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Abstract—In this study, the modal parameters of un-cracked and cracked plain cement concrete prismatic beams have been studied. 
A crack in a beam element introduces considerable local flexibility, which has been expressed by local flexibility matrix, the 
dimension of which depends upon the numbers of degree of freedom considered. An approach based on linear fracture mechanics 
theory has been used to find flexibility matrix for the cracked element. The FEM program has been developed for eigen-value 
problems to determine the modal parameters of the cracked beams. Numerical studies are performed by considering simply 
supported beam with single and multiple cracks at different locations with different crack depths. The changes in displacement mode 
shapes are not localized in the region of damage and hence, they do not give indication of the location of damage very precisely. With 
curvature mode shape, the damage location can be attained in a very efficient manner. The absolute changes in the curvature mode 
shapes of the damaged and intact structure are localized in the region of damage and hence can be used to detect the damage in a 
structure. Curvature damage factors are also calculated with the help of curvature mode shapes for the number of modes considered 
to detect the damage in a structure.   
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I. INTRODUCTION 

The main objective of damage identification is detection, 
localization, quantification, classification and prediction of 
damage. The presence of crack or a localized damage in a 
structure reduces the stiffness and increases the damping in 
the structure. From vibration theory, reduction in stiffness is 
associated with decrease in natural frequencies and 
modification of the modes of vibration of the structure. 
Vibration technique has been recognized as an important 
non-destructive tool for the identification of damage in 
structures for several years and the technique is undergoing 
continuous improvement in analysis and instrumentation 
over the years. The vibration characteristics of a structure 
can be represented in terms of their modal parameters or the 
structural parameters. Modal parameters include the 
frequencies, the modal damping values and the mode shapes 
associated with each frequency. Structural parameters are the 
mass, stiffness, flexibility and damping matrices of the 
structure. Changes in eigen frequency cannot indicate 
damage at symmetrical locations in a symmetric structure. 
Therefore, study of mode shape should be introduced for 
identification of damage location. 

The changes in displacement mode shapes are not 
localized in the region of damage and hence, they do not 
give indication of the location of damage very precisely. 
With curvature mode shape in conjunction to natural 

frequencies, the damage location can be attained in a very 
efficient manner. The absolute changes in the curvature 
mode shapes of the damaged and intact structure are 
localized in the region of damage and hence can be used to 
detect the damage in a structure. 

II. METHODOLOGY 

In this study, a prismatic beam model has been extended 
to account for the effect of open transverse cracks. A crack 
on a beam element introduces considerable local flexibility 
due to the strain energy concentration in the vicinity of the 
crack tip under load. A local flexibility can be expressed by 
a way of a local flexibility matrix, the dimension of which 
depends on the number of degrees of freedom considered. 
The analytical method used is based on available expressions 
for the stress intensity factor (SIF) and the associated 
expressions for the strain energy release rate (SERR). The 
adopted approach is similar to the flexibility based matrix 
method as developed by Papadopoulous and Dimargonas 
(1987) for studying the influence of an open crack on natural 
frequencies and mode shapes. 

III. MODAL CURVATURE 

If a crack or other damage exists in a structure, it reduces 
the flexural stiffness of the structure at the cracked section or 
in the damaged region, which increases the magnitude of 
curvature at that section of the structure. The changes in the 

79

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal on Advanced Science, Engineering and Information Technology

https://core.ac.uk/display/296922431?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


curvature are local in nature and hence can be used to detect 
and locate a crack or damage in the structure. The change in 
curvature increases with reduction in the value of flexural 
stiffness and, therefore, the amount of damage can be 
obtained from the magnitude of change in curvature. From 
the displacement mode shapes, obtained from the finite 
element analysis, curvature mode shapes can be obtained 
numerically by using a central finite difference 
approximation as  

  2
11
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where un is the vertical component of the displacement 
mode shapes at node n and x  is the length of the element.  

The absolute differences in the curvature mode shapes 
between the intact and damaged beam calculated for number 
of modes considered give proper indication of the crack. 
However with this method, different modes may give 
different predictions. To avoid this difficulty, we need to 
summarize the results for all the modes, which give proper 
indication about the crack. 

To summarize the results for all the modes, the curvature 
damage factor as proposed by Wahab and Roeck (1999) is 
calculated, which can be written as 





N

1i

//
diu//

0iu
N

1
CDF                                    (2) 

where N is the total number of modes to be considered,   
u0

// is the curvature mode shape of the intact structure and   
ud

// is that of damaged structure. 

IV. RESULTS AND DISCUSSIONS  

The prismatic beams of uniform cross section, simply 
supported at both ends have been considered for the analysis. 
Size of the beam is considered as 0.70 m x 0.15 m x 0.15 m. 
Young’s modulus and mass density of the beam material is 
taken to be 2.58 E10 N/m2 and 2348.65 kg/m3 respectively. 
Open cracks are assumed to be present at different locations 
of the beam. Crack depths are varied from 2 cm to 7 cm. 
Modal parameters such as mode shape are determined using 
FEM model and from which, absolute differences in the 
modal curvature between the intact and damaged beam and 
curvature damage factors are calculated with the help of 
curvature mode shapes for the number of modes considered. 

A. Modal Curvature 

For each location of the crack, having different crack 
depths, absolute differences in the modal curvature (ADMC) 
between the intact and damaged beam are calculated for the 
number of modes considered. There is some reduction in 
magnitude of the curvatures mode shapes due to damping 
effect. 

From the above results, it can be observed that the peaks 
of the curvature mode shapes are increasing with the 
increasing crack depth. Fig. 1, 2, 3 and 4 represents the 
absolute difference of curvature mode shapes of the beam 
having crack at mid span for crack depths 7 cm, 5 cm, 3cm 
and 2 cm respectively. At this location of the crack, the 
peaks of the curvature mode shapes are increasing with the 
increase in crack depth. These peaks correspond to the 
location of the crack. 

 

 
Fig.1 ADMC between cracked and un-cracked beam having crack of 7 cm 
depth at 0.5L 

 
 
 
 
 
 
 
 

 
Fig.2 ADMC between cracked and un-cracked beam having crack of 5 cm 
depth at 0.5L 

 
 
 
 
 
 
 

 
 
 
Fig.3 ADMC between cracked and un-cracked beam having crack of 3 cm 
depth at 0.5L 

 
 
 
 
 
 
 
 

 
Fig.4 ADMC between cracked and un-cracked beam having crack of 2 cm 
depth at 0.5L 

 
 
 
 
 
 
 
 

 
Fig.5 ADMC between cracked and un-cracked beam having crack of 7 cm 
depth at 0.25L 
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Fig.6 ADMC between cracked and un-cracked beam having crack of 5 cm 
depth at 0.25L 

 
 
 
 
 
 
 
 

 
Fig.7 ADMC between cracked and un-cracked beam having crack of 3 cm 
depth at 0.25L 
 

 
 
 
 
 
 
 
 

Fig.8 ADMC between cracked and un-cracked beam having crack of 2 cm 
depth at 0.25L 

 
 
 
 
 
 
 
 

 
 
Fig.9 ADMC between cracked and un-cracked beam having multiple cracks 
of 7 cm depth at 0.25L, 0.5L and 0.75L 

 
 
 
 
 
 
 
 

 
Fig.10 ADMC between cracked and un-cracked beam having multiple 
cracks of 5 cm depth at 0.25L, 0.5L and 0.75L 

 
 
 
 
 
 
 

 
 
 
Fig.11 ADMC between cracked and un-cracked beam having multiple 
cracks of 3 cm depth at 0.25L, 0.5L and 0.75L 

 
 
 
 
 
 
 

 
 
Fig.12 ADMC between cracked and un-cracked beam having multiple 
cracks of 2 cm depth at 0.25L, 0.5L and 0.75L 

Fig. 5, 6, 7 and 8 represents the absolute difference of 
curvature mode shapes of the beam having crack at quarter 
span for crack depths 7 cm, 5 cm, 3 cm and 2 cm respectively. 
At this location of the crack, the peaks of the curvature mode 
shapes are increasing with the increase in crack depth. These 
peaks correspond to the location of the crack. 

Fig. 9, 10, 11 and 12 represents the absolute difference of 
curvature mode shapes of the beam having multiple cracks at 
0.25L, 0.5L and 0.75L of the beam for crack depths 7 cm, 5 
cm, 3cm and 2 cm respectively. At these locations of the 
cracks, the peaks of the curvature mode shapes are not 
always increasing with the increase in crack depth, 
especially in third mode. This is because of the fact that the 
calculation of accurate modal parameters for multiple cracks, 
particularly for higher modes, evaluation of eigen-value 
problem should be based on some error measure. These 
peaks correspond to the location of the crack. 

B. Curvature Damage Factor (CDF) 

For each location of the crack, having different crack 
depths, curvature damage factors (CDF) are calculated with 
the help of curvature mode shapes for the number of modes 
considered. Peak of these CDF indicates the presence of 
crack. Peak is distinct for higher crack depths. With the help 
of these, the location of the crack can be determined very 
precisely.  

From the above results, it can be observed that the peaks 
of CDF are increasing with the increasing crack depth. Fig. 
13 represents CDF of the beam having crack at mid span for 
crack depths 7 cm, 5 cm, 3cm and 2 cm respectively. At this 
location of the crack, the peaks of the curvature mode shapes 
are increasing with the increase in crack depth. These peaks 
correspond to the location of the crack. 
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Fig.13 CDF for beam having different crack depths at 0.5L 

 
 
 
 
 
 
 
 
 

 
 

Fig.14 CDF for beam having different crack depths at 0.25L 

 
 
 
 
 
 
 
 
 
 

Fig.15 CDF for beam having different crack depths at 0.25L, 0.5L and 
0.75L 

Fig. 14 represents the CDF of the beam having crack at 
quarter span for crack depths 7 cm, 5 cm, 3 cm and 2 cm 
respectively. At this location of the crack, the peaks of the 
CDF are increasing with the increase in crack depth. 

Fig. 15 represents the CDF of the beam having multiple 
cracks at 0.25L, 0.5L and 0.75L of the beam for crack depths 
7 cm, 5 cm, 3 cm and 2 cm respectively. At these locations of 
the cracks, the peaks of the CDF are not always increasing 
with the increase in crack depth. This is because of the fact 
that the calculation of accurate modal parameters for 

multiple cracks, particularly for higher modes, evaluation of 
eigen-value problem should be based on some error measure. 

V. CONCLUSIONS  

In the present case, a study has been carried out for the 
evaluation of changes in modal parameters of a structure 
when any degradation takes place. An approach based on the 
flexibility matrix has been used in conjunction with finite 
element method to study the influence of an open crack on 
displacement mode shapes. The analysis has been done for 
damped model only. The displacement mode shape changes 
observed in cracked beams was prominent for higher crack 
depths, whereas, in presence of shallow cracks, displacement 
mode shape may not be a reliable parameter for damage 
detection. The changes in displacement mode shapes are not 
localized in the region of damage and hence, they do not 
give indication of the location of damage very precisely. 
With curvature mode shape, the damage location can be 
attained in a very efficient manner. The absolute changes in 
the curvature mode shapes of the damaged and intact 
structure are localized in the region of damage and hence can 
be used to detect the damage in a structure. Curvature 
damage factors are also calculated with the help of curvature 
mode shapes for the number of modes considered to detect 
the damage in a structure. 
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