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Abstract— This paper presents the development and comparison of muscle models based on Functional Electrical Stimulation (FES) 
stimulation parameters using the Nonlinear Auto-Regressive model with Exogenous Inputs (NARX) using Multi-Layer Perceptron 
and Cascade Forward Neural Network (CFNN). FES stimulations with varying frequency, pulse width and pulse duration were used 
to estimate the muscle torque. About 722 data points were used to create muscle model. One Step Ahead (OSA) prediction, 
correlation tests and residual histogram analysis were performed to validate the model. The optimal Multi-Layer Perceptron (MLP) 
results were obtained from input lag space of 1, output lag space of 43 and hidden units 30. The MLP selected a total of three terms 
were selected to construct the final model, which producing a final Mean Square Error (MSE) of 1.1299. The optimal CFNN results 
were obtained from input lag space of 1, output lag space of 5 and hidden units 20 with similar terms selected. The final MSE 
produced was 1.0320. The proposed approach managed to approximate the behavior of the system well with unbiased residuals, 
which CFNN showing 8.66% MSE improvement over MLP with 33.33% less hidden units. 
 
Keywords— functional electrical stimulation (FES); nonlinear auto-regressive model with exogenous inputs (NARX); system 
identification 
 
 

I. INTRODUCTION 

The spinal cord is a collection of nerves that sends 
commands to muscles to induce movement. Damage to the 
spinal cord causes paraplegia that results in loss of sensation 
and voluntary movement. The level of spinal cord injury 
depends on the extent of the trauma. A complete spinal cord 
injury causes paralysis below the lesion, while incomplete 
injuries might retain some function below the injury level. 
This is because spinal cord injuries interrupt a neural 
pathway that makes it impossible for the physiological 
stimulus to reach the muscle innervated below the level of 
the lesion. 

Paraplegic patients (who have suffered the loss of leg 
functionality) need rehabilitation to assist them in regaining 
lost functions and maximize their potential to reduce 
reliance on assistive devices such as wheelchairs [1]. 

Functional Electric Stimulates (FES) has been discovered 
as an excellent rehabilitation tool to restore the patient’s 
walking ability [2], [3]. FES uses electrical pulses to induce 

skeletal muscle contraction and limb movement. The 
electrical stimulation is delivered to the group of muscles to 
induce movement and allow the functionality of the patient’s 
legs [4]. 

Modelling the muscles to characterize its behavior is an 
important task before FES can be applied. Many researches 
have been done to improve the muscle model. A muscle 
model was constructed by combining its activation and 
mechanical properties [5]. The activation model response 
was based on stimulation intensity, pulse width and 
frequency [6] that deal with mechanical behaviour [7]. 
However, currently, there is little research on the 
construction of a muscle model that takes into account the 
effects of FES to the paraplegic muscle. 

In this paper, we propose a muscle model using two 
neural network approaches to constructing the Nonlinear 
Auto-Regressive model with Exogenous Inputs (NARX) 
approach to model muscle behavior (torque) based on 
stimulation frequency, pulse width, pulse and duration of 
muscle excitation. The models would benefit FES 
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practitioners in terms of creating rehabilitative devices for 
paraplegic patients as it eliminates the possibility of injuries 
from try-and-error experimentation during the development 
of the said device. 

Multi-Layer Perceptron (MLP) neural network consists of 
an input (sensory) layer, one or more hidden layers and an 
output layer. The input layer consists of several units that 
receive inputs from the real world, while output layer returns 
the results back to the real world. The rest of the units are 
arranged in one or more hidden layers, which are 
responsible for extracting underlying patterns from the 
inputs [8], [9]. 

Cascade Forward Neural Network (CFNN) are similar in 
structure to MLP except that CFNN has a direct weighted 
connection from its input to output layer which enables it to 
learn highly complex patterns [10]. This allows the inputs to 
directly influence the output nodes by embedding additional 
information and features to it. 

A. The Human Leg Muscoskeletal System 

Muscles are soft tissues of the body and function to 
produce force and cause of motion. It reacts as a motor that 
drives the human kinematic system [11]. 

Muscles are generally divided into three types: skeletal, 
cardiac and smooth muscle. Cardiac muscles are found in the 
heart that forming contractile walls of the organ [12], while 
smooth muscles are found in the hollow parts of the body 
such as stomach, intestines, blood vessels, and bladder. 
Finally, skeletal muscles are attached bones and can stretch 
or contract to produce movement. 

An example of skeleton muscle is present in the thigh. 
This group of muscles is used for balance, posture and 
supporting body motion. The group of muscles at the behind 
the thigh forms the hamstring muscle group. Hamstring 
muscles cross two joints (hip and knee) and act as extensors 
of the thigh and flexor of the leg [12]. 

Quadriceps muscles extend (straightens) the leg, which 
similar to a motion of rising from a chair from a sitting 
position. Damage to the spinal cord would result in loss of 
sensation and control of voluntary movement the legs as 
mention previously. 

B. Functional Electrical Stimulation (FES) 

FES is an excellent rehabilitation tool for physiotherapy in 
order to produce force or movement of the body due to 
conditions such as spinal cord injury, cerebral palsy and 
stroke [13], [14]. FES works by introducing current in 
specific motor neurons to generate contraction. The 
electrodes are placed on the skin for the neurons to receive a 
series of electrical pulse [15]. 

The intensity and frequency of the electrical current are 
the main parameters to produce the required tension in the 
electrically stimulated muscle. Stimulation intensity is 
defined as a function of the total charge transferred to the 
muscle, and it depends on pulse duration, pulse amplitude, 
and frequency. The resulting torque produced depends on the 
tension in the flexor and extensor that can be controlled by 
varying the pulse amplitude, pulse duration, and frequency 
of the simulation [15]. 

The FES system for leg movement is illustrated in Fig. 1. 
The knee will move in the extension of flexion movement 

when stimulation excitation from FES given to the muscle 
[11]. However, the task of finding suitable electrical 
stimulation is a difficult one since experiments are 
burdensome and time-consuming for the subjects. A better 
approach is to measure and calibrate the performance of the 
system, including using computer simulation prior to actual 
experimentation to avoid or at least reduce the effect these 
issues. 

 

 
Fig. 1  Overview of the FES system [13] 

II. MATERIAL AND METHOD 

A. Data Collection 

The data used for modelling was from a previous 
experiment [16]. Electrical stimulation is delivered via two 
gel surface electrodes, with the cathode placed on the upper 
thigh and the anode placed on the lower thigh. The 
electrodes were placed to maximize muscle contraction. 
Stimulation pulses were generated by FES through 
MATLAB software. More than 600 simulation pulses were 
generated with the following specifications: 

• Simulation frequency: 10 to 50 Hz. 
• Pulse width: 200 to 400 microseconds. 
• Pulse duration: 1 to 5 seconds. 
 

A dataset containing 731 readings were obtained from the 
experiment, in which 722 data points were used for the final 
experiment. 
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Fig. 2  Hamstring muscle group [16] 

 

 
Fig. 3 Quadriceps muscle group [17] 

B. Create Regressor Matrix 

This process constructs the regressor matrix, P, with 
maximum lag space of 50 for both input and output. After 
the regressors matrices have been constructed, the Error 
Reduction Ratio (ERR) algorithm [17] was applied to select 
the terms to be used in the final model structure. The 
structure was determined based on selecting the top 
regressor terms that account for 95% of the variability of the 
prediction data (highest ERR values). 

C. Parameter Estimation 

After the optimal model structure had been determined, 
training on both neural network models was performed. Both 
MLP and CFNN hidden units were varied from 5 to 30. The 
hidden and output activation functions are tangent-sigmoid 
and linear respectively as the muscle modelling problem 
presented here is a function approximation problem. Prior to 
testing the various neural network structures, the initial 
weights generated by the Mersenne-Twister algorithm were 
reset to a predefined seed to remove the influence of initial 
weights from the evaluation. 

The optimal model was selected based on the Mean 
Square Error (MSE) criteria. As MSE values are calculated 
from the magnitude of the residuals, low values indicate a 
good model fit. The ideal case for MSE is zero (when the 
model outputs are exactly the same as the actual). However, 
this rarely happens in actual modelling scenarios, and a 
sufficiently small value is acceptable. 

D. Model Validation and Analysis 

After the optimal model has been found, it needs to be 
validated and analyzed to ensure that the model is valid and 
acceptable. One Step Ahead (OSA) and residual tests were 
performed to select the best model that fulfils the validation 
criteria. Several tests namely the OSA prediction, correlation 
tests, and residual histogram analysis were performed to 
validate the model. 

OSA is a test that measures the ability of a model to 
predict future values based on its previous data. It is used to 
measure the predictive ability of the model in comparison to 
the actual data. 

In SI, the prediction model can only be accepted when the 
residuals are randomly distributed (appears as white noise). 
This type of residuals indicates that the dynamics of a 
system has been fully captured by the SI model, which 
leaving only un-modelled white noise as the residuals. 
Correlation tests and histogram tests are used to evaluate the 
randomness of model residuals. Correlation tests measure 
the correlation between two time-series sequences at 
different points in time. They are useful indicators of 
dependencies and correlatedness between two sequences. 
Correlation tests are done by shifting the signals at different 
lags and measuring the correlation coefficients (degree of 
correlation) between them [18].  

A histogram is a graphical method to present a 
distribution summary of a univariate data set. It is drawn by 
segmenting the data into equal-sized bins (classes), then 
plotting the frequencies of data appearing in each bin. The 
horizontal axis of the histogram plot shows the bins, while 
the vertical axis depicts the data point frequencies. The 
purpose of histogram analysis is used to view the distribution 
of the residuals. The histogram exhibits white noise as a 
Gaussian distribution, with symmetric bellshaped 
distribution with most of the frequency counts grouped in the 
middle and tapering off at both tails. 

III.  RESULTS AND DISCUSSION 

The optimal results of both neural networks are 
summarized in Table I. In the OSA test (Fig. 4 and Fig. 5), 
the dotted line indicates the predicted output of the model, 
while the solid line indicates the actual system output. Both 
models exhibited good predictive ability based on the OSA 
tests. This was because both neural networks showed close 
fitting relative to the actual data.  

Another important criterion of system identification is the 
whiteness of the residuals. This is because non-random 
residual indicates model bias as not all dynamics in the 
original system is sufficiently captured by the model. The 
correlation test results and residual histogram for both neural 
networks are shown in Fig. 6 to Fig. 9. Both correlation tests 
exhibited correlation coefficients between the 95% 
confidence limits (except for lag 0 in the autocorrelation test, 
which is expected to be 1). Additionally, the histogram tests 
showed a bell-shaped (Gaussian) curve. All these 
observations indicate that the residuals are sufficiently 
random. Because of this, both neural network models were 
considered valid and acceptable. 
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TABLE I 
SUMMARY OF RESULTS FOR MLP AND CFNN 

Test MLP CFNN 
Input lag ( ) 1 1 
Output lag ( ) 43 5 

Hidden units 30 20 
Selected terms  and  
MSE 1.1299 1.0320 

 

 
Fig. 4  OSA prediction of the NARX model (MLP) 

 

 
Fig. 5  OSA prediction of the NARX model (CFNN) 
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Fig. 6  Autocorrelation and cross-correlation of residuals (MLP) 

 

 
Fig. 7  Autocorrelation and cross-correlation of residuals (CFNN) 
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Fig. 8  Histogram of model residuals (MLP) 

 

 
Fig. 9  Histogram of model residuals (CFNN) 

 
Based on the results of the OSA, correlation and 

histogram tests, it was observed that both models were able 
to produce accurate and valid models with uncorrelated 
residuals. 

However, both models exhibited high MSE values. We 
believe this is due to the magnitude of the data used for the 

modelling. As can be seen from Fig. 4 and Fig. 5, the 
magnitude of the output ranges from approximately 5 to 30. 
This translates into higher residual magnitudes when 
producing the final model. 

Based on the lower CFNN MSE relative to MLP, it 
appears that the introduction of additional direct input 
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connections to the output layer produces a positive impact on 
the size of the neural network. The additional connection 
carries additional system dynamics undiscovered by the 
hidden layer in the MLP. Overall, the CFNN proved to be a 
better choice for the construction of the model as the 
network structure is more compact and the residuals are 
lower. 

IV.  CONCLUSION 

NARX MLP and CFNN models were constructed to 
model quadriceps muscle torque based on FES stimulations 
with varying frequency, pulse width and pulse duration. The 
proposed approach managed to approximate the behavior of 
the system well with unbiased residuals, with CFNN 
showing the better performance compared to MLP [19]. 
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