

Vol.9 (2019) No. 6

ISSN: 2088-5334

A Gesture-based Recognition System for Augmented Reality
Vinothini Kasinathan#, Aida Mustapha*, Asti Amalia Nur Fajrillah+

#Faculty of Computing, Engineering and Technology, Asia Pacific University of Technology and Innovation, Technology Park Malaysia,
57000 Kuala Lumpur, Malaysia.
 E-mail: vinothini@apu.edu.my

*Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Johor, Malaysia.

+School of Industrial Engineering, Telkom University, 40257 Bandung, West Java, Indonesia

Abstract— With the geometrical improvement in Information Technology, current conventional input devices are becoming
increasingly obsolete and lacking. Experts in Human Computer Interaction (HCI) are convinced that input devices remain the
bottleneck of information acquisition specifically in when using Augmented Reality (AR) technology. Current input mechanisms are
unable to compete with this trend towards naturalness and expressivity which allows users to perform natural gestures or operations
and convert them as input. Hence, a more natural and intuitive input device is imperative, specifically gestural inputs that have been
widely perceived by HCI experts as the next big input device. To address this gap, this project is set to develop a prototype of hand
gesture recognition system based on computer vision in modeling basic human-computer interactions. The main motivation in this
work is a technology that requires no outfitting of additional equipment whatsoever by the users. The gesture-based had recognition
system was implemented using the Rapid Application Development (RAD) methodology and was evaluated in terms of its usability
and performance through five levels of testing, which are unit testing, integration testing, system testing, recognition accuracy testing,
and user acceptance testing. The test results of unit, integration, system testing as well as user acceptance testing produced favorable
results. In conclusion, current conventional input devices will continue to bottleneck this advancement in technology; therefore, a
better alternative input technique should be looked into, in particularly, gesture-based input technique which offers user a more
natural and intuitive control.

Keywords— hand gesture; e-learning; human-computer interaction.

I. INTRODUCTION

In recent years, people have grown far more interested
with augmented reality systems. These are systems which
overlays graphics onto real-time display. In fact, according
to the ABI Research Study in 2009, augmented reality
technology is thought to grow from producing USD 6
million in profit in 2008 to approximately USD 350 million
in 2014. With the advent of augmented reality systems,
many experts in Human-Computer Interaction (HCI) found
that there is a need to improve the many aspects of
interaction between humans and computers. The
unnaturalness of some conventional input devices such as
mouse, keyboard and joystick causes these respective
devices to be incapable of completely bridging the gap found
between human and computer interaction. [1] believed that
Human Computer Intelligent Interaction (HCII) can only be
achieved when a user is able to interact naturally with a
computer, just as how human-human interaction takes place
every day.

The presence of these technologies have made computer
input and output a lot more sophisticated now than a decade
ago. However, current conventional input devices are a huge
bottleneck in the bandwidth of information transition
between man and machine as the unnaturalness of these
devices inadvertently cause the ‘gulf of execution’ [2]. Gulf
of execution is a term used to describe the gap between the
user’s intentions and actions to be done in order to execute
them. [3] believed that one fundamental way of reducing the
gulf of execution is to make the input actions of user as
similar to the thoughts that motivated the actions. This is
however, not possiblewith the current array of conventional
input devices as these devices promote trained behaviors,
rather than exploiting analogies to existing human skills
such as pointing, and dragging [4].

Technologies such as Virtual Reality (VR) and
Augmented Reality (AR) are popular because their user
interfaces exploit the user’s preexisting abilities and
expectations, bridging the gulf of execution. As more critical
systems are computerized, the need for more natural and

2182

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal on Advanced Science, Engineering and Information Technology

https://core.ac.uk/display/296922182?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

precise input devices are highly demanded. A simple
example of such a system would be the Catheter Robotics
Manipulation System by CRI [5]. This pioneering medical
system allows surgeons to remotely manipulate EP catheters.
The remote control replicates the functions of the catheters,
effectively eliminating the gulf of execution in terms of
similarity to the real scenario and precision of the input
device. Current input mechanisms are unable to compete
with this trend towards naturalness and expressivity which
allows users to perform natural gestures or operations and
convert them as input.

It is said that fluidity and expressiveness of human gesture
is a fundamentally important component of interpersonal
communication [6]. At present, conventional HCI devices
are also rigid in their controls as well as ergonomics and to
some degree, their designs, requiring users to be in constant
physical contact with them in order to utilize these devices.
Some users are unable to operate a system via mouse and
keyboard, which is inarguably the most popular input
devices for conventional computer systems as of today,
because of multiple reasons [7]. [8] considered conventional
input devices to be more oriented towards the input
requirements of the computer, rather than that of the user,
and suggested that gesture input may be suitable for people
who are unable to use a keyboard or are unwilling to do so,
preferring a system which responds to manual gestures.

Because of the rigidity of these devices, most of the time,
one type of conventional device is best suited for only a set
of tasks. In the case of mouse and keyboard, for example,
mouse is better in pointing and navigation tasks but is
terrible in word processing while the keyboard is the exact
opposite. In their Eyeflyer research, [9] showed that the
movement efficiency, in words per minute on a QWERTY
virtual keyboard via a mouse is 15 words per minute (wpm),
a lot slower than the average rate of 33 wpm on a standard
QWERTY keyboard [10]. Another example would be the
tablet and mice. The tablet is considered to be one of the best
pointing input devices, however, it is inferior to the mice in
terms of dragging tasks [11]. Based on the famous Fitt’s law,
the efficiency of input devices in relation to the different
tasks to be executed and is considered to be a key foundation
in input designs.

This project focuses on allowing users to remotely
interact with their system via hand gestures in the field of
computer vision, giving way to a more flexible and natural
approach to HCI; an alternative computer input technique.
This project is not intended to revolutionize the HCI field,
but rather a proof of concept work of incorporating computer
vision into HCI for a more natural and intuitive means of
computer interaction.

Most common Graphical User Interfaces (GUIs) in many
systems are still limited to the popular keyboard and mouse
input devices for efficient interaction. However, gesture
recognition is a technique which allows computers to
understand bodily language, much like humans do, thus
creating a richer interaction bridge between machine and
man. This allows human to interface with machine, and
interact naturally without the aid of any mechanical devices.
Input devices based on gesture recognition takes human
gestures as an input signal, and interprets it vi a
mathematical algorithms. Gestures can be of any shape or

form, even bodily motion. The most popular form of input is
usually taken from the face or the hand. One of the more
important reasons as to why experts in Human-Computer
Interaction (HCI) are so eager to incorporate gestures as a
form of input, is because of the naturalness of gestures.
According to [8], conventional input devices are more
oriented towards the input requirements of the computer
than the user, in that they are precise and unambiguous,
pointing out that the only way to produce a more natural
style of interaction with the computer is to build an
interaction technique with human-human communication as
the foundation. A study conducted by [12] on the effects of
gestures and speech for graphic image manipulation yielded
surprising results. The method of his experiment was simple;
participants were to sit in front of a fast, high resolution
bitmapped monochrome graphics terminal. They were to
perform image manipulating tasks via three different
communication modes: gestures only, speech only and the
last which combines both gestural and verbal
communication. The research found that 58.3% of subjects
preferred to use both verbal and gestural input with 22.2%
preferring speech only and 19.2% preferring gestures only.
[12] found out that for the task of graphic manipulation,
gesture communication is intuitive, requiring no previous
experience and is therefore equally accessible to all
computer users, not just expert users. This view that gesture
communication is intuitive is also sided by [13] in his work
with two-dimensional mouse gestures.

Another advantage of hand-gesture input is that it has the
potential to cause a wide spread recognition of sign language.
[8] pointed out the benefits that a person, who communicates
exclusively through sign language, can gain from a sign
language-to-synthetic speech system. [14] also noted the
liberating effects when such a system is applied to problems
where people who exclusively use sign language as a
communication mode interact with hearing people. A
gesture recognition system can convert finger-spelling to
speech for communication with hearing people, and a speech
to text system for the device’s user to read replies as a
solution. Other works that developed gestural recognition
inputs based on sign language include [15-17].

In HCI studies, it is very important to have an input
device closely matching the requirements of the task being
performed [18], much like how the remote of the Catheter
Robotics Manipulation System resembles the handling of a
real EP catheter. This is especially similar to stimulus-
response compatibility, which has a large impact on choice
reaction time for Hick-Hyman Law. This term is used to
measure the degree to which how consistent a response is to
an action. [19] investigated the uses of virtual reality and
gestural input when applied to scientific visualization.
According to their work, conventional methods of
interaction with data, especially three-dimensional data
models using knob boxes are cumbersome and non-intuitive.
This findings supported the point made by [18]. An
interesting thing to note is that [20] has long before
highlighted the clinical applications that time taken to
measure range of motion of the joints of a patient by a
skilled therapist with a mechanical goniometer is one to two
hours. Adding to that, the measurements are also only
repeatable to within five degrees with the same therapist.

2183

The data glove has the capability to perform the same
measurements in a fraction of the time, using a less skilled
operator and with more repeatable results. Two decades later,
the Catheter Robotics Manipulation System was officially
released.

In summary, gesture-based interactions in a computer
system is imperative due to its naturalness and intuitiveness.
Gestures are also the basis of sign language recognition
system and can be used in a cumbersome environment or
where gesture input is more appropriate for tasks such as
graphic object manipulation. Gesture-based inputs also
promotes intentional user imprecision and are able to be
utilized by people who are unwilling or unable to use a
keyboard. An example of an input device which utilizes
computer vision is the Flow Mouse. However, this is only
possible due to the advances in imaging technologies. Back
then, exoskeleton or gloves were used to measure the
position of fingers and thumb, affixed to the exoskeleton is a
3-space receiver which would allow the transmitter to
relatively locate the hand in space. An example of an input
device which uses such a technique is the Power Glove.
Flow Mouse and Power Glove will be discussed next.

A. Flow Mouse

Flow Mouse is a pointing device and a gesture input
system based on computer vision developed by [21]. In
order to capture the motion of the hand, Flow Mouse utilizes
optical flow techniques, instead of the more common
absolute position-based tracking methods. Instead of forcing
the users to continuously use it, FlowMouse has a natural
mode switch which would enable and disable the feature, so
as to not only prevent accidental capturing of unintended
gesturing, but to also allow for a “clutching” action that a
pointing scheme needs. In general, FlowMouse is described
as an input technique that works similarly to an optical
mouse sensor in the sense that the mouse velocity is
determined by the relative motion of the hand under the
camera. Grayscale images extracted from the camera will be
processed and used to determine the vector of a particular
moving object, specifically, the hand in this case. This
approach allows the developers to avoid the vulnerability of
absolute tracking techniques.

In [21], Flow Mouse was evaluated by six participants of
the age range between 30 and 55, based on the Fitt’s Law to
measure the performance of the Flow Mouse in comparison
with a trackpad. The experiment revealed that the trackpad
fared better than the Flow Mouse but participants concluded
that Flow Mouse was rather intuitive and felt natural to work
with. The main functionality of the Flow Mouse is to allow
users to control the mouse pointer with the motion of their
hand, instead of the positioning of their hand, emphasizing
heavily on optical flow technique to achieve this. It also
supports two-dimensional pointing while still providing
users with intuitive way of interaction. The key features
include (1) a gesture recognition based on computer vision,
(2) an optical flow technique, (3) a natural mode switch, and
(4) a two-dimensional pointing compatibility. Nevertheless,
Flow Mouse has few shortcomings that include inability to
recognize gestures that rely on shape or contour of hands,
poor implementation of natural mode switch, simulation
only based on mouse movement, resulted in relatively weak

Fitt’s performance index in comparison with trackpad, and
inability to differentiate object in motion.

B. Mattel Power Glove

The Mattel Power Glove was a glove-type gesture input
device built based on data gloves [22]. It was designed for
use in virtual reality systems, specifically the Nintendo
Entertainment System (NES) even though it only has a 2-bit
finger bend resolution. The Power Glove operates in one of
two modes, either low resolution or high resolution. When
the Power Glove is in low resolution mode, it emulates a
joystick. If the glove is pointed upwards, then the only
information that the host computer receives from the glove is
the code for ‘up’. In short, it reports the position of the hand
on the x and y axis. All information about the position of the
hand in space and the amount of finger bend is lost when in
this low resolution mode, rendering gesture recognition
completely irrelevant in this mode. Conversely, when in
high resolution mode, the glove sends all information about
hand position and finger bend to the host computer for
gesture recognition [23].

The Power Glove uses material that covers the thumb and
fingers with different electrical resistance depending on how
much it is flexed. The degree of bentness is expressed in
terms of integers as follows. 0 means fully extended, 1
means a little bent, 2 means more bent than straight, and 3
means fully bent. The Power Glove was designed solely for
the NES, and it clearly shows in its functionalities. The x
and y axis position report was implemented to emulate the
controls of a joystick, while the tracking of the “roll” hand
orientation is designed specifically for flight games, in
which it simulates the raising of one wing and the lowering
of the other in most flight technologies. Power Glove
automatically detects flexing of fingers and perform tracking
motion in three-space. Nonetheless, flexing of fingers is only
represented by four states and is completely dependent on
how the material surrounding the fingers is bent. This results
in inaccurate flexing representation. In addition, there is the
Gorilla Arm effect when users are exposed to prolong use of
the Power Glove because they have to point knuckles to the
receiver array constantly.

As conclusion, after examining both Flow Mouse and
Power Glove, the main requirements of a gesture-based
input device can be derived clearly. Among the narrowed
functionalities that will be the bases of the proposed hand
gesture system are as follows (1) imaging processing
technique to detect and track hand, (2) acquisition and
recognition of hand gestures after processing, (3) two-
dimensional pointing compatibility, (4) implementation of
other mouse basic operations, (5) ability to filter objects that
are not of interests, and finally (6) feature extraction to
complement mouse operations.

The remaining of this paper is structured as follows.
Section 2 presents the proposed Hand Gesture Recognition
System, Section 3 presents the prototype development,
Section 4presents evaluation and discussions, and finally
Section 5 concludes with indication for future research.

II. MATERIALS AND METHODS

This project proposes a gesture-based recognition system
that would be able to detect, track, and recognize hand

2184

gestures performed by the users. These hand gestures will
then be interpreted by the system into input commands. The
core functionalities of the system are two-fold; (1) to display
of video feedback on computer via webcam and (2) to detect
and track the user's hand. In addition, the system should be
able to perform feature extraction on detected hand as well
as mouse control simulation. System development adopted
the hand detection framework by [24]. Fig. 1 shows the steps
involved in detection, tracking and classification of hand
gestures.

A. Video Acquisition

The first and foremost module of the framework is to take
raw video feed from the camera and feed it into the system.
Videos are made of multiple frames, and each of these
frames are segmented individually to be processed by the
next module.

Fig. 1 Hand detection framework [24].

B. Preprocessing

Preprocessing consists of two tasks: background
segmentation and skin segmentation. Fig. 2 shows the
breakdown of the segmentation process.

Fig. 2 Segmentation process breakdown.

• Background Segmentation

In this research, the background segmentation model
was adopted from the Background Subtraction Model by [25]
as shown in Fig. 3.

Fig. 3 Illustration of background subtraction model.

The background of a video can be learned by constantly
storing and updating the average gray level of each pixel as
the video runs [26]. By differentiating the current frame, the
N-th frame, with the averaging background model, the
image obtained would represent the potential region of
foreground objects, as these pixels differ from the average
gray level stored in the background model.

The next step is thresholding, a technique used to extract
the shape of moving objects based on a defined threshold
level [27]. However, because the output foreground will be
in binary form, skin segmentation cannot be applied to it,
resulting in every object in foreground to be detected as
region of interest by the system. In order to overcome this
problem, this project used a method in which skin
segmentation can be done on the foreground objects. The
output of the thresholding, the binary image, will now be
used as a mask to be superimposed unto the N-th image
currently under process. The result of the implemented
method is shown in Fig. 4, allowing skin segmentation to be
done next.

Fig. 4 Example of implemented background subtraction.

• Skin Segmentation

Skin segmentation algorithm is used to detect which
region of the input image has skin color and then marked.
There are several skin detection methods, all of which
utilizes different space color, two of which are the
normalized RGB space color and the YCbCr space color.
The criteria to look out for filtering are computational
complexity and the accuracy of likelihood.

Normalised RGB Colour Space. The RGB colour model
is one of the most recognized color spaces in which the three
main primary colors are represented in their respective axis.
Their combination would bring about a multitude of other
colors. This color space is used for the input and output of
many electronic systems, particularly in displaying images.
In computer systems, these color components are stored as
an integer value ranging from 0 to 255. However this space
color is very luma-dependent and detection of a certain
range of color may be unreliable under different lighting
conditions [28]. Normalized RGB space color takes this into
account and forms a chromatic color space, which removes
luminance and can be defined by the formula in Equation 1
[29].

� = �/(� + � + �)

 = �/(� + � + �)
� + � +
 = 1

(1)

Only two colors, r and b, are calculated to complete the

normalization process, as r + g + b = 1. In chromatic color
space, distribution of skin-color of different people are

2185

clustered and can be represented by a Gaussian model N(m,
C) in Equation 2 adopted from [30] where:

 = �(�) where � = [(�
)]�
� = �(� −
)[(� −
)]�

(2)

From the model, the probability of a pixel representing

skin color can be computed in Equation 3 as follows.

�(�,
) = exp�[−0.5(−
)]��(−1)(� −
)"
where � = [(�,
)]�

(3)

YCbCr Colour Space. YCbCr color space separates the

RGB color channels into individual components, reducing
redundancy data that is present in said channel. This color
space stores luminance information in a single component, Y,
while Cb and Cr are the blue and red chrominance
components respectively. The formula for converting RGB
into YCbCr is shown in Equation 4:

= 0.299� + 0.587� + 0.114�
�
 = 128 − 0.168736� − 0.331264 + 0.5�
�� = 128 + 0.5� − 0.418688� − 0.081312�

(4)

where R, G, B, Y, Cb, Cr ϵ {0, 1, 2, 3, 4, ..., 255}.

YCbCR is luma-independent and the condition whereby a

pixel is considered to be representing skin is when 85 ≤ Cb
≤ 135 and 135 ≤ C ≤ 180,Y ≥ 80. In comparing between
the two skin segmentation algorithms; the Normalised RGB
Color Space and YCbCr Color Space, [31] found that in
terms of computational complexity, the YCbCr algorithm is
faster than the RGB Color Space algorithm with 81.3%
accuracy of likelihood as opposed to 69.1% by the RGB
algorithm.

C. Feature Extraction

In gesture-based recognition system, features to be
extracted are inherent characteristics of an object. From the
binary mask obtained from the segmentation, the system will
be able to extract the width, height, center position, contour
and convex hull as shown in Table 1.

TABLE I
FEATURES EXTRACTED FROM OBJECTS.

Extracted Explanation

Width
The width would be calculated based on the
horizontal length of the Region of Interest (ROI)

Height
The height would be calculated based on the
vertical length of the ROI

Center Position
The center position can be calculated based on
the ROI

Contour The silhouette of the hand mask image (Fig. 5)

Convex Hull
Derived from the contours previously found (Fig.
5)

Convexity Defects and
Depth Points

Depth Points and Derived from defects found
present in between a convex hull and a contour
(see Fig. 6)

Wrist Detection Derived from the points of defects (Fig. 7)

Note that wrist detection feature can be extracted from the
points of the defects because the depths differ from one
another, with the ones between the fingers being the deepest.
The location of the wrist is obtained by assuming that the
defects found on the wrist are the shallowest.

Fig 5 : Contour (left) and Convex Hull (right)

Fig. 6 Convexity Defects (left) and Depth Points (right).

Fig 7 Wrist Detection.

D. Classification

The classification module in the gesture-based recognition
system deals with the recognition of static hand gestures via
pattern recognition. The classifier used in this project is the
K-Nearest Neighbor (k-NN) classifier, which is a widely
used pattern recognition and machine learning algorithm.
Based on a majority vote from its neighbors, a test query can
be classified, as the class most common amongst the
neighbors. Much like any other machine learning algorithm,
K-NN has two phases, the training phase and classifying
phase.
• Training Phase. During this phase, the k-NN algorithm

trained the features to recognize classes. This algorithm
store the entire training pattern and their respective
classification results. The time complexity for training is
θ=(1).

• Classifying Phase. When a vector is fed into the
algorithm, the algorithm performed a check on its
surrounding neighbors up until a distance of k. The
given vector is then classified as a class of which has the
most votes. The time complexity of this phase is θ=(dn),
where d is the length of the training document.

E. Gesture Recognition Algorithm

The final module in the Hand Detection Framework as
shown in Fig. 1is the gesture recognition algorithm. There
are five problems arise when in developing the proposed
gesture-based recognition system, which are (1) Simple
Image Manipulation, (2) Background Subtraction, (3)
Contour Finding and Filtering, (4) Palm Position Finding
and (5) Finger Calculation. In designing the specific
algorithm, each problem is divided into 3 components based
on input data required by the algorithm, process or the action
list to be taken in order to get the desired output, and the list

2186

of generated output as outcome of the gesture-based
recognition system.

In simple image manipulation, the input is the source
image. For each image, the algorithm will can each pixel
column by row and manipulate the pixel accordingly. The
output will be the manipulated image. The nested loop
would ensure that each pixel is scanned column by column
on the first row and then continued on to the next row. Based
on the conditions set in Algorithm 1, these pixels are
manipulated accordingly, such as painting the pixels with
different colors and such.

The objective of background subtraction is to separate the

foreground from the background image. Based on Algorithm
2, an image matrix which would store the average
background model of the frames is initialized during the first
run of the system. After which, the foreground of the frame
is defined by differentiating the current frame with the
average background model. Morphology process is
performed onto the result for a better image. Finally, the
foreground mask is applied to the original source of the
frame. This would result in the final product of the frame
containing only the foreground in color, allowing skin
filtering process to be performed next.

In finding the contour and filtering, all contours are traced
from the binary image input and store them in an array.
Every contour traced is scanned through, if the size of the
contour is less than the minimum size defined, then the
contour is deleted from the storage memory. After filtering
contours which do not meet the minimum size, comparison
between the size of the remaining contours is performed.
The largest contour will then be selected as the object of
interest. The process is shown in Algorithm 3.

Given the input of hand contour and the array of defects,

next, in order to find the palm position, the defects found on
the contour are filtered based on the minimum depth size set.
After which a minimum enclosing circle is build based on

the defects left. The center and radius of the circle is stored
into a buffer. The average positioning of the palm center and
the palm radius is then derived from the buffer. The output
from the process are the palm center and the palm radius is
shown in Algorithm 5.

Finally, finger calculation is performed based on the
defect list, palm center and palm radius as shown in
Algorithm 5. The start points of the defects are stored as
potential finger tips location. The length of the finger tips
point to the center of the palm is calculated. If the potential
point's y position is higher than the center of the palm and
its distance from the center of the palm is larger than the
radius of the palm, then it is considered to be a fingertip.

F. Prototype Development

The gesture-based had recognition system was
implemented using the Rapid Application Development
(RAD) methodology [26] as shown in Fig. 8. RAD involves
both structured techniques as well as iterative techniques
such as prototyping. This methodology places emphasis on
development speed through prototyping cycles in order to
quickly produce a fully functional system in a short time
period. There are 5 phases in this methodology;
requirements planning, user design, construction, and
cutover. Based on the RAD methodology, the output system
will be presented in three prototypes.

Fig. 8 Rapid Application Development (RAD) methodology.

1) Prototype 1

In the first prototype of the system, only the core
functionalities of the system was implemented. The
prototype will integrate the following core functionalities, (1)
display of video feedback on computer via webcam, (2)
HSV and YCbCr skin segmentation options, (3) background
segmentation, and (4) detection and tracking of the user's
hand. This first prototype will be able to capture video from
the webcam connected to the computer.

Background and skin segmentation functionalities will
also be integrated into the first prototype. The option to

2187

enable or disable background segmentation and selection of
color spaces used in skin segmentation will be provided in
this first iteration of the system. Finally, the detection and
tracking of the user's hand is another functionality that will
be implemented into the first prototype. Fig. 9 shows the
user interface for Prototype 1.

Fig. 9 User interface for Prototype 1.

At the initialization of the system, it first checks the

availability of a web camera on the system. If a web camera
is unavailable, the only input option that will be accepted is
a valid AVI video file. However, if a web camera is
available, the user is given the option of selecting the option
of the input of the system, either via live feed from the web
camera connected to the computer, or a valid AVI video file.
In the case whereby the video file given is invalid, the
system will prompt the user for another valid video file.
After successfully creating a capture, the system will
continuously retrieve frames from the feed. If background
subtraction is enabled, the averaging background model is
first updated, before the extraction of foreground is done.
Pre-treatment of the foreground will then be done during the
preprocessing of the frame. Next, depending on the user's
selection of colour spaces to be used, either HSV or YCbCr
will be used to segment skin pixels from the foreground that
was extracted previously.

Identification of the contour of the hand is performed next,
if a contour which fits the specification as stipulated by the
developer is found, the contour is redrawn by the system and
then the system forks into two paths. In the first path, a
boundary rectangle will be drawn around the detected
contour, effectively allowing the system to track the hand
detected. In the other path, the contour of the hand is
displayed unto the secondary picture box on the interface,
allowing a clear view of what is currently `seen' by the
system. Regardless of whether a hand contour is detected or
not, the system will loop again, retrieving the next frame of
the feed. The loop will only end if prompted by the user or if
a video feed, the video ends.

2) Prototype 2

In the second prototype of the system, enhanced
functionalities were integrated implemented. The enhanced
functionalities focused on feature extraction on detected
hand and the mouse control simulation in `Mouse' mode.

After the detection and tracking of the hand is completed,
feature extraction was carried out for the following features;
Convex Hull, Convexity Defects, Palm Center, Finger Tips,
and Hand Segmentation. Next, these features were used to
provide the user with a novel mouse control simulation when
the system is operating under `Mouse' mode. Mouse features
that was implemented include mouse movement, left click,
right click, drag capability, and mouse wheel capability. Fig.
10 shows the interface for Prototype 2.

Fig. 10 User interface for Prototype 2.

As with the first prototype, the system would first check

the available input mode and then preprocess the frames by
performing background subtraction if necessary and then
skin segmentation. The difference comes right after the
identification and redrawing of hand contour is carried out.
Instead of forking into two paths of simply drawing a
boundary rectangle and displaying the contour frame, feature
extraction is added into the activity. First, the convex hull
would be derived from the newly drawn contour. With the
convex hull of the contour of the hand obtained, the system
will then derive the convexity defects of the contour. After
deriving some of the more obvious features of the contour,
the system will then fork into two paths for more advanced
feature extractions.

The first path will identify the fingertips of the hand,
determining the tip of their points. Next, the number of
fingers currently extended is counted and two of the main
fingers, determined by their lengths, are identified. The
second path will identify the palm position of the hand using
the previous features extracted before the forking. Next, the
hand itself is segmented based on the detected wrist location.
At the end of the fork, the system then makes the join
transition to redraw the newly processed contour again; this
newly drawn contour will then be displayed on the
secondary picture box available on the main GUI. In the next
activity, the system executes the mouse function, in which,
all the previously derived features will be utilized and
interpreted as mouse commands. The system then loops, like
the first prototype, until the end of the video file, or in the
case of a web camera capture, the user stops the system.

3) Prototype 3

The third prototype, also the final prototype of the system
will finally integrated with two more functionalities, which

2188

are recognition of few letter gestures in ‘Sign’ mode and
simple command execution based on gesture recognized in
‘Sign’ mode. The letter gestures that will be recognized by
the system are based on Malaysian manual alphabet sign.
Gestures which required movements are not within the
specifications, only static gestures, or rather, postures will be
recognized by the system. In `Sign' mode, the static gesture
of the hand is captured and classified as one of the following
signs known to the system. This classification is then
displayed to the user, as a confirmation that the gesture is
successfully recognized.

This is a proof-of-concept feature that gesture
classification can be interpreted by the system without any
additional equipment outfitting, therefore, allowing natural
gestures to be used as input commands. Subsequently, the
detected and classified gesture [32] will then be interpreted
by the computer as a specified command to execute. Fig. 11
shows the user interface for Prototype 3.

Fig. 11 User interface for Prototype 3.

One main difference of the third prototype with the

second prototype is that after the contour is redrawn for the
second time, and the hand features, properly extracted, the
system now detects which mode it is currently running in,
either ‘Mouse’ or ‘Sign’, and goes through the appropriate
activity. Note that the design of the user interface of the
system is similar in general, with each subsequent user
interface of the prototype having additional interfaces in
relation to the added functionalities to the prototype.

The graphical user interface (GUI) is made to be simple in
order to promote user friendliness. In addition to that, items
of relevant functionalities or interests are grouped together
within the same container. The main video frame is located
within the video container, while the additional container has
further information pertaining to the feature extraction done
by the system. The control container groups all of the control
of the system together, which are the start and stop buttons,
labeled accordingly. This promotes predictability of the
system. These buttons are not miniature in design, however,
they are labeled clearly in directly correlation with their
respective functions. Each item on the toolbar is labeled
clearly in the font size of which the developer decided is an
appropriate compromise between visibility and presentation.

Further options are accessible to the user via the
menustrip toolbar located on the top of the window of the
system. The design of the menustrip toolbar is very much

similar to many other windows application systems, as it is
with the grouping of the functions. This adheres to the
familiarity and consistency concept of user interface design
principle. In the final prototype, a status strip is provided at
the bottom of the system. This is to provide reassurance to
the user on the status of the system. As the initialization of
the system in Sign mode may take a moment, due to the fact
that sampling has to be done for the classifier, this is to
ensure that the user knows that the system has acknowledge
the user’s action to start the system and is currently
undergoing processing.

Finally, the gesture-based hand recognition system has an
input dialog that is used to take in the input mode of the
system. Source feed can either come from a web camera
connected to the computer, or a valid video file. In most
cases, the video file input is served for testing and
presentation purposes. The main source feed, the web
camera is the default option of input. As per dialogue
initiative design rule, this was implemented for the input
option due to the fact that video mode requires user to
provide a valid path to the video file which will be used by
the system. Fig. 12 shows user interface for input dialog.

Fig. 12 User interface for input dialog.

III. RESULTS AND DISCUSSIONS

The gesture-based hand recognition system was evaluated
in terms of its usability and performance through five levels
of testing at the level of unit, integration, system, recognition
accuracy, and user acceptance.

A. System Testing

The strategy for system testing endeavors thoroughly
testing the system, starting from the units, then to modules
and finally the entire system itself. Fig. 13 shows the process
flow.

Fig. 13 Process flow for testing.

Based on the figure, at the first level of testing, unit

testing was performed. This is to ensure that every unit is
error-free. If a unit fails in its test case, the error details are
documented and at the end of the unit testing, these errors
will be looked into by the developer and promptly fixed. The
entire test case was run again to ensure that the applied fix
did not inadvertently caused error in other units. Next,

2189

integration testing was of separate units, hence they must be
integrated together in conjunction to fulfill a specific task.
This test is to ensure that the units that make up a module
works appropriately, resulting the desired output.

Finally, system testing involved the system as a whole.
This level of testing ensures that the modules works together
to produce desirable outputs. Furthermore, testing at this
stage ensures that the requirement specifications are met.
Due to the limitation of space, the test cases and test results
are not included in this paper. Basically, the test cases were
into three categories; General, Mouse Mode and Sign Mode.
The general test cases deal with the non-mode specific
operations of the system. The other two categories deal with
the operations of the system under the two modes as their
name implies.

The test results of unit, integration, system testing as well
as user acceptance testing produced favorable results. The
testing for recognition accuracy revealed that the system's
outstanding accuracy in classifying the gestures made under
an optimum environment. In addition, the system does not
only satisfy all of the functional and non-functional
requirements, but was also generally well received by the
users during the acceptance testing. Furthermore, in addition
to working and performing its tasks, the system does so
efficiently and without inconsistencies due to good design
patterns, suitable algorithms and programming paradigm.

Next, a special testing will be done, in order to determine
the accuracy of the system in terms of posture Next, a
special testing will be done, in order to determine the
accuracy of the system in terms of posture recognition. At
the end, a user acceptance testing will be held.

B. Recognition Accuracy

In testing the performance of the gesture recognition
system, the system was evaluated under the ‘Sign’ mode.
One of the non-functional requirements of the system is that
the accuracy of the gesture recognition must be reasonably
high under optimum lighting. Given four different gestures
labeled from A to D, the number of correct prediction was
recorded. Fig. 14 shows the gestures used to measure
accuracy.

Fig. 14 Gesture A to D (Left to Right).

Finally, Table 2 shows the results for the recognition
accuracy testing. The testing produced excellent results. The
biggest contribution factors were due to the system operating
under the optimum lighting and the background environment
contrasted skin color, instead of resembling it. Regardless of
which, this testing shows that the system has in fact satisfied
the specified non-functional requirement.

TABLE II
RESULTS FOR RECOGNITION ACCURACY.

Gestures Correct Classification Accuracy

A 9/10 90%
B 9/10 90%
C 8/10 80%
D 9/10 90%

C. User Testing

Finally, user acceptance testing was carried out to ensure
all user requirements are met by the system. This testing was
also designed to collect users’ feedback on both functional
and non-functional requirements of the system. Eight
participants were randomly selected and asked to perform
specific actions and their execution time and error rate were
recorded. The test plan was divided into two sections;
procedures dealing with the ‘Mouse’ mode 3 and the ‘Sign’
mode. The average results are shown in Table 3 and Table 4.

Lastly, comments on various scenarios were compiled.
Users were asked to comment on the system’s ability to
select color spaces, to enable/disable background
segmentation, to show/hide features, to display of video
feedback via webcam, and to recognize gestures provided.
Also, the user were asked to give general impression on the
‘Mouse’ mode, ‘Sign’ mode, as well as the overall response
time. The responses from users were positive, where they
noted that the controls are interesting, intuitive and natural
as well as free from third party equipment.

TABLE III

RESULTS FOR USER TESTING IN ‘M OUSE’ MODE.

Procedure Optimal
Execution Time

Optimal Error
Rate (min)

Execution Time
(sec)

Error Rate Result

Create new folder < 1 < 5 20 1 Satisfactory
Delete new folder < 1 < 5 45 4 Satisfactory
Open start menu < 1 < 5 10 0 Satisfactory
Close start menu < 1 < 5 5 0 Satisfactory
Open browser < 1 < 5 20 1 Satisfactory
Navigate to Google under booksmarks < 1 < 5 40 3 Satisfactory
Close browser < 1 < 5 30 2 Satisfactory
Open sample picture < 1 < 5 32 2 Satisfactory
Zoom in picture < 1 < 5 10 0 Satisfactory
Zoom out picture < 1 < 5 10 1 Satisfactory
Stop System < 1 < 5 5 0 Satisfactory

2190

TABLE IV
RESULTS FOR USER TESTING IN ‘SIGN’ MODE.

Procedure Optimal
Execution Time

Optimal Error
Rate (min)

Execution Time
(sec)

Error Rate Result

Enter full screen presentation mode in Microsoft
power point presentation

< 10 < 5 5 1 Satisfactory

Navigate through sample presentation frontwards
until the end

< 60 < 10 40 2 Satisfactory

Navigate through sample presentation backwards
until the start

< 60 < 10 42 2 Satisfactory

Escape from full screen presentation mode < 10 < 5 5 0 Satisfactory

IV. CONCLUSION

The implementation of pseudo vision into the system
provided insight as to how difficult and unforgiving the field
is, with plenty variables and factors to take into account, and
a large cache of algorithms to choose from, all of which has
its specific usages and disadvantages to contemplate on.
Efficiency, maintainability, upgradability, reusability and
such are all highly dependent on the design of the system.
Modularity is a highly sought after characteristic in a
system, as it promotes low coupling which in turn results in
all of the aforementioned benefits.

Each and every tool or technique used has been properly
justified accordingly in regards to the requirements of the
system, even the object oriented paradigm. Considering the
complexity of the system, both in functionality and
technicality, having the ability to divide the system into
modules and subtasks helped tremendously. With the
introduction of modularity and loose coupling, future
updates and enhancements can be launched easily.

In conclusion, conventional input devices have indeed
served humans well, however, as technology advances so
does the need for a better interfacing. Current conventional
input devices will continue to bottleneck this advancement
in technology; therefore, a better alternative input technique
should be looked into, in particularly, gesture-based input
technique which offers user a more natural and intuitive
control.

Although many users has voiced that the system is still
not mature and ready to stand on its own as a well
functional input device, but it is well on its way there.
Despite its performance, this gesture-based recognition
system can be further improved with the following
enhancements.

• Depth. Instead of merely 2D processing, 3D processing
can be implemented into the system for a more robust
level of feature extraction and accurate representation of
contour found. By introducing distance into the
equation, many of image processing algorithms can be
further implemented into the system; many different
features of the hand can be further derived with the
introduction of depth. Due to the design of the system, a
depth processing module can be added into the design of
the system without having too much of an effect on the
entire system.

• Additional mouse mode – different features for different
functions. At the moment, only one method of
implementation of the mouse mode is made available. In
order to further comply with the multiple situations that
a user must face during interaction with a computer,

additional mouse modes can be implemented in order to
introduce different feature-functions relations. Taking
the design of the system into consideration, this
additional support can be easily done by attaching new
subclasses onto the Mouse class, hence making
upgradability simple and easy.

• Additional support for sign mode. As with the mouse
mode, the sign mode is currently tailor suited only for
Microsoft Power Point. Additional support for different
software given can be added easily by attaching new
subclasses to the Command class. The ability to
customize the commands each gesture sends can also be
done to further increase the flexibility of the system.

• Better background extraction algorithm. The
background subtraction algorithm used is currently
sufficient for the requirements of the system. However,
the algorithm can be made better with the inclusion of
shadow removal and contour reconstruction. These
inclusions will further preserve the authenticity of the
contour.

In the future, given time and advancement in

technologies, computer vision can be incorporated
seamlessly into the interaction between man and machine,
bridging the gulf of execution gap that even today, exists.

ACKNOWLEDGMENT

This paper has been supported in partial by Asia Pacific
University Malaysia.

REFERENCES
[1] Nicu Sebe, Michael S Lew, and Thomas S Huang. The state-of-the-

art in human-computer interaction. In International Workshop on
Computer Vision in Human-Computer Interaction, pp. 1–6, 2004.

[2] Don Norman. The design of everyday things: Revised and expanded
edition. Basic Books, 2013.

[3] Edwin L Hutchins, James D Hollan, and Donald A Norman. Direct
manipulation interfaces. Human–Computer Interaction, 1(4):311–
338, 1985.

[4] Robert JK Jacob. Human-computer interaction: input devices. ACM
Computing Surveys (CSUR), 28(1):177–179, 1996.

[5] On the horizon: A new remote catheter manipulation system, 2018.
[6] NP Sheehy and AJ Chapman. Nonverbal behavior at the human-

computer interface. International Reviews of Ergonomics, 1:159–172,
1987.

[7] Alexander I Rudnicky, Alexander G Hauptmann, and Kai-Fu Lee.
Survey of current speech technology. Communications of the ACM,
37(3):52–57, 1994.

[8] Russell Beale and ADN Edwards. Gestures and neural networks in
human computer interaction. In Neural Nets in Human-Computer
Interaction, IEE Colloquium on, pp. 5–1. IET, 2018.

[9] D Ward. Dasher with an eye-tracker, 2015.
[10] Clare-Marie Karat, Christine Halverson, Daniel Horn, and John Karat.

Patterns of entry and correction in large vocabulary continuous

2191

speech recognition systems. In Proceedings of the SIGCHI
conference on Human Factors in Computing Systems, pp. 568–575.
ACM, 1999.

[11] I Scott MacKenzie, Abigail Sellen, and William A S Buxton. A
comparison nof input devices in element pointing and dragging tasks.
In Proceedings of the SIGCHI conference on Human factors in
computing systems, pp.161–166. ACM, 1991.

[12] Alexander G Hauptmann. Speech and gestures for graphic image
manipulation. In ACM SIGCHI Bulletin, volume 20, pp. 241–245.
ACM, 1989.

[13] Dean Rubine. Specifying gestures by example, volume 25. ACM,
1991.

[14] Ramesh M Kagalkar and SV Gumaste. Detail study for sign
language recognization techniques. Digital Image Processing,
8(3):65–69, 2016.

[15] Kouichi Murakami and Hitomi Taguchi. Gesture recognition using
recurrent neural networks. In Proceedings of the SIGCHI conference
on Human factors in computing systems, pp. 237–242, 1991.

[16] Lam T Phi, Hung D Nguyen, TT Quyen Bui, and Thang T Vu. A
glove based gesture recognition system for Z Vietnamese sign
language. In Control, Automation and Systems (ICCAS), 15th
International Conference on, pp. 1555–1559, 2015.

[17] HS Nagendraswamy, BM Chethana Kumara, and R Lekha Chinmayi.
Gist descriptors for sign language recognition: an approach based
on symbolic representation. In International Conference on Mining
Intelligence and Knowledge Exploration, pp. 103–114. Springer,
2015.

[18] Sidney Fels and Geoffrey E Hinton. Building adaptive interfaces
with neural networks: The glove-talk pilot study. In Proceedings of
the IFIPTC13 Third International Conference on Human-Computer
Interaction, pp. 683–688, 1990.

[19] Philip J Mercurio, Thomas Erickson, D Diaper, D Gilmore, G
Cockton, and B Shackel. Interactive scientific visualization: An
assessment of a virtual reality system. In INTERACT, pp. 741–745,
1990.

[20] Thomas G Zimmerman, Jaron Lanier, Chuck Blanchard, Steve
Bryson, and Young Harvill. A hand gesture interface device. In ACM
SIGCHI Bulletin, volume 18, pp. 189–192. ACM, 1987.

[21] Andrew D Wilson and Edward Cutrell. Flowmouse: A computer
vision-based pointing and gesture input device. In INTERACT, vol.
5, pp.565–578, 2005.

[22] Randy Pausch. Virtual reality on five dollars a day. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems,
pp. 265–270, 1991.

[23] Eric J Townsend. Mattel Power Glove FAQ, 1993.
[24] Jane J Stephan and Sana’a Khudayer. Gesture recognition for human

computer interaction (HCI). Int. J. Adv. Comp. Techn., 2(4):30–35,
2010.

[25] Zhang Lei, Zhang Xue-fei, and Liu Yin-ping. Research of the real-
time detection of traffic flow based on open CV. In Computer Science
and Software Engineering, International Conference on, volume 2, pp.
870–873. IEEE, 2008.

[26] James Kerr and Richard Hunter. Inside RAD: How to build fully
functional computer systems in 90 days or less. McGraw-Hill, Inc.,
1994.

[27] Li, C., Xie, C., Zhang, B., Chen, C. and Han, J., 2018. Deep Fisher
discriminant learning for mobile hand gesture recognition. Pattern
Recognition, 77, pp.276-288.

[28] Wu, Y., Jiang, D., Duan, J., Liu, X., Bayford, R. and Demosthenous,
A., 2018, May. Towards a High Accuracy Wearable Hand Gesture
Recognition System Using EIT. In Circuits and Systems (ISCAS),
2018 IEEE International Symposium on (pp. 1-4). IEEE.

[29] Núñez, J.C., Cabido, R., Pantrigo, J.J., Montemayor, A.S. and Vélez,
J.F., 2018. Convolutional Neural Networks and Long Short-Term
Memory for skeleton-based human activity and hand gesture
recognition. Pattern Recognition, 76, pp.80-94.

[30] Patel, N.A. and Patel, S.J., 2018. A Survey On Hand Gesture
Recognition System For Human Computer Interaction (HCI).

[31] Antoshchuk, S., Kovalenko, M. and Sieck, J., 2018. Gesture
Recognition-Based Human–Computer Interaction Interface for
Multimedia Applications. In Digitisation of Culture: Namibian and
International Perspectives (pp. 269-286). Springer, Singapore.

[32] Rafii, A., Gokturk, S.B., Tomasi, C. and Sürücü, F., Microsoft
Technology Licensing LLC, 2018. Gesture recognition system using
depth perceptive sensors. U.S. Patent 9,959,463.

2192

