th
Annual ACM Symposium on Applied Computing, 2014, pp. 420-427.

[23] T. A. Majchrzak and M. Schulte, "Context-dependent testing of
applications for mobile devices," Open Journal of Web Technologies
(OJWT), vol. 2, pp. 27-39, 2015.

[24] S. Yu and S. Takada, "Mobile application test case generation
focusing on external events," in Proceedings of the 1st International
Workshop on Mobile Development, 2016, pp. 41-42.

[25] A. Bartel, J. Klein, Y. Le Traon, and M. Monperrus, "Dexpler:
converting android dalvik bytecode to jimple for static analysis with
soot," in Proceedings of the ACM SIGPLAN International Workshop
on State of the Art in Java Program analysis, 2012, pp. 27-38.

[26] B. Wichmann, A. Canning, D. Clutterbuck, L. Winsborrow, N. Ward,
and D. Marsh, "Industrial perspective on static analysis," Software
Engineering Journal, vol. 10, pp. 69-75, 1995.

[27] S. Yang, H. Wu, H. Zhang, Y. Wang, C. Swaminathan, D. Yan, et al.,
"Static window transition graphs for Android," Automated Software
Engineering, vol. 25, pp. 833-873, 2018.

[28] W. Yang, M. R. Prasad, and T. Xie, "A grey-box approach for
automated GUI-model generation of mobile applications," in
International Conference on Fundamental Approaches to Software
Engineering, 2013, pp. 250-265.

[29] I. A. Salihu, R. Ibrahim, and A. Mustapha, "A Hybrid Approach for
Reverse Engineering GUI Model from Android Apps for Automated
Testing," Journal of Telecommunication, Electronic and Computer
Engineering (JTEC), vol. 9, pp. 45-49, 2017.

[30] "GATOR: Program Analysis Toolkit For Android."
[31] S. Mujahid, R. Abdalkareem, and E. Shihab, "Studying permission

related issues in android wearable apps," in 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2018,
pp. 345-356.

[32] A. Usman, N. Ibrahim, and I. A. Salihu, "Test Case Generation from
Android Mobile Applications Focusing on Context Events," in
Proceedings of the 2018 7th International Conference on Software
and Computer Applications, 2018, pp. 25-30.

[33] J. Levinson, Software Testing with Visual Studio 2010: Pearson
Education, 2011.

[34] F. Horváth, T. Gergely, Á. Beszédes, D. Tengeri, G. Balogh, and T.
Gyimóthy, "Code coverage differences of Java bytecode and source
code instrumentation tools," Software Quality Journal, vol. 27, pp.
79-123, 2019.

[35] 2018 Emma, An open source Java code coverage tool [Online].
Available: http://emma.sourceforge.net/.

[36] G. Gay, M. Staats, M. Whalen, and M. P. Heimdahl, "The risks of
coverage-directed test case generation," IEEE Transactions on
Software Engineering, vol. 41, pp. 803-819, 2015.

[37] L. Inozemtseva and R. Holmes, "Coverage is not strongly correlated
with test suite effectiveness," in Proceedings of the 36th International
Conference on Software Engineering, 2014, pp. 435-445.

[38] R. Gopinath, C. Jensen, and A. Groce, "Code coverage for suite
evaluation by developers," in Proceedings of the 36th International
Conference on Software Engineering, 2014, pp. 72-82.

[39] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. Le Traon, and M.
Harman, "Mutation testing advances: an analysis and survey," in
Advances in Computers. vol. 112, ed: Elsevier, 2019, pp. 275-378.

[40] Y. Wei, "MuDroid: Mutation Testing for Android Apps," 2016.
[41] Y. Jia and M. Harman, "An analysis and survey of the development

of mutation testing," IEEE transactions on software engineering, vol.
37, pp. 649-678, 2011.

[42] C. Iida and S. Takada, "Reducing mutants with mutant killable
 precondition," in 2017 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), 2017, pp.
128-133.

23

