

Vol.7 (2017) No. 6

ISSN: 2088-5334

Design and Implementation of a Software System for High Level
Business Rules

Deepak Kumar Sharma#, Naveen Prakash*, Manish Mahajan+ Dheerendra Singh^
#Research Scholar, Department of Computer Science and Engineering, IKG PTU, Kapurthala, Punjab, India.

Email: masterdeepak12@gmail.com

*ICLC, 21/4, S. Bhagat Singh Marg, New Delhi 110001, India,

Email: praknav@hotmail.com

 + Department of Computer Science and Engineering, CGC, Landran, Chandigarh, India

Emai: manishmahajan4u@gmail.com

^Department of Computer Science and Engineering, CCET, Chandigarh, India,

Email: professordsingh@gmail.com

Abstract— The Business Rules Group has highlighted the importance of the ownership of business rules by business people. This calls
for a business oriented view of business rules. Accordingly, we propose to introduce a Business Layer on top of the CIM layer of
business rules that considers the essential nature of business rules, their properties and structure as well as inter-relationships
between business rules. We propose a model that inhabits the business layer. This model provides (a) flat and hierarchical business
rules, (b) business rules that operate on the state of an enterprise and cause state changes (c) temporal constraints and specification of
long running and instantaneous business rules. Further, we develop a Business Rule Management system(BRMS) that, besides basic
CRUD capability, allows construction of business rules from given ones. Our proposals are exemplified with a subset of the business
rules of a Library.

Keywords— business rule; business rule model; business motivation model; model driven architecture; temporal operator.

I. INTRODUCTION

Business modeling supports the discovery of system
requirements by helping the analysis team to perceive the
wider business context in which the system To-Be will
operate. Out of the six scenarios of business modelling
identified by Kruchten [1] our interest is in the domain-
modelling scenario, that is, in performing business
modelling during domain analysis. Business modelling can
be considered to yield high-level requirements that are
elaborated to yield system requirements.

Now, according to the object-oriented approach of [2], [3]
business use case diagrams, business activity diagrams, and
state machines may be used in business modeling. During
business modeling, the analyst may come across business
rules or constraints on how functions must be performed by
the system. These are treated as annotations to use cases and
as ‘guard conditions’ in activity diagrams and state machines.

Evidently, this approach emphasizes use cases, activity
diagrams and state machines while treating business rules as
secondary to these.

There is however another view [4], [5], [6] that gives
relatively greater importance to business rules and treats
these as providing an expression of system requirements.
This perspective is exemplified by the Business Rules
Manifesto [6], the Business Motivation Model [7] and
SBVR [8]. The Business Rules Manifesto issues a call to
give primacy to business rules. Articles 1.1 and 1.2 of the
Manifesto say, “Rules are first-class citizens of the
requirements world” and “Rules are essential for, and a
discrete part of, business models and technology models”
respectively. Putting these together, we conclude that the
Business Rules Manifesto would be satisfied if we could
develop a business oriented business rules model that treats a
business rule as a first-class concept of the model. The
Business Motivation Model treats business rules as

2203

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal on Advanced Science, Engineering and Information Technology

https://core.ac.uk/display/296922178?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

directives and leaves it to SBVR to define them. SBVR
expresses rues in the extended first order logic and is
position at the CIM layer of OMG MDA.

However, the question remains as to whether a CIM level
proposal is the one that business people would be
comfortable with. To address this, we looked at business
rules as organized in the three-layered architecture of MDA
[9], [7] shown in Fig.1. Business rules at the CIM layer are
an abstraction of business rules, RuleML [10], R2ML [11],
etc. of the PIM layer. However, the three proposals of the
CIM layer of Fig. 1 do not perform an ab-initio examination
of business rules and do not ask questions like

• What is the essential nature of business rules in a
business?

• What is their structure?
• What are their properties?
• What are the inter-relationships between business

rules?
We need a model that should answer these question and

reflects business rules as they really are. The aim of our
work is to propose a model for business rules from the
business perspective and develop a technique to arrive at
system requirements from business rules of this model.
In this paper, we address the first part, that of
developing a model. We refer to this model as Business
Rules Oriented Business Model (BROBM).

Fig. 1 Business Rules in MDA

Evidently, we need to investigate the world of business to

provide us our model. It is for this reason that we propose a
fourth layer, the business layer, on top of the CIM layer
where we address these questions. Further, we develop a
BRMS, a business rule management system, for business
rules expressed in this model.

A. Desiderata of BROBM

Now, as mentioned earlier, we need to look into the world
of business to obtain the concepts of our model. For this, we
revisit the Business Motivation Model to extract the main
concepts around business rules. This provides to us a list of
desired features that business rules should have from the
business perspective.

The Business Motivation Model, BMM [12] was
developed from the business perspective. It “provides a
scheme or structure for developing, communicating, and
managing business plans in an organized manner”. BMM is
organized around a set of business concepts and articulates
the inter-relationships between these.

BMM says that a business rule is a directive that
guides/governs a course of action. A course of action may

enable another course of action and a business rule governs
this ‘enabling’ as well [13], [14]. We draw two conclusions
from this:

The structure of courses of action has a strong bearing on
the structure of business rules. If the former is ‘flat', non-
hierarchical in nature then the business rule that governs it is
also flat. On the other hand, if a course of action is complex,
hierarchical, then its business rule is complex and must have
business rule components that govern the component courses
of action of the complex course of action.

Enabling of a course of action by another is a source of
relationships between business rules. That is, the business
rule for enabling establishes a relationship between the
business rule of the enabled course of action and the business
rule of the course of action that enables it.

It follows that BROBM must have features for structuring
business rules: complex rules would be defined from simpler
component rules until atomic rules are reached. Additionally,
we need to represent the relationship, enables, between
business rules.

We can infer the third requirement of the business layer
from the BMM view that an End can be expressed in terms of
states. Thus, BMM says that a Vision is about the ‘future
state’ of a business. Similarly, an intended result (goal or
objective) is a state that is to be brought about or sustained.
Changes in state are the result of courses of action. Thus,
state changes are governed/guided by business rules and it is
therefore possible to relate business rules to state changes.
Evidently, we need to model states, state changes and their
relationship with business rules.

The fourth and last requirement of the business layer is
that business layers have temporal properties. We obtain this
from the notion of the objective of BMM. An objective is
SMART, Specific, Measurable, Achievable, Relevant and
Time bound. If the intended result is time bound, then the
course of action that produces it must be time bound and
therefore, the business rule that governs the course of action
must govern this punctuality. Evidently, we need to specify
the temporal properties of business rules.

II. MATERIAL AND METHOD

In this section, we present our rule model that meets these
four identified requirements then we have presented temporal
property of business rule and their extension in first order
based rule representation.

The business rule model presented in Fig. 2 captures the
four requirements of BROBM discussed earlier. Accordingly,
this section is organized in four sub-sections, (i) Business
Rule Structure, (ii) Relationships across Rules, (iii) the notion
of state and its relationship to a business rule and (iv)
temporal properties of business rules.

A. Business Rule Structure

 The basic structure of a business rule is in two parts a)
what is to be governed and b) how it is governed.
Consequently, we define a business rule (see Fig. 2) as an
aggregate of antecedent and consequent, in which the ‘how’
aspect is represented in the antecedent and the ‘what’ aspect
in the consequent of the rule. The figure shows that a
consequent is a business act. A business act is an active
component that is executable. As the figure shows, there are

2204

two kinds of business acts, atomic and complex. An atomic
business act cannot be decomposed further. The figure shows
that a complex business act is composed of one or more
business acts. For example, Late_return (book) is a business
act built over the business acts Return book and Levy fine
respectively.

An antecedent may be a situation that is a state of the
enterprise, a business act or any combination of these formed
using the Boolean operators AND, OR, NOT. When the
situation is a state, we will say that the antecedent is a
condition upon the satisfaction of which the consequent is
enacted. When it is a business act then its enactment enables
another business function. An example of a condition is the
rule in which the consequent Issue book is governed by the
antecedent “the requestor is a registered borrower” giving
rise to the rule <the requestor is a registered borrower, Issue
book>. An example of enablement is <Register requestor,
Deregister requestor>, that is the enactment of Register
enables the enactment of Deregister.

Fig.2. The Business Rule Model

B. The Notion of State

Now, consider the notion of a state. A state can be simple,
that cannot be decomposed into simpler states, and complex,
one that is composed of other simpler states. In other words, a
state is complex if it uses conjunction or disjunction; it is
simple otherwise.

When enacted, a business rule changes the state of the
enterprise as shown by the relationship, changes, in the
figure. The cardinality of this relationship says that the state
of the enterprise can be changed by more than one business
rule but a business rule changes only one (simple or complex)
state. For example, the state, book availability, can be
changed by two business rules for issuing a book (availability
 issued) and returning a book (issuedavailable)
respectively.

When the enterprise is in a state, s, then it can be forced
out of s by enacting one or more business rules. This ‘forcing
out’ may be

• Constrained: Here the forcing out is subject to an exit
condition that specifies a limit of occupancy of the
state. This is captured in the attribute, State Exit of
State of Fig. 2. For example, let it be that a book can

be issued for up to 10 days only. That is, when the
issue rule changes the state of book from available to
issued, then the State Exit should be 10 days. This
says that the book must be forced move out of state,
not available, within 10 days. We capture constrained
State Exit using UNTIL [8] for example UNTIL 10
days. The formal representation of UNTIL is
presented in section 3.

• Unconstrained: This is the case when State Exit is
unspecified. It is possible for the state never to be
‘forced out’. For example, given that a book is in the
state, available, it is possible that the book may never
be issued and remains available.

The business rules that can take the enterprise out of a
state is modeled by the relationship, suggests, shown in Fig.
2. It is so named because s suggests the several business rules
that can apply to it. Again, there is a 1: N relationship
between state and business rule. Suggests is the inverse of the
relationship, brings, which says that a business rules brings
the business into a state.

We illustrate the foregoing by considering a small example
from a library system as follows. The set of business rules, B
is B = {Issue, Normal return, Late return, Overdue rule}

Issue is for issuing books; normal return is for those cases
in which the book is returned before the due date has expired;
the Overdue rule deals with books not returned by the due
date; and Late return is for processing books returned after
the due date.

The set of state S for books is

S = {available, issued, overdue}

The relationship suggests is represented in Table 1.

TABLE I
THE SUGGESTS RELATIONSHIP

State Suggested Rule
Available Issue book
Issued Normal return, overdue rule
Overdue Late return rule

That is, if a book is available then the only applicable
rules is Issue; if ‘issued’ then the applicable rules are normal
return rule and overdue rule; if it is in overdue state then the
applicable rule is the late return rule. One interpretation of
Table 1 is as a state transition diagram as given in Fig. 3.

Fig. 3. State Diagram of Book of Library

We can use relationship, suggests, in a number of ways as

follows:

2205

1) Discovering new rules and states: Analysis of the
states of the relationship can reveal new rules. For example,
in Table 1, when the book is available then it can be sent for
binding. Thus, we get a book binding rule and the state
“being bound”. Similarly, if a book is issued, then it can also
be reserved by some borrower. This gives us the rule reserve
book and the state, reserved.

2) Inverse Rules: With each new state-business rule
relationship that is discovered, we ask the question, can the
state be reversed? This gives us new rules, for example
Reserve yields Free that undoes the reservation.

3) Consistency checking: We formulate two consistency
checks as follows:

• Rule consistency: Given the set of business rules B,
the set of suggested rules must be equal to B. Our
example shows consistency because the set of
suggested rules from Table 1 is {Issue book, normal
return, overdue rule, late return} is equal to the set of
business rules that we postulated in section 2.2.

• State Consistency: The set of states participating in
state changes must be equal to the set of states
participating in the relationship, suggests. Table 1
shows the latter set of states to be {available, issued,
overdue} and this set is equal to the set of states in
section 2.2 that participate in state changes. Thus, our
example is state consistent.

Notice that a consistent definition does not mean that the
enterprise is completely defined. In our example, the three
business rules define a consistent enterprise but rules for
indenting, stock taking etc. are missing.

C. Typology of Business Rules

Fig. 2 did not, for graphical reasons, present the different
types of business rules. This typology is shown in Fig. 4. As
seen there are three types of rules, atomic, complex, and
abstract [14]. Complex and abstract business rules are
constructed from simpler ones until atomic business rules are
reached. Complex business rules are themselves of three
kinds, aggregates, transitive rules, and bunches. We consider
each of these below.

Fig. 4. The Business Rule Typology

1) Atomic Business Rules: An atomic business rule is one
whose consequent is an atomic business act and whose
antecedent is simple. Examples of atomic business rule are
as follows:

< Borrower. Type= ‘Student’, Issue Book>

< Register Borrower, Issue Book>

In the first rule, the consequent, Issue Book, is an atomic
business act and its antecedent is a simple state. In the
second rule, the antecedent is simple; it is an atomic business
act. Further, its consequent, Issue Book, is also simple.

Complex Business Rules: A complex business rule is a
meaningful collection of simpler business rules. A complex
rule implies that the antecedent is complex or the consequent
is complex. There are three kinds (see Fig. 4) of complex
business rules, namely 1) Bunch, 2) Aggregate, and 3)
Transitive. The first two of these use a complex antecedent
to construct business rules having the same common
consequent. This consequent may be complex or atomic. The
third kind, transitive, must have a complex business act as its
consequent. Its antecedent may or may not be complex. We
consider each of these in turn.

• Bunch: A bunch is a named collection of business
rules having an antecedent on the same common state
variable and a common consequent. For example,
consider the collection of atomic business rules as
follows:

a) <Borrower.Type = ‘Student’, Register Borrower>
b) <Borrower.Type = ‘Teacher’, Register Borrower>
c) <Borrower.Type = ‘Administrator’, Register

Borrower>
The Bunch formed is as follows:

Bunch

< Borrower.Type = ‘Student’ OR Borrower.Type =
‘Faculty’ OR Borrower.Type = ‘Administrator’, Register
Borrower>

Of

<Borrower.Type = ‘Student’, Register Borrower>

<Borrower.Type = ‘Teacher’, Register Borrower>

<Borrower.Type = ‘Administrator’, Register Borrower>

• Aggregate: An Aggregate is a named collection of
business rules having an antecedent on different state
variables but with a common consequent. Notice the
difference with bunch where business rules having
antecedents on a common state variable. As an example
of aggregate, consider the two of atomic business rule as
follows:

a) <Borrower.Type= ‘Student’, Issue Material>
b) <Borrower.NoIssued<=10, Issue Material>
These rules may be aggregated as

Aggregate

< Borrower.Type= ‘Student’ AND Borrower.No Issued
<=10, Issue Material >

Of

<Borrower.Type= ‘Student’, Issue Material>

<Borrower.No Issued<=10, Issue Material >

• Transitive: It is possible to construct rules using the
notion of transitivity. There are two ways in which
transitivity arises, directly or indirectly. Direct

2206

transitivity occurs between business acts. Let A1, A2,
and A3 be business acts then the following holds by
transitivity:

<A1, A2> <A2, A3> implies <A1, A3>

The rule <A1, A3> is a complex business rule built over
two simpler ones. As an example, from our library,
consider the rules,

<Borrower.RegistrationRequest, Register
Borrower >
<Register Borrower, Provide Services>

We obtain the transitive business rule as follows.

<Borrower.RegistrationRequest, Provide Services>

transitivity on

<Borrower.RegistrationRequest, Register
Borrower >

<Register Borrower, Provide Services>
Indirect transitivity occurs when the consequent of one
rule affects the antecedent of another rule. Let us be
given the rule

a) < A1, A2>
Let A2 change the value of S, that we express as,
Affects (A2, S)

Let there be another rule as follows:

b) <S, A3>
Then we get, by indirect transitivity the rule <A1,
A3>. Taking an example from our library, let us be
given

Rule (a) calls for damaged material to be withdrawn.
This withdrawal changes the values of quantity on hand,
Q_O_H (rule b). Rule (c) reorders material if it falls
below the threshold level. By indirect transitivity we get

Transitive

a) <Material.Status= ’Damaged’, Reorder Material>

On

b) <Material.Status= ’Damage’, Withdraw Material>

Affects (Withdraw Material, Material.Q_O_H)

c) <Material.Q_O_H <= threshold, Reorder
Material>

2) Abstract: An abstract business rule is a
generalization of other business rules. This generalization
can occur when the antecedent and/or consequent of
business rules enter into generalization/specialization
relationship. Let us given two business rules

a) <Student Borrower.Status=’valid’ AND Student
Borrower.No issued < 4, Issue Book>

b) <Faculty Borrower.Status=’valid’ AND Faculty
Borrower.No issued < 10, Issue Book>

The antecedent of rule contains state variables Student
Borrower and Faculty Borrower. These can be generalized
into the state variable Borrower. As result, we obtain the
abstract rule

Abstraction

<Borrower.Status=’valid’ AND Borrower.No issued <
maximum, Issue Book>

generalization of

<Student Borrower.Status=’valid’ AND Student
Borrower.No issued < 4, Issue Book>

<Faculty Borrower.Status=’valid’ AND Faculty
Borrower.No issued < 10, Issue Book>

Similarly, there can be abstraction based on the
consequent. As an example, consider the abstract rule
constructed above.

a) <Borrower.Status=’valid’ AND
Borrower.Type= ’Faculty’, Issue Text Book>

b) <Borrower.Status=’valid’ AND
Borrower.Type= ’Faculty’, Issue Ref. Book>

The consequents Issue Text Book and Issue Reference
Book respectively may be generalized as a business act Issue
Book giving rise to the abstract business rule

Abstraction

<Borrower.Status=’valid’ AND Borrower.Type
= ’Faculty’, Issue Book>

generalization of

<Borrower.Status=’valid’ AND Borrower.Type
=’Faculty’, Issue Text Book>

<Borrower.Status=’valid’ AND Borrower.Type
=’Faculty’, Issue Ref. Book>

D. Temporal Properties of Business Rules

As mentioned in the Introduction, a business oriented
business rule may be time-bound. This implies that it needs
to be understood whether the rule must finish within a period
of time or it is instantaneous. In the former case, we need to
represent the fact that the business rule is long running.
Given that a business rule consists of an antecedent and
consequent part, there are two factors that we need to
examine, namely, (a) the temporal properties of antecedent
and consequent respectively, and (b) time interval between
antecedent and consequent. We consider each of these in
turn.

First notice that time can be viewed as point time or as
time interval. Let both the antecedent A and the consequent
C be time points. Since it is not possible for the consequent
to precede the antecedent, we get two cases (i) the
consequent succeeds the antecedent (row 1 of Table 2) and
(ii) both occur at the same time (row 2 of Table 2).

TABLE II
TEMPORAL NATURE OF BUSINESS RULE

Antecedent
(A)

Consequent (C) Condition Execution

Time point Time point Ct > At Long running
Time point Time point Ct = At Instantaneous
Time point Time interval Long duration
Time interval Time point Long duration
Time interval Time interval Long duration

In the former case, the business rule is long running

whereas in the latter case it is instantaneous. On the other
hand, it is possible that either A or C or both are spread over

2207

a time interval. Evidently, in these cases (see rows 3, 4, and
5 of Table 2) the business rule is long running.

Now consider the factor (b), that is, there is a time interval
between A and C. Even if it were the case that both A and C
are time points, the mere presence of this time interval says
that the business rule is long running.

Overall then, if we are to handle both our situations, we
need to do an analysis based on the start and end times of
antecedents and consequents. For example, if the start time
of a consequent is greater than the end time of its antecedent
then there is a time interval between the two that results in a
long running business rules.

Using the notion of ‘start time’ and ‘end time’ of time
intervals, Allen [15] proposed seven temporal relations,
namely, BEFORE, MEETS, EQUALS, STARTS, DURING,
OVERLAPS and FINISHES between intervals. These, along
with their conditions are shown in Table 3 where A and C
are two-time intervals. Note that the subscript, st, refers to
start time and the subscript, et, refers to the end time.

TABLE III
TEMPORAL RELATIONS WITH CONDITIONS

In the rest of this section, we consider these relations from

the point of view of business rules. As we will see, we need
to introduce a new relation to handle instantaneous business
rules and use only two out of these seven for long running
business rules.

1) Instantaneous Business Rule: First, notice that due to
the assumption that A and C are time intervals, the relations
of Table 3 cannot be used to express time point. This is
because for a time point Ast = Cst= Aet = Cet and these
relations are not defined to handle this condition.

Therefore, we need to explicitly introduce a relation,
INSTANT, for specifying an instantaneous business rule. We
define INSTANT as having two arguments, INSTANT (A, C)
which says that both A and C occur at the same moment, or
that, Ast = Cst= Aet = Cet.

2) Long Running Business Rule: Now, let us consider
long running business rules. There are two basic constraints
that such business rules should comply with. The first is that
the start time of a consequent cannot be earlier than the end
time of its antecedent. This is because the truth value of the
antecedent is known only when it completes.

 Constraint 1: Cst>=A et

Following from this constraint is the second constraint
that the start time of the consequent cannot be earlier than
the start time of its antecedent. We need this to reason about
the conditions of Table 2.

 Constraint 2: Ast<= Cst

Now, let us determine which of temporal relations of
Table 2 comply with these conditions. Let us look at the

third column of Table 4 that shows the relevance of temporal
relations to long running business rules.

The first row of the table says that the end time of the
antecedent is less than the start time of the consequent. This
satisfies constraints 1 and 2 above and results in a long
running business rule as shown in the third column of the
table. Similarly, the second row of the table says that the end
time of the antecedent is the same as the start time of the
consequent. This satisfies constraints 1 and 2. As before, this
results in a long running business rule. The third row of the
table satisfies the second constraint. It violates the first
constraint: since Aet is greater than Ast which is equal to Cst,
Aet is greater than Cst. Thus, the relation EQUALS of the
third row is not relevant to us.

TABLE IV
LONG RUNNING RULES

The fourth row meets the second constraint but not the

first. The same argument as for EQUALS applies. Thus,
STARTS is not relevant to business rules. The fifth row
violates condition (2); the sixth row violates condition (1)
and the seventh row violates condition (2).

Therefore, DURING, OVERLAPS, and FINISHES are also
not relevant to our analysis.

It can thus be seen that only two, BEFORE and MEETS
yield a long running business rule. To illustrate, let us apply
these to a business rule of a library:

If a borrower pays the library fee then the borrower is
provided library service.

The antecedent of this rule is Payment and the consequent
is service provision. We consider a few cases of the temporal
inter-relationships between these as shown in Table 5.

TABLE V
TEMPORAL RELATIONSHIPS BETWEEN THE ANTECEDENT AND CONSEQUENT

Antecedent Consequent Nature of Business
Rule

Payment is
instantaneous at
time, t

Service provision is
instantaneous at t

Instantaneous,
INSTANT(A, C)

Payment is
instantaneous at
time, t

Service provision is
instantaneous but after
a delay at t’ > t

Long running,
BEFORE(A, C)

Payment is over an
interval

Service provision is
instantaneous but starts
at end time of payment

Long running,
MEETS(A, C)

Payment is over an
interval

Service provision is
over an interval but
with a delay after end
time of payment

Long running,
BEFORE (A, C)

3) Representing UNTIL: The last temporal issue is that
of representing the UNTIL condition applicable the notion of

Temporal Relation Condition
A before C Aet < Cst
A meets C Aet = Cst
A equal C Ast=Cst and Aet=Cet

A starts C Ast=Cst and Aet<Cet
A during C Ast>Cst and Aet<Cet
A overlaps C Ast<Cst and Aet<Cet and Aet>Cst
A finishes C Ast>Cst and Aet=Cet

Temporal
Relation

Condition Business Rule

A before C Aet < Cst Long running
A meets C Aet = Cst Long running
A equal C Ast=Cst and Aet=Cet Violates condition 1

A starts C Ast=Cst and Aet<Cet Equivalent to MEETS
A during C Ast>Cst and Aet<Cet Violates condition 2
A overlaps C Ast<Cst and Aet<Cet

and Aet>Cst
Violates condition 1

A finishes C Ast>Cst and Aet=Cet Violates condition 1

2208

a state. For us, UNTIL can be represented using the
corresponding notion of UNTIL found in temporal logic [16].
This logic introduces operators like NEXT, UNTIL,
RELEASE, FINALLY etc. The difference between non-
temporal and temporal logic is that the latter allows the truth
value of its predicate to change whereas the former treats the
truth value as never changing. Therefore, temporal logic is
capable of dealing with dynamic situations. Temporal logic
defines UNTIL as a binary operator, for example, (x UNTIL
y). This says that x holds during the entire period when y
does not hold. The moment y holds, x ceases to be true.
Examples of this situation are: talk UNTIL lecture end,
alive UNTIL dead.

Notice that we use UNTIL as a way to express precisely
such a situation. Thus, we say, in our example of a library,
“issued UNTIL end semester”; “issued UNTIL returned”;
“issued UNTIL 10 days”. In information systems/software
engineering, a number of proposals exist that include a clock
in the system [17], [18]. This enables the modeler to treat
time as a state of the clock and we obtain the notion of a
temporal state. Thus, given x UNTIL y, x is a state whereas
y can be a temporal or a non-temporal state.

4) Packaging Rules

While constructing business rules, we need to group
business rules to make them intellectually manageable. Thus,
the set of business rules related to a business area may be
packaged together in one package. We refer to such a
package as a Rule package. For example, the collection of
business rule comprising Procurement may be packaged
together in the rule package Procurement Material. We allow
the possibility of rule packages being contained in other rule
packages. This constructs a hierarchy to rule packages. Thus,
two rule packages Procure Material and Maintain Material
may comprise rule package Manage Material.

In Fig. 5, Run Library is a rule package that consists of
three sub rule packages, Manage User, Inventory Control
and Staff Management. Manage User rule itself has two sub
rule packages Issue and Return. Issue and Return contain the
collection of business rules for issuing and returning material
from the library.

Fig. 5. Rule Package of Library

E. Representing Business Rules

In this section, we use the extended first order logic [19]
for our business rules. In this presentation, we have not
considered extensions like inclusion of modals that have
already been proposed.

Instead, we specifically consider extensions proposed by
us as follows:
• A new binary operator that captures the enablement of

one business act by another. This operator called
enables, is =>. It has two operands, both of which are
functions, for example, F1 => F2, which says that F1

enables F2. Enables is similar to implication can also be
represented as (NOT F1 OR F2). However, we propose
to use the => operator because of its clarity in
representing enablement.

• Five temporal predicates,
o MEETS,
o BEFORE and its inverse AFTER,
o INSTANT, and
o UNTIL.

As already explained all of these 2-place predicates.

The logic is defined as follows:

• A constant is an individual object in world
• A variable denotes an object in the world.
• A term is a constant or a variable.
• There are n-argument functions of the form G(x1, x2, ….

xn) where xi is a term. Functions reflect the mapping of
an individual object to another object.

• There are n-place predicates of the form P F(y1, y2, ….
yn) where yi is a term. A predicate reflects the mapping
of an individual to a truth value.

• An atom is a term, function, or predicate
• There are standard 2-place predicates EQ, NE, LT, GT,

GTE, and LTE corresponding to the six relational
operators.

• There are standard 2-place predicates namely BEFORE,
AFTER, MEET, INSTANT and UNTIL.

• If P and Q are atoms, then ~P, P V Q, P ^ Q, and P => Q
are atoms.

• Every atom is a formula. If F is a formula, then Q(F) is a
formula where Q can be the universal quantifier or the
existential quantifier.

• Brackets may be put as required.
• Nothing else is a formula.

EXAMPLE

• Books can be issued to Faculty members and
teaching assistants for a maximum of one semester.
((Type(borrower,’Faculty’) OR Type (borrower,
‘TeachingAssistants’)) AND (Name(material, ‘Book’))
=> (issue(material, borrower) UNTIL (1semester);
MEET(A,C)
• Faculty members and teaching assistants can be
issued a maximum of 10 books, Journals, magazines, or
Project Reports.
 ((Type (borrower,’Faculty’) OR Type (borrower,
‘TeachingAssistants’)) AND (Name (material,
‘Journals’) OR Name (material, ‘Journals’) OR
Name(material, ‘Magazines’) OR Name(material,
‘Project report’)) AND LTE (No.issue(borrower),10))
=> (issue(material, borrower); INSTANT(A,C)
• All non-teaching staff members can be issued 4
books for one semester.
(Type (borrower, ‘Non-teaching staff’)) AND
(Name(material, ’Book’) AND LTE
(No.issue(borrower),4)) => (issue(material, borrower)
UNTIL (1 semester)); MEET(A,C)

2209

III. RESULTS AND DISCUSSION

A. Business Rules Management System

We developed a Business Rules Management System,
BRMS, for our rules. The architecture of the BRMS is
shown in Fig. 6. The tool has three interfaces, namely, Rule
Editor, Vocabulary Editor and Package Editor. The
repository is organized in two parts, Vocabulary Repository
and Rule repository.

1) Rule Editor

The Rule Editor allows us to create, edit and delete
business rules that are available in the rule repository. The
basis of the Rule Editor is an atomic rule from which it
constructs other business rules, bunch, aggregate etc. For
this construction purpose, the Rule Editor uses axioms
specific to the rule being constructed.

Fig. 6. BRMS architecture

That is, for a bunch, it uses the bunch axiom, for an

aggregate it uses the aggregate axiom, and so on.

Fig. 7. Atomic Business Rule

The screen of atomic rule is shown in Fig. 7. The top of

the screen allows selection of an existing project or the
creation of a new project. Business rules of the project may
then be entered. The name of the business rule is entered in
the top of the screen. The body of business rule is in
Antecedent and Consequent sections of the screen. In the
former, a business rule is entered as either a Condition -
Business Act type or Business Act – Business Act type rule.

As shown in the figure, a business object is represented by
Entity and state of business object is represented by
Attribute. Similarly, Business act is represented as a
Business Function that may take business objects as a
parameter. The Consequent section of the screen consists of
the Business Function associated with the antecedent along
with its optional parameters.

The bottom of the screen deals with state and temporal
information the section entitled State Brings, captures the
change of state as a result of business rule execution
(discussed in 2.2). This is done in terms of the entities and
attributes that determine business objects. This section also
specifies the temporal constraint that applies. As discussed
in section 3 this means that the UNTIL has to be specified.

Lastly, on the left bottom of the screen, the temporal
relationship between antecedent and consequent is captured.
This is done by selecting one temporal operator from
BEFORE, MEETS and INSTANT defined in section 3. The
screen automatically fills in the temporal nature of rule
either Long Running or Instantaneous.

2) Package Editor

Notice that a package of rules, since it is a collection of
logically related business rules, does not have any temporal
property associated with it nor does it have a State or a State
Exit. A package is just a convenient grouping/classification
device for easy partitioning of related business rules.

The architecture of Fig. 6 shows a package editor. This
editor is responsible for creation and deletion packages as
well as modification of package content by inserting rule in a
package, deleting a rule from a package. Package
construction does not allow the modification of rules. Rule
modification is allowed in the rule editor as discussed above.
Any modification of a rule has implication on rule
construction.

The package editor operates in two modes: in the first
mode, business rules from the rule repository are displayed
and the user makes an appropriate selection of these to form
the package. In the second mode, the user can search the rule
repository to retrieve rules heaving specified values in the
antecedent or consequent. Selection from the retrieved rules
can then be made to form the package.

3) Vocabulary Editor and Builder (VEB)

This part of the architecture is used for the construction of
the vocabulary repository (shown in Fig. 6.). The vocabulary
consists of business objects used in the business rules along
with the respective states and business acts of business
objects.

VEB operates in two modes. In the first mode, the
business vocabulary can be managed through the vocabulary
editor for direct input by add, update and delete capacity as
shown in Fig 8. Once selection of the project is down (see
top of screen) the feature to create new entity or to add
attributes and associate business acts in existing entity is
available. For adding attributes, a choice is provided to add
new attributes or specify default values of the attribute. All
existing business acts and attributes as well as the added
ones are shown in their respective data grids of Fig 8.

In the second mode, VEB picks vocabulary from the rule
editor. When a new business rule is written in the rule editor,
the vocabulary that is not available in the vocabulary

2210

repository then is picked up by VEB and stored in this
repository. As a result, all new vocabulary is made available
in the vocabulary for future rule writing. As business expend
and its business entities increases, the business vocabulary is
also expended.

Fig. 8. Vocabulary Editor User Interface

B. Case Study

The foregoing business rule model was applied to the
business rules as given to us by the Library Committee of
the library of our Institute. We were given a total of 34
business rules covering issue of material (books, journals
etc.) by different types of borrowers; return and reservation
of library material; stock verification, handling of misplaced
material; and requisition to procure new material.

In order to provide a flavor, we consider 4 of these rules
related to the task of issuing library material to borrowers.
We now illustrate the rules by first given the English
statement that was provided to us.

Thereafter, we convert the rules into our form. We include
the state changes as well as the temporal conditions of each
rule.

Rule 1: Books can be issued to Faculty members and

teaching assistants for a maximum of one semester.
{
<((Borrower.BType= ‘Faculty Member’ OR
Borrower.BType= ‘Teaching Assistant’) AND
Material.Name=’Book’) , Issue Material >
State brings: Borrower. No issued +1
Material.Status=’issued’ UNTIL 1 semester on
Material.Name.

Temporal Relation: MEET
}
Notice that the consequent is a business act called Issue

Material. The state change includes raising the number of
books issued by one and changing the state of book from
available to not available. The temporal condition imposed is
that the material can be kept for one semester. This condition
is imposed on Material.Name and rule itself is long running
as issue is valid for 1 semester.

Rule 2: Print Journals/Magazines/Project report will be
issued for 9 days to faculty members and teaching assistants.

{
<(Material.Name = ‘Print Journal’ OR Material.Name
=’Magazine’ OR Material.Name = ‘Project Report’)

AND (Borrower.Btype = ‘Faculty’ OR
Borrower.BType= ‘Teaching assistant’), Issue
Material>

State brings:
Borrower. No issued +1
Material. Status=’ issued’ UNTIL 9 days on
Material.Name.

Temporal Relation: MEET
}

Rule 3: Students can be issued books from library for a

maximum period of 14 days during a semester.
 {
<(Borrower.Btype=’Student’ AND Material.Name
=‘Book’), Issue Material>
State brings:
Borrower. No issued +1
Material. Status= ‘issued’ UNTIL 14 days on
Material.Name

Temporal Relation: MEET
}

Rule 4: No material in the reference section of the

Library will be issued.
{
<(Material.type != ’Reference’) , Issue Material>
State change:
Material. Status= ‘issued’

Temporal Relation: MEET
}

C. Discussion and Related Work

At the outset, we would like to state that we are not aware
of any proposal that calls for the introduction of a business
layer on top of the CIM layer for business rules. However,
such proposals exist [20] in the area of business process
modeling,

 We have identified four essential requirements of
business layer:

• Structuring of Business rules
• Course of action enablement course of action
• Notion of state and state changes
• Temporal Property

The three proposals populating the CIM layer in Fig. 1, do
not provide for (I) and (II) above. In SBVR[8], facts are
passive elements which led [21] to introduce Activity Fact
Type to model business processes. However, factors to
integrated modeling of business rule with business process is
presented in his research work[22]. Since there is no notion
of an activity in SBVR, it is not possible to deal with courses
of actions. Similarly, RECON [23],[24] does not deal with
courses of action. Finally, ACE [25] in its ‘IF <condition>
THEN <consequent>’ form allows the condition and
consequent to be simple or composite sentences. A simple
sentence describes a situation that can be an event or a state.
Notice that the BMM notion of a course of action is different
from that of an ACE event. Whereas the former tells us what
is to be done in a business, the latter is a happening, a single
occurrence that is instantaneous. Thus, we see that the CIM
layer is unable to address the concerns of business modeling.

2211

A comparison of our proposals with those of SBVR, ACE
and RECON is presented in Table 6. The second column of
Table 5 contains the feature of our business rule model
whereas the other columns of Table 5 indicate whether or
not these are present in SBVR, ACE and RECON.

SBVR does not explicitly postulate the notion of a state
though it can be done through objectification in its logical
formulation. ACE explicitly deals with states but RECON is
silent on them. The second row of the table says that
temporal conditions are available in all proposals. The third
row of the table though there is no notion of business act as
operation/function in ACE, it explicitly deals with the notion
of an event.

SBVR again, does not explicitly allow for a business act
or an event. RECON associates operations with its verbs.
The fourth and fifth rows of the table show that whereas all
proposals have atomic business rules, no proposal other than
ours allows for business rules to be constructed from others.

TABLE VI
FEATURE ANALYSIS OF BUSINESS RULE MODEL

Business Rule Model SBVR ACE RECON
State No Yes No
Temporal Condition Yes YES Yes
Business Act No Event No
Atomic rule Yes Yes Yes
Complex rule No No No

Our business rule model provides for states, temporal

conditions on states, and business acts that cause state
changes. Business rules govern/direct the manner in which
state changes occur. We view business rules as simple and
complex. For the latter, we define business rules closure
based on the bunch, aggregate, transitive and abstract axioms.

IV. CONCLUSION

Our business oriented view of business rules is positioned
in the Model Driven Architecture of OMG as a Business
Layer sitting on top of the CIM layer. The business layer
details the essential nature of business rules, their structure,
their properties, and structural and temporal inter-
relationships between business rules. The model inhabiting
this new layer provides (a) flat and hierarchical business
rules, (b) business rules that operate on the state of an
enterprise and cause state changes, (c) temporal properties of
business rules for instantaneous and long running business
rules. The BRMS contains facilities of creating, updating
and deleting rules along with temporal constraints and state
information. Logically related rules may be group in to
different packages. The next part of our work is to build
computer based application systems from given business
orient business rules. This requires the conversion of
business oriented business rules to a suitable implementation.
We are currently developing a strategy and mechanism for
this conversion.

REFERENCES
[1] Kruchten P.,(2003). The Rational Unified Process: An Introduction,

Addison-Wesley Professional, Boston, MA, USA.

[2] OMG.(2015). UML 2.5 [Online]. Available:
http://www.omg.org/spec/UML/2.5/

[3] Wazlawick R.,(2014). Object-Oriented Analysis and Design for
Information Systems: Modeling with UML, OCL, and IFML (1st ed.).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[4] Gladys S. Lam W, (2006). “Business Rules vs. Business
Requirements, Business Rules Journal”, Vol. 7, No. 5.

[5] Kardasis P., Loucopoulos P.,(2004). “Expressing and organizing
business rules”, Information and Software Technology 46 701–718.

[6] Ross R. G. (ed.), Business Rules Group, Business Rules Manifesto
The Principles of Rule Independence, Version 2.0,
www.BusinessRulesGroup.org.

[7] Mohammed A. E.,Sahibuddin S., Ibrahim R,. (2015). “Model driven
architecture a review of current literature”, Journal of Theoretical and
Applied Information Technology, Little Lion Scientific, Vol.59,pp.
122-127.

[8] OMG.(2015). Semantics of Business Vocabulary and Business Rules
(SBVR), v1.3 [Online]. Available:
http://www.omg.org/spec/SBVR/1.3

[9] Gaweł B, Skalna I, (2014). “Model driven architecture and
classification of Business rules modelling languages”, Advance in
Business ICT, Springer, pp 123-131.

[10] Boley H., (2016). “The RuleML Knowledge-Interoperation Hub”
RuleML 2016. Lecture Notes in Computer Science, Springer, vol
9718.

[11] Wagner G, Giurca A, Lukichev S, (2006). R2ML - The REWERSE I1
Rule Markup Language. [Online]. Available: http://www.w3.org
/2005/rules/wg/wiki/R2ML.html

[12] OMG.(2012). Business Motivation Model, v1.2 [Online]. Available:
http://www.omg.org/spec/BMM/

[13] Prakash N., Deepak S., Deepika, Singh D, (2013). “A Framework for
Business Rules”, 5th International Workshop on Requirements,
Intentions and Goals in Conceptual Modeling -36th International
Conference on Conceptual Modeling, HongKong.

[14] Prakash N, Sharma D. K., Singh D, (2014). “Business rule for
Business Governance”, 16th International conference on Enterprise
Information system, Proceeding in LNBIP Springer, Portugal.

[15] Allen J. F., (1983). “Maintaining knowledge about temporal intervals,
Commun”. ACM, vol. 26, no. 11, pp. 832–843.

[16] Goranko, Valentin and Galton A., (2015) Temporal Logic The
Stanford Encyclopedia of Philosophy. [Online]. Available:
http://plato.stanford.edu /archives/sum2015/entries/logic-temporal

[17] Hasegawa T.,Fukazawa Y., (2009). “Model Checking by Generating
Observers from an Interface Specification Between Components,
Information Systems: Modeling”, Development, and Integration
series, Lecture Notes in Business Information Processing, Vol. 20, pp
526-538.

[18] Geiger M.,Harrer S., Lenhard J.,Wirtz G.,(2016), "On the Evolution of
BPMN 2.0 Support and Implementation”,IEEE Symposium on
Service-Oriented System Engineering (SOSE), Oxford, pp. 101-110.

[19] Ross R. G. (ed.), Business Rules Group, Business Rules Manifesto
The Principles of Rule Independence, Version 2.0,
www.BusinessRulesGroup.org

[20] Sheridan J, Fouad A and Phalp K, (2008). “Extending the Model
Driven Architecture with a pre-CIM level”, 1st International
Workshop on Business Support for MDA ,Switzerland.

[21] Steen B.,Pires L.F and Iacob M.E.(2010). "Automatic Generation of
Optimal Business Processes from Business Rules," 14th IEEE
International Enterprise Distributed Object Computing Conference
Workshops, Vitoria, pp. 117-126.

[22] Wang W., Indulska M., Sadiq S. (2016). “To Integrate or Not to
Integrate – The Business Rules Question”, Advanced Information
Systems Engineering. CAiSE 2016. Lecture Notes in Computer
Science, Springer, vol 9694.

[23] Barkmeyer Ed, Mattas A., (2012). A Restricted English for
Constructing Ontologies (RECON).[Online]. Available:
http://dx.doi.org /10.6028/NIST.IR.7868

[24] Barkmeyer Ed, Neuhaus F, (2013). “RECON - A Controlled English
for Business Rules”. RuleML2013@Human Language Technology,
7th International Rule Challenge, Seattle.

[25] Norbert E, Fuchs, Schwertel U, Schwitter R., (2003). Attempto
Controlled English (ACE). [Online]. Available: http://web.science
.mq.edu.au/~rolfs/papers/ifi-99.03.pdf.

2212

