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Abstract—Estimating the object pose is an interesting topic in the industrial robotic vision field. By having an accurate result for 
detecting object pose, it means the system performs the task as the target in the bin-picking technique. The methods which are 
developed are varies widely. But the challenge for this paper is estimating a 3D object using mono camera accurately. The object 
which is used in this paper has the symmetric rotational shape, in this case is the sprayer. In this paper, the camera uses a tool from 
the Blender Software, such that the ground truth is measurable and it will be the reference for calculating the error. The applied 
algorithms of this paper are Border Line Extraction Algorithm utilized in the template generation step as the reference template, 
Directional Chamfer Matching for detecting the coarse pose, and Lavenberg-Marquardt Method to optimize the object pose result. 
The result achieves the average error of the coarse pose for x and y position (translation pose) are 2.05 mm and 0.71 mm. Meanwhile 
for the optimized pose, the average error for x and y position (translation pose) are 1.82 mm and 0.24 mm. Regarding the rotational 
pose, the average error of the rotational coarse pose with respect to x and z axis are 0.01 degree and 0.45 degree. Whereas the average 
error of the rotational optimized pose with respect to x and z axis are 2.88 degree and 0.82 degree. 
 
Keywords— 3D object pose; borderline extraction; directional chamfer matching; optimized pose; robotic vision; industrial robotic. 
 

I. INTRODUCTION 

In the industrial robotic field, one of the robot's task is 
moving the targeted object from the initial place to the 
destination place. Various methods are developed to satisfy 
the robot's task for the best result. Another thing, one of the 
factors which have an essential sub-task of the whole 
system, is the object detection part. This research presents 
the object detection topic. Lysenko, et al., analyzes the cost 
function value by elaborating on the combination of Partial 
Directed Hausdorff (PDH) and Chamfer Matching methods. 

Meanwhile, the reference template used is the silhouette 
edges, and the surface in 3D and the camera used is stereo 
camera [1]. Gualtieri et al. developed point cloud data that 
are produced by RGBD sensor. The success rate achieved 
93% [2]. Pas et al. detect the cluttered object pose by 
developing the point cloud data. But the result shows that the 
point cloud registration step is the background of the robot 
couldn’t grasp the object (5 from 22 objects failed to be 
perceived). Besides, the object segmentation is not applied, 
so the robot could not accurately detect the pose of the 
specific object [3]. 

Meanwhile, Hossain et al. conducted research on the 
Deep Believes Neural Network (DBNN) to estimate the 

object’s location [4]. A device called Kinect was deployed as 
a motion sensor. However, it was shown that the average 
error is more than 4 mm. Czajewski et al. also deployed the 
Microsoft Kinect sensor to perform the point cloud matching 
method [5]. Viewpoint Feature Histogram (VFH) and 
Camera’s Roll Histogram (CRH) descriptors matching 
continued by Iterative Closest Point (ICP) and Hypotheses 
Verification (HV) algorithms were used in this approach. 
Yet, the camera height concerning the object suggested less 
than 1 m. He et al. proposed another method using template 
matching clustering algorithm, scoring function related to 
the template, non-maximum suppression, and, combination 
of point cloud processing. The average F1-Score, which 
indicates as a weighted average of precision and recall, 
gained 0.562. 

The score was still less than Latent-Class Hough Forest 
(LCHF) conducted by Tejani et al. [6], which achieved 
0.633. The drawback of the method was only limited to a 
simple design. Castro et al. used RGBD camera to estimate 
6D pose of the object under the light reflection as well as in 
the harsh and unstructured environment [7]. In this project, 
two times, estimation should be applied to reduce the error. 
Otherwise, failure will increase. Abbeloos et al. conduct 
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another approach to estimate the multiple objects using 
RGBD camera. The information of the salient geometry's 
object was maintained to extract critical points before 
matched them based on the descriptors. However, an 
additional method was required to improve descriptors and 
descriptor matching because of the loss of some features [8]. 
To optimize the object detection, Izatt et al. used mixed-
integer of point cloud data. But the scaling factor of point 
clouds is needed in the process—the point clouds given by 
the experimental data [9]. Sakcak, et al. applied Directional 
Chamfer Matching (DCM) method using the mono industrial 
camera. But the system could not be applied for the 3D 
object case [10]. 

Meanwhile, Liu et al. applied a method called Fast 
Directional Chamfer Matching (FDCM) to estimate the 
object pose. But the system can be applied less than 11 
degrees for the maximum rotation [11]. Apart from the 
matching step, Zeng et al. used the Hidden Line Removal 
approach for 2D cartoon images. The concept is developed 
by the updated depth and the visibility test [12]. For the 
visibility test, Nisha et al. used a z-buffer method to detect 
the visible surface [13]. Li et al., for detecting occlusion, 
using z-buffer operation with the time operation needed is 
O(nm) in which higher than the Sparse Grid method with the 
time operation O(n) [14]. Eka Samsul Ma’arif et al. used the 
integral projection function to determine the most outer 
edge. The system applied both for the vertical and horizontal 
integral projection function [15]. Nevertheless, the system is 
not robust concerning the light condition.  

Overall, the paper presents a 3D object detection method 
with the optimization method to improve accuracy. The 
inputs of the system are the combination of both the 3D 
CAD Model as a reference frame and the query image 
(captured image). In this case, the query image is created by 
Blender software, in which the intrinsic camera matrix and 
the position of the camera with respect to the object can be 
determined. Then the system is continued by the matching 
process. After that, the optimization is conducted in this 
system. The detail process is illustrated in Fig 1. 

 

 
Fig. 1  The system pipeline of estimating 3D object poses 

 

II. MATERIALS AND METHOD 

This section discussed three main parts, regarding the 
process in the template generation, the object detection by 
estimating the coarse pose of the object, and the optimized 
pose of the object. 

A. Generating Reference Template 

The 3D template, which is generated by the CAD file, is 
projected into 2D by using camera projection matrix. The 
camera projection matrix is the multiplication of projection 
and roto-transformation camera matrix. Then the system 
extracts the borderline of the projected template. The idea is 
the template can be rotated at any angle concerning any axis. 
Then the system extracting only the border in any pose of 
the template. 

1)  Projection Matrix:  The input of the projection matrix 
is the points of the 3D template. The points of 3D template is 
multiplied with the camera matrix that is done by camera 
calibration. The camera matrix that is used is the intrinsic 
parameter. Then the intrinsic parameter is multiplied with 
the rotation matrix and the translation matrix. The rotation 
matrix indicates the pose of the object with respect to the 
camera in terms of angle during the translation matrix for the 
position of the object. The pose of the object with respect to 
the camera is defined by � = [��  �� �� 	�  	� 	�]�. The 
subsequent points of the 3D template are defined by � = {��� }����  with the n indicating the setpoint quantity. 

The intrinsic matrix (Int) is achieved by using a 
chessboard in the MATLAB application tools. The intrinsic 
parameter consists of focal lengths (��, �� ) and center points 
of image (�� , ��). The matrix is formulated in (1)  

��� = ��� 0 ��0 �� ��0 0 1 � (1) 

Then the transformation matrix ( !), with dimension 4 x 4, 
expressed in (2). 

  !#�) = $%&�! �'(�)!0 1 *  (2) 

 
For the rotation matrix #%&�!) achieved by the 
multiplication of the Euler angle, explained in (3).  

 %&�! = �1 0 00 �&)	� −),�	�0 ),�	� �&)	�
� - �&)	� 0 ),�	�0 1 0−),�	� 0 �&)	�

. 

                    ��&)	� −),�	� 0),�	� �&)	� 00 0 1� (3) 

Meanwhile for the translation matrix (�'(�)!) is expressed 
in (4). 

 �'(�)! = [�� �� ��]′  (4) 
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The multiplication between the transformation matrix and 
the intrinsic matrix is the projection matrix (Proj), which has 
the 3 x 4 matrix dimension. The formulation is in (5). 

 0'&1 = [� 0] ∗  !#�)  (5) 

So, the transformation from 3D points into 2D is achieved 
by multiplied all the 3D points with the Proj. The 
formulation is described in (6). 

 �_4'&1� = 0'&1 ∗ ���  (6) 

In the end, �_4'&1� has a matrix dimension 2 x n points. The 
process is the first and second row of the �_4'&1� matrix is 
divided by the last row of the �_4'&1� matrix. The first and 
second row indicates the x and y point; meanwhile, the last 
row is the scaling factor. 

2)  Borderline Extraction: The purpose of using a border 
line extraction method in this system is for having a 
‘flexible’ template. The template will be a reference image 
in the matching step. The word ‘flexible’ here means that the 
template (as a reference image) can be used in the various 
condition of the object position that is captured by the 
camera. 

The template of the object consists of many lines. After 
the template is projected into 2D, then the system calculates 
the maximum and minimum nodes of each template’s line. 
The maximum and minimum nodes indicate the maximum 
and minimum value of the line both in vertical and 
horizontal directions. The node is illustrated with the circle 
symbol in Fig 2. 

 

 
Fig. 2 The scanning process of extracting borderline 

 
Every node has the x and y position. For every coordinate 

of the node, there is a scanning line that represents both in 
the vertical and horizontal direction. The vertical scanning 
line is illustrated with the red dashed line. Meanwhile for the 
horizontal scanning line is illustrated with the green dashed 
line. 

The function of the scanning line is to determine the most 
minimum and maximum node that intersects with the 
scanning line. The value of the node indicating the 
coordinate of the node. Meanwhile, the scanning line is 
created by the line equation. The most minimum node in the 
horizontal direction is located in the most left coordinate that 
also intersects with the scanning line. Vice versa for the 
most maximum node in the horizontal direction. While for 
the most minimum node in the vertical direction is located in 
the most bottom coordinate that intersects with the scanning 
line—Vice versa for the most maximum node in the vertical 
direction. 

By applying the algorithm, then the node only existing the 
one that represents the border of the object. Fig. 3 illustrates 
the process. The green star indicates the most minimum and 
maximum value of the scanning line that intersects with the 
object’s node in the vertical direction. Meanwhile, the blue 
star indicates the most minimum and maximum amount of 
the scanning line that divides with the object’s node in the 
horizontal direction—the existing nodes after the scanning 
line process so-called as the node candidate of borderline 
extraction. 

 
Fig. 3 Node Candidate: Minimum and maximum points of the scanning 
process 

 
Then the node candidates are re-scanned. The similar step 

as the previous process. In the end, the result produces 
borderline extraction by building the line from the existing 
points. Fig. 4 is a picture of the borderline extraction result. 

The next process is multiplying the following projection 
matrix. The goal is converting the 2D of borderline 
extraction results in 3D. The conversion is needed because it 
is related to the refinement step that will be explained in the 
refinement process. The formulation of the back projection is 
formulated in (7), with w is scaling value. 
 
 ��� = 5[� ∗ %&�!]6� ∗ �_4'&1� − %&�!6��'(�)! (7) 
 

 

463



 
Fig. 4 Borderline extraction result 

B. Coarse Pose of Object Detection 

The methods which are used to estimate the coarse pose 
of the object are Line Segment Detector (LSD) and 
Directional Chamfer Matching (DCM). The inputs are query 
image (captured image) and the borderline extraction 
template. The lines are the main component of the method. 
Besides, the object’s part, which has a high possibility of 
detecting the line is the border. Meanwhile, the output is the 
cost, which represents the distance between the template and 
the object captured in the query image.  

The template matching method, which represents the case 
is Directional Chamfer Matching. The main goal is finding 
the best alignment parameter between the borderline of the 
template and the borderline of the object in the query image. 

In the query image, the line with the direction is detected 
by the LSD. The LSD is applied in the grayscale with the 
task is detecting locally straight contour [11]. 

Defining 7 = {�_�8}8��|:_;| as the points for the template 
(with the |u_q| is the total number of points in the template) 
and �_<(4 = {�_4'&1�}���:  as the points of lines in the 
query image (with u is the total number of points in the 
query image). 

The Distance Transform (DTrans) is finding the most 
minimum distance (nearest) point between pixel p 
concerning the pixel in the query image �_�8, 
 
 = '(�)#>) = ||> − �_�8||:_;?∈A!��  (8) 

 
Meanwhile, to determine the distance value between two 

points can be stated using chamfer distance. Then for the 
case of multiple points, the distance can be expressed by 
finding the average distance value. So, the average distance 
of the nearest points between the template with respect and 
the query image can be expressed as,  
 

 B�CD#�_<(4, 7) = �� ∑ ||�_4'&1� − �_�8||:_;?∈A!��:_FGH8I∈J  (9) 
 

However, the direction of the line detected contributes to 
the average distance value. So, by considering the direction, 
the value of Directional Chamfer Matching (DCM) 
formulated in (10). With  φ#�_�8) is the direction for the 

query image,  φ#�_�8) is the direction for the template, and L is the scaling factor for the direction term.  
 B�CD#�_<(4, 7) = �� ∑ ||�_4'&1� − �_�8|| +.:_;?∈A!��:_FGH8I∈J_!OF ..  … + L ||φ#�FGH8�) −  φ#�;8)|| (10) 

 
To calculate direction term is in linear time, the 3D 

distance transform (= 3R_;) is considered. In which the first 
and second dimensions indicate the image plane’s location. 
Meanwhile, the line’s direction defining discretely is in the 
third dimension. The formulation of 3D distance transform is 
formulated in (11) for every pixel,  
 = 3R_;#4, φ#4)) = # ||φS � − �_�8||:_;?∈A!�� + L||φS#4) − φS �||T)US I∈V!��  (11) 

With φS � indicates the cost map’s orientation channel 
where the pixel belongs to and φS#4) indicates the value of 
quantized orientation in pixel p. And ||φS� − �_�8||:_;?∈A!��  

means 2D distance transform of the point �_�8 with the 
direction φS�. The system needs forward and backward 
recursion in pixel x for updating the value after computing 
the 2D distance transform. The formulation of the backward 
recursion is stated in (12),  
 = 3R_;#4, φ�W) = min {= 3R[#4, φS�), = 3R[#4, φS�\�)+..  … + ]||φS ,+1 − φS ,||^} (12) 

 
Meanwhile, the forward recursion is stated in (13),  

 = 3R_;#4, φ�W) = min {= 3R[#4, φS�), = 3R[#4, φS�6�)+..  … + ]||φS ,−1 − φS ,||^} (13) 
 
The purpose of making the forward and backward 

recursion is to make the tensor entries value is stable. So, the 
3D distance transform is updated concerning the orientation 
cost. Then to produce the directional chamfer matching 
value for any template U_map is formulated in (14)  
 B�CD#�_<(4, 7) = �� ∑ = 3R_;#�_4'&1�, φS#�_4'&1�)):_FGH8I∈J_!OF  (14) 
 

As all points in a line have the same direction, so all the 
pixels which have the same orientation channel computed as 
Integral Distance Transform (IDT). The formulation of IDT 
is computed in (15). 4_ is a meeting point between the line 
segment in the query image and the template line over the p 
which has direction φS �.  
 
 �= 3R_;#4, φS�) = ∑ = 3R_;`48 , φS�aF?∈b��c[de,d]  (15) 

 
The difference between the summation of Integral 

Distance Transform endpoint f8 and start point )8 of line l in 
the template line g,�fJ_!OF is the directional chamfer 
matching cost in any template �_<(4. The directional 
chamfer matching cost is calculated over the meeting point 
and defined in (16),  
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 B�CD#�_<(4, 7) =�� ∑ #�= 3R[ hf8 , φS#i,�f[j?,c?])k − ⋯b��c[m?,n?]∈o��cp_qrd   

 … − �= 3s� t)1, φS #i,�f[)1,f1])u (16) 

 

C. Refinement Pose of Object Detection 

The idea of refinement is to optimize the result by 
applying the minimum error. The error is minimized by the 
Lavenberg-Marquardt method. The input of the Lavenberg-
Marquardt method is the result of the most minimum DCM 
cost, which satisfies the threshold. The most minimum DCM 
cost is attained from the back projection of a coarse pose 
parameter. The pipeline of the optimized pose step is 
illustrated in Fig. 5 below. 

 

 
Fig. 5 Pipeline of the optimized pose 

 
The coarse pose parameter of the object is described in the 

image frame. The coarse pose data which are stored are 
translation concerning x, y, and z-axis (fix distance between 
the camera and the object) and the rotation for the z-axis. 
The Back-Projection formula changes the coarse pose of the 
object from the image frame into the world frame. The 
formulation of The Back Projection is described in (7). 

w is the scaling value. While for the parameter of �_4'&1� , %&�!, (�B �'(�)! are based on the coarse pose 
parameter, which is attained from the previous step. 

The next calculation is achieving the minimum DCM 
Cost [16], which is processed in the image frame. The inputs 
are the coarse pose object and the template object. The 
formulation of the Minimum DCM Cost is illustrated in (17). 
 v,�_=wv =||�_�8 − �_4'&1�||  + ]||φ#��) − φ`x8a||:_FGH8I∈J_!OFyz{ !��  (17) 

 
The �_4'&1� indicates the query image point after 

applying the coarse pose parameter. The U_map is the set 
points of �_4'&1� . Then �_�8 is the projected 3D template, 
as explained previously. The idea of finding the minimum 
DCM Cost is to find the nearest point between the query 
image, which applies a coarse pose parameter with respect to 
the projected 3D template in an image frame. 

After the DCM Cost is determined, then the threshold |} 
value is applied, such that only store the pair points which 
have the DCM Cost below the threshold |} value. The lower 
DCM Cost, the closer distance between the query image 
(applying coarse parameter), and the distance. The threshold 
value |} is calculated from the median of chamfer matching 
cost (B�CD) and the certain value (|}~H�j�). The formulation 
is described in (18),  
  
|} � |}!c��O�#����), if |}!c��O�#����) >  |}~H�j�  |}~H�j�  ,                        if |}!c��O�#����) <  |}~H�j�   (18) 

The threshold value |} is equal to the median of chamfer 
matching cost |}!c��O�#����), if the median of chamfer 
matching cost more prominent than the determined constant 
value |}~H�j�.  So, it is for the vice versa. 

III.  RESULTS AND DISCUSSION 

The result is classified into three main findings, as 
illustrated in Fig. 6. 

 

 
Fig. 6 Experiment classification 

 
The first result is regarding the template generation that 
classified into two-axis rotations. The rotation concerning 
the y axis is not conducted as the object shape does not 
change when the object is rotated for the y-axis. Then the 
second result is about the object pose of the synthetic camera 
image. The second experiment is divided into two sub-
experiments: Coarse Pose experiment and Optimized Pose 
experiment. 

A. Border Line Extraction of 3D Template 

The borderline extraction of the 3D template is specified 
into two examinations: rotate the template with respect to the 
x-axis and rotate the template with respect to the z-axis. 
Moreover, the axis base that is used to rotate the object is 
described in Fig. 7. 
 

 
Fig. 7 Axis base of the object 

 
The necessity for this examination is because the 

borderline extraction result is the reference image for DCM 
calculation. The high possibility of the detected line in the 
border of the object is also the reason it is essential for 
conducting this examination.  X-Axis Rotation:  Based on 
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Fig. 7, the template, which rotates for the x-axis, changes the 
border shape of the template. There are 5 sample degrees for 
the examination, with * is Degree (°). The result is explained 

presented in Table I and Table III. Table I summarizes the 
result for the degree 0° up to 90°. For the experiment, more 
than 90° is summarized in Table II. 

 

TABLE I 
BORDER LINE EXTRACTION: ROTATION X AXIS (1) 

No * Projected Template Border Line Extraction 

1 10 

  

2 30 

  

3 45 

  

4 60 

  

5 90 
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TABLE II 
BORDER LINE EXTRACTION: ROTATION X-AXIS (2) 

No * Projected Template Border Line Extraction 

1 120 

  

2 150 

  

3 180 

  

4  210 

  
 

5  240 
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Qualitatively, the system extracts the borderline of the object 
in any variety of angles. The object shape is changing 
concerning the camera view.  

1)  Z-Axis Rotation:  Refer to Fig. 7, the template is 
rotated for the z-axis. The result is summarized in Table III, 

TABLE III 
BORDER LINE EXTRACTION: ROTATION Z-AXIS 

No * Projected Template  Border Line Extraction  

1 -10 

  

2 -30 

 
 

 
 

3 -60 

  

4 10 

 
 

 

5 30 
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The template, which rotates for the z-axis, does not 
change the border shape of the template. The examination is 
conducted clockwise and counter-clockwise direction 
concerning the z-axis. 

B. Coarse Pose 

The next examination is determining the coarse pose of 
the object. The Blender camera acquires the captured image. 
So, the ground truth can be determined by the parameter 
setting in the Blender. Table IV summarizes the result 
(samples) for the coarse pose of the object, which is rotated 
concerning the z-axis.  

TABLE IV 
QUALITATIVELY COARSE POSE RESULT (1) 

No Coarse Pose 

1 

 

2 

 
 

3 

 
 

4 

 
 

5 

 

The dashed green line shows the template line, which is 
projected for the first time at the image plane. Then by using 
the algorithm to find the coarse pose object, the red line 
shows the result of the coarse pose. Table V is the result of 
the coarse pose object when the object is rotated some 
degrees concerning the x-axis. 

TABLE V 
QUALITATIVELY COARSE POSE RESULT (2) 

No Coarse Pose 

1 

 

 
 

2 

 

 
 

3 

 

 
 

 
Based on the result of Table IV and Table V, 

qualitatively, all the coarse poses result in almost the same 
as the object pose. Quantitatively, the result of the coarse 
pose accuracy for the 50 poses of the object (various poses) 
is explained in Table VI 

TABLE VI 
QUANTITATIVELY COARSE POSE RESULT 

Parameter Value Unit 
Translation of x axis (tx) 2.05 mm 
Translation of y axis (ty) 0.71 mm 
Translation of z-axis (tz) -  
Rotation of x axis (Rx) 0.01 degree 
Rotation of y-axis (Ry) -  
Rotation of z-axis (Rz) 0.45 degree 
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The translation of the z-axis does not have the value as the 
distance between the camera and the object is constant or 
fixed. The rotation of the y-axis also does not have the value 
because the object shape is not changing when it is rotated to 
the y-axis. Fig. 8 shows the data of coarse pose examination 
results when it is represented as a graph. 

 

 
Fig. 8 Coarse poses: Translation of x-axis data 

 
Fig. 9 represents the coarse pose result for the translation 

for the y-axis. 
 

 
Fig. 9 Coarse poses: Translation of y-axis data 

 
Fig. 10 represents the comparison between reference pose 

and coarse pose of the object for rotating for the z-axis. 
 

 
Fig. 10 Coarse poses: Rotation of z-axis data 

 
Quantitatively, the average error of the coarse pose for the 

translation is 1.38 mm, and the rotation is 0.23°. 

C. Optimized Pose 

The following result is regarding the optimized pose. By 
applying the formulation (17) and (18), the result is 
summarized in Table VII. The same as the coarse pose 

examination, the captured image also attained by using 
Blender software. 

TABLE VII 
 QUALITATIVELY OPTIMIZED POSE RESULT 

No Optimized Pose 

1 

 
2 

 
3 

 
4 

 
5 

 
 

Quantitatively, the result of the optimized pose is shown in 
Table VIII. 

 TABLE VIII 
QUANTITATIVELY OPTIMIZED POSE RESULT 

Parameter Value Unit 
Translation of x axis (tx) 1.82 mm 
Translation of y axis (ty) 0.24 mm 
Translation of z-axis (tz) -  
Rotation of x axis (Rx) 2.88 degree 
Rotation of y-axis (Ry) -  
Rotation of z-axis (Rz) 0.82 degree 
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If the result is presented in a graph, the comparison 
between the reference pose and the optimized pose for the 
translation for the x-axis is presented in Fig. 11. 

 

 
Fig. 11 Optimized pose: Translation of x-axis data 

 
Fig. 12 represents the optimized pose versus the reference 

pose for the translation for the y-axis. 
 

 
Fig. 12 Optimized pose: Translation of y-axis data 

 
Fig. 13 illustrates the optimized pose of the object and the 

reference pose of the object in terms of rotation with respect 
to the x-axis. 
 

 
Fig. 13 Optimized pose: Rotation of x-axis data 

 
Fig. 14 explains the object pose, which is as a reference 

and as an optimized pose for the rotation for the z-axis.  
 

 
Fig. 14 Optimized pose: Rotation of z-axis data 

Quantitatively the average error of rotation using 
optimized pose formula achieved 1.85°. Meanwhile, the 
average error of the translation is 1.03 mm. 

IV.  CONCLUSIONS 

The template generation applied Border Line Extraction 
Method. The template is the reference template that is 
calculated for the Directional Chamfer Matching Method. 
Directional Chamfer Matching Method to determine the 
coarse pose. The optimized object pose algorithm has a 
better result for the translation pose (x, y, z) of the object. 
The average error for the translation (x, y, z) of optimized 
pose achieved 1.03 mm, meanwhile for the coarse pose is 
1.38 mm. The optimization method applied the Least Square 
Error Lavenberg-Marquardt method. The average error of 
rotation pose (	� and 	�) performs better results in the coarse 
pose mode. The average error of rotation pose for the coarse 
pose mode is 0.23°; meanwhile, the optimized mode is 
1.85°. 
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