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Abstract— It is well understood that in any data acquisition system reduction in the amount of data reduces the time and energy, but
the major trade-off here is the quality of outcome normally, lesser the amount of data sensed, lower the quality. Compressed Sensing
(CS) allows a solution, for sampling below the Nyquist rate. The challenging problem of increasing the reconstruction quality with
less number of samples from an unprocessed data set is addressed here by the use of representative coordinate selected from different
orders of splines. We have made a detailed comparison with 10 orthogonal and 6 biorthogonal wavelets with two sets of data from
MIT Arrhythmia database and our results prove that the Spline coordinates work better than the wavelets. The generation of two
new types of splines such as exponential and double exponential are also briefed here .We believe that this is one of the very first
attempts made in Compressed Sensing based ECG reconstruction problems using raw data.
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Romberg and Tao[4-6] in 2006, the origin of this method
[. INTRODUCTION can be seen from the seventies and eighties[7-8].Even before
back in the eighteenth century there were some works which
hint towards the solution for this problem, for example in
1795 a French mathematician named Gaspard Riche de

especially in situations where collection of samples are too Pgronhy ?\eveloped a ”lletho.d .(lzalled FF’“"?VS met?od(analyss)
costly or physically not possible to collects the samples at[ ]Wd ICh was somew atl Slrt?ll ar_tc; ourier tr?ns orm, |t.was|
the rate Nyquist demands [2].To deal with these situations!S€¢ o capture - valuable information from a signa

people usually does compression which finds the abridgeduniformly sampled in the presence of noise. Even th_ough
representation of the data which is capable of doing anthere were these abstract definitions they failed to find a

acceptable reconstruction at the receiver side. TransformsoIId algorithm for solving this underdetermined problem,

coding [3], one of the most used techniques in CompressionCandes, Romberg and Tao construct solid algorithms which

aims finds an alternative set of basis where the signal has a@lre_capable_lg)lf doing this unyleldlnghtasljj. The):c ShOW?d that
sparse representation. For a signal of length ‘n’, if it has only't 1S Possible hto rﬁcorlllstrugt the _I?rt]f"l rom H lewer_
‘k’ non-zero coefficients, in a domain of interest then is said measurements than the Nyquist rate. IS very nhelps in
to have a sparsity of 'k’ in that domain. Such a signal can peSituations Where Iargg amounts of data are m_volyed. One
recovered accurately with the knowledge of only 'k’ (or less SUC a@pplication is in continuous ECG monitoring and

than ‘k’) non-zero coefficients. This is often called as sparse analysis_. In. the case of serious C"%fd‘ac diseages., one way to
approximation which is the basis idea behind transform save a life is to take 24 hours continuous monitoring of ECG

coding. Inspiring from the idea of sparse approximation aan.d to do nursing accor.dlng_ly. Wireless Sensors are more
new concept called Compressed Sensing (CS) stted in these cases as in wired networ_ks, readmg may alter
formulated which ensures reasonable approximation evenEeCause of patient movements [10].Wired or wireless 24-

with sensing fewer measurements lesser than Nyquist ratedOur clzonEnuous_ dat_a mogg’“”g m:j/olvleshh_uge Smdoun_ts O.f
The basic idea behind CS is relatively simple, if the signal is ata. In these situations, Is an ideal choice. Reduction in

sparse in a basis then why we do sense all the information3n€ amount of data sensed intern reduction in the amount of
Rather than sensing all the information and the throwing the3at@ to be processed will reduce the power consumption. CS

unwanted ones why do we find methods to sense the data i- a proven technology for reducing the power consumption.
the compressed form itself. Even though this idea came toC>, techniques are successfully implemented to save power

limelight after the publication of the papers by Candes, up to 70% in ECG and EEG applications [11].

In normal conditions reasonable reconstruction quality
can be assured by maintaining the Nyquist rate[1], but
sampling below Nyquist rate is always an attractive option
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Fig.1 B-spline, Linear spline (triangle), Quadratic and Cubic = spline. Fig.2 Causal Exponent with an exponential factor of 1. This can be used for
the generation of higher order exponential splines.

There are lots of papers published in the field of CS based
ECG reconstruction most of them considers CS as a Il. COMPRESSELCSENSING(CS)

technique for compression rather than a sensing pa_radigm As mentioned, CS theory states that if the signal has a
[12-17]. Recently in May-2015 Abo-Zahhad, et.al published gparse representation in a certain domain then it can be
their work [18] which is showing some promising results, In recovered using a small number of coefficients lesser than
that they have estimated the QRS complex from the 4t of Nyquist rate by solving basis pursuit algorithms or
available data and subtracted it from the original and Csusing greedy based algorithms. For example considezs'
techniques are applied on the error signal. The majorne input vector of size N x 1, and if it has a sparse
drawback here is that prior information of the data has to representation in a domain say Wwith coefficients as &',
known before, and thresholding has also been employed t%athematically the problem of finding from the
increase sparsity. Preprocessing techniques like smoothenin easurements ‘y’ can be formulated as
removal of dc offset and thresholding to improve the quality
of data are actually contradictory to the original CS based Min llall; (1)
approach. In ideal CS based reconstruction scenario, we i
sense only a few random coefficients and the algorithm is
expected to reconstruct the original signal without sensing Where °
the whole data points. As it sounds magical the convex
optimization algorithm used in CS is often known las . ) 2 !
magic [19]. So in our work, none of the preprocessing rgcfn;gugitr'ggngggéxogr}ghI\'/lsxtrll\ﬁ F\/)\:r?gruecfl\(/llg’f?endrgs;il[s
methods are applied on the data and have included a Iowihe_nurr;ber of proiected samples ,aﬁdis of sizepN < N-
frequency base to capture low-frequency information. We h N hp ) L E T’h : T
had selected spline coordinates instead of wavelet basis an @?jrewill l:;Z E)fesi;gfll\i xel\rllgtThe tringg?gsﬁl;trli;nc;atrlx
(r:]:)e:)drgingtege;?gegorﬁgr;r%?j”zggint;?tmiecva%?etwgg'sissgggege disc_rete cosing basis_ or wavelets basis or any other basis
was found out that the splines work better than wavelets." which _the S|gn_al is supposed to have a sparse
The exponential spline is kind of splines which uses causal:ﬁgtrﬁfematos?h Ingggsprseszgie"(\j’o;i’)r‘g’e d?f?gfegfrgfﬁéresd g;'s
exponentials instead of polynomials were introduced byS " (B? 9 X
Unser. Met.al in 2005 [20] and double sided exponentials pline W'th_ or_thogonal and blorth_ogona_l Wave_lets. The
spne famiy [2€ spine was intoduced by us rough our PRI o1 e sparses o oo S0P
?rzglr?\rem[/g :‘l:)r[ggi.eriinzpr?igiel:st‘)erfietrvsv? sided exponentials [ 22].But CS theory states that this problem can be relaxed in
The remaining of the paper is arranged as follows: Sectionthe form
Il gives a brief introduction of CS theory, Section Il deals
with splines, where a brief description of polynomial,
exponential, and double exponential spline families are

given in subsections. In Section IV, the details about the )
construction of sparsifying matrix from the spline & Instead of solving foly norm we can solve foit; norm

coordinates are discussed. Results are analyzed in Section gnd yet yield the similar results. Reasoning behind is well
and in subsection the effect of the addition of dc base in the€XPlained in the papers [22-27]. Geometrically this can be

sparsifying domain are detailed; we conclude this paper inSIMPly explained using the concept of the unit circle (The set
section VI of all vectors of norm unit 1). The unit circle will be

different for different norms. In R the unit circle
corresponds td;, norm is diamond in shape which touches
exactly the solution space at the same point whenrerm
contacts the solution, i.e. in each coordinate axis, as
explained in the introductory section of [28]. Even though

St y=0un.

y' represents the random samples collected by
projecting X' on a sensing matri®, and@ is called as the

Min llelly, 2
S.t y=0@a.
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CS seems to be a better option it is still underutilized in 1, iyt

ECG-based applications, this may be because of 0 = z E 3
unavailability of proper hardware in capturing the real-time 50) 0, other wise )
data, which is always a challenging problem. Some research
in recent years [29-30] based on random demodulation
changed the scenario and CS is more attractive than befor
Random demodulators can be used to collect the rando
samples instead of sensing the whole signal. RecentlyCO
Bortolotti et .al proposed an ECG monitor based on CS
architecture which saves up to 70% of power compared to
other monitors [31]. B y) = }

Polynomial splines are obtained by connecting
olynomial of degree one or by connecting straight lines.

In quadratic spline, the individual segments will be
nnected by polynomial of degree 2, for example

{_‘}"‘l‘].:]:—]_, —2=y=0
1--17% 0=y=2 (3)

[1l. POLYNOMIAL AND EXPONENTIAL SPLINES

Michael Unser made a series of publications [32-37] in  Cubic spline, most commonly used splines in
spline fitting theory which showcases the advantageous ofinterpolation problems can be represented as
splines in signal and image processing. A discrete signal can LI i
be well approximated using splines, and polynomial splines ¥ 2
can be constructed from B-spline basis functions. If the ~B(y)= { 2=t 1z lyl<2 O
spline knots are placed at equally spaced integers, its . -
parameters can be found by simple digital filtering rather 0. 2=yl
than complex matrix manipulations. The spline is one of the ) ) ) ] ) )
most flexible functions, i.e. by increasing the degree of the The linear, quadratic, cubic splines and the basis spline
spline f) we can progressively switch from the constant (B-Spline) are shown in Figure.1 _ .
(n=0) and piecewise linear representations (n=1) to the other Higher order splines can be obtained by the repetitive
extremes n®, i.e. up to band limited models. Three convolution of the lower order ones [20].

different types of splines are detailed such as polynomial, . . .
exponential, and double exponential splines. B n(y) = BO (y)* B 1()* B 2(y)*..... Bn-1(y) (6)

. —0=lyl =1

b3 ond e

B. Exponential Splines

Exponential Splines were introduced in order to reduce
the gap between the spline fitting and continuous system
theory. Here in exponential splines instead of polynomials,
cardinal causal exponentials are connected in smooth fashion.
Instead of rectangular function here an exponent in unit
interval is used as basis function®yBfor generating higher
order splines. Similar to polynomial splines higher order
splines are obtained by the convolution of lower order
splines. B- spline used for exponential splines with a factor
of one is shown in Figure [2] and Figure[3] shows zero, first,
second and third order causal exponential splines
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Fig.3. Oth, 1st, 2nd, and 3rd order Exponential splines.

A. Polynomial splines

A polynomial spline (spline) is a numeric function that is
piecewise defined by polynomial functions. They possess a Rt
high degree of smoothness at the points where these 0at
polynomial segments are connected. These points are called
as knots. The individual segments are polynomials and this
characteristic of splines make them a better contender in
approximation problems, A I W R B B
The Polynomial B-spline of order zero can be obtained Independent Variabla(y)

from rectangular function

Amplitude

Fig.4 Oth,1st, 2nd, 3rd order 2E splines. The splines obtained are symmetric
in nature.

471



C. Double Sided exponential Splines PS1 - First order polynomial spline, PS2 - Second order

We tried exponential splines in our experiment and found Polynomial spline, PS3-Third order Polynomial Spline
that the splines are not symmetric in nature so we developedcubic Spline), 1E1- First order one-sided exponential spline,

exponential splines. The basis function used for generating -order one-sided exponential spline, 2E1- First order double-
this type of spline is of the for@(t) = g-alt-al (where ‘a’ sided exponential spline, 2E2- Second order double-sided

indicates the scaling parameter and b, the index of the€XPonential spline, 2E3-  Third ~order double-sided
central (maximum) point)).Higher order splines can be €XPonential spline.
obtained from the convolution of the basis function. This can
be called as 2E splines. V. RESULTS ANDDISCUSSIONS

The first, second, third order double-sided exponential The algorithm is analyzed on the basis the important
splines along are shown in Figure [4]. From the figure it can parameters such as Percentage Root mean square Difference
be observed that the spline obtained from double sided(PRD) and Signal to Noise Ratio (SNR) and Compression
exponents shows symmetric characteristics as compared t&atio (CR) which are used to quantify the error between the
asymmetric nature of splines obtained from causal exponentsriginal and reconstructed signal. The formulation of PRD is

given in equation (5)
IV. ALGORITHM FORCONSTRUCTINGSPARSIFYINGMATRIX

B | FROM SPLINES. | lgz_x:l{k,:_w A

Sparsifying matrices are constructed by taking the PRD = | Y Ki(n )
representative coordinates from both the first, second, third A n=1 X1(n)
order exponential, double exponential and polynomial
splines. The points are selected in such a way that they are at o )
equal distance from the center of the spline. The polynomialWhere Xi(n) be the original signal,Xr(n) be the
and double exponential spline coordinates are symmetric in"€constructed signal and N be its length. CR is defined as the
nature because of the symmetric nature of their splinesatio between the numbers of bits used for representing the
where exponential spline coordinates are asymmetric inUncompressed signal to the bites in compressed signal
nature. The coordinates selected are shown in Table.1.We .
dictate asymmetrical exponential splines as one-sided _ borig (6)
exponential splines or 1E splines and symmetrical borig
exponential splines as double sided splines or 2E splines. We
introduced a low frequency/dc base, for capturing the low- Where byig and beomp represent the number of bits
frequency information so, if the data (to be reconstructed) isrequired for the original and compressed signals respectively.
having a DC content that also will be reconstructed. This SNR can be found from PRD using relation
seems to be very much important as in practical cases as it
will not be possible to take samples without having a DC SNR= - 20logy, (0.01 x PRD) (7
content at least in sensor outs. The reasoning behind this is
that bio measurements like ECG employ the same number of The experiments are conducted using the data from MIT-
electrodes expecting the half cell potential [38] to cancel out. BIT Arrhythmia database [40]. MIT-BIH Arrhythmia
But in practical cases difference in electrode material or skinDatabase are sampled at 360 samples per second per
contact resistance causes a DC offset voltage which makeshannel , we took 2 seconds data(720 samples) for analyzing
deviations or baseline drift in the readings. In ideal CS we our results datasets used are 101m and 104m. The algorithm
are expected to collect only a few random samples (not thes tested for orthogonal wavelets from dbl to db10 and for
complete signal) and the algorithm is expected to constructbiorthogonal biorl.1 biorl.3,biorl.5, bior2.2,bior2.4, bior2.6,
the original data from the limited data sensed. So if we arebior2.8, bior3.9,bior 4.4,bior 5.5 bior6.8 against the
collecting few samples from a preprocessed data forcoordinates from the splines PS1,PS2,PS3,1E1, 1E2,1ES3,
experimental purpose and analyzing the result based on thaRE1,2E2,2E3CS on ECG signal is carried out using convex
we can only presume that the algorithm will work fine if the optimization software CVX [41] and mat lab [42] as our
data (to be reconstructed) contains dc artifacts. Moreover,platform. Random samples are obtained by projecting the
rather than reconstructing the original data in the domaindata using a random matrix. The input data analyzed is of
where the data is sensed, the CS algorithms recovessize 720 X 1 and for each experiment input data is projected
coefficients of the signal in the domain where it is having a onto a random matrix to take random measurements.
sparse representation (provided if the data does not have Random samples are varied from 10% of the sample size i.e.
sparse representation in the sensing domain.). There is n@2.to 60% (432) for getting a compression ratio (CR) of
guarantee that the random samples sensed with or without0% to 60%, The ideology of CS allows us to sense only
noise will have the same sparse presentation in the alternatéhat much amount of samples for reconstructing the original
domain. Moreover Joézef K. Cyiski et.al [39] points that signal within the desired PRD. As we aim to reconstruct the
very low frequency and DC components of ECG signal carry data with minimum measurements it is found meaningless
information about the heart muscle conditions. Different for going CR above of 60%. The wavelets are decomposed
splines tried in our problem are as follows: at level 4 as in [18]Table.2 shows the PRD obtained for

various compressions.

X100 (5)
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TABLE |

DIFFERENT SPLINES AND THE COORDINATES SELECTED

Spline Type

Representative coordinates selected

First order polynomial Spline(PS1)

0.4,06,08,1,0.8, 0.6,04

Second order Polynomial spline(PS2)

0.0133,0.2, 0.733,1,0.733,0 .2,0.0133

Third order Polynomial Spline-cubic spline(PS3)

0.05224,0.3284,0.806,1, 0.806,0.3284, 0.05224

First order one sided exponential spline (1E1)

0.246, 0.7288, 0.9449, 1, 0.6667, 0.3293, 0.122

Second order one sided exponential spline (1E2)

0.04006,0.4028,0.8099,0.9893,0.7278,0.3578,0.1017

Third order one sided exponential spline (1E3)

0.0063,0.2252,0.6975,1,0.7994, 0.3679, 0.0944

First order double sided exponential spline (2E1)

0.1212,0.4089,0.7704,1,.7704,.4089,.1212

Second order double sided exponential spline (2E2)

0.06597,0.3339,0.7727,1,.7727,.3339,.06597

Third order double sided exponential spline (2E3)

0.0368,0.2622,0.7257,1,0.7257,.2622,0.0368

Ratios for the MIT data 101m, Table.3 indicate the same a5 .
for 101m. Table 4 and Table 5 indicate corresponding SNR 1 1 1
values for 101m and 104m respectively. A low PRD and
higher SNR are indicating good reconstruction. From Tables 05 05 05
2, 3,4, 5itis evident that Splines coordinates perform better
than wavelets. 0 i 0

A sample of reconstructed data for the first 720 samples g s ®©0o s WT 5 0
from the data set 101 using first order spline coordinates are T &2 e
shown in Fig.6. and Figure .7 indicate the same for 104

PS3

VI. EFFECT OFLOW-FREQUENCYBASE IN RECONSTRUCTION
MATRIX 0 0 a

Even though the introduction of a low-frequency base in
the transform matrix successively capture low-frequency 1 1 1
information from the projected samples it has some adverse
effect on the reconstruction matrix, upon performing 05 05 05
decomposition using SVD (Singular Value Decomposition),
it was found that the introduction of dc base shoots up the 0 0 0
first singular value and makes the condition number worse. f ’ LU : L 5 i
This is because the addition of a dc base in transform_ ) ) ) )

. . . . Fig.5 Different representative coordinates selected from polynomial and
domain replaces a column in reconstruction matrix by the exponential splines. PS1 - First order polynomial spline,PS2 - Second order
sum of column elements of the sensing matrix. The increaseolynomial spline,PS3-Third order Polynomial Spline (cubic Spline),1E1-
in singular value normally deteriorates the matrix. But here First order one-sided exponential spline,1E2- Second order one-sided
increase in singular value does not have any effect Onexponential spli_ne,lE3— Third (_)rder o_ne—sided exponential spline,2E1- Eirst

. . N . order double-sided exponential spline,2E2- Second order double-sided
reconstruction quality; this is proved by reconstructing the eyponential spline,2E3- Third order double-sided exponential spline.
signal using unmodified matrix singular values. Our
experiments show that increase in first singular value doesn't
have an effect and the reconstruction quality is still
preserved even though the first singular value is lowered
down. Singular value of the reconstruction matrix with and
without a dc base along the sparsifying basis is shown below.
Figure 8.a shows the singular values (SV) of the
reconstruction with adding a dc base along the sparsifying Mm@ 2w a0 a0 &0 0 70 oo
bases and figure 8.b shows the singular values of the Mo . X
reconstruction matrix when a dc base is added. In the first
case the maximum SV is 140 and in the second case, it is
698
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Fig.6 The original data (top) and the reconstructed data using first order
spline coordinates (1E1) for data set 101m by sensing only 30% of the
samples.
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TABLE I

5 ‘ , e , , PRD OBTAINED FOR THE DATA 101.MFROMMIT DATA BASE FOR
DIFFERENTWAVELETS AND SPLINE COORDINATES
g 1200 1
;EL 10 W\/ | Compression
Ratio(CR) 10 20 30 40 50 60
s 100 200 300 400 500 BOOD 700 8d0 Wavelet Filtel
S3iie PRD-101.m
i ‘ . . Reconsltructed ‘ . . dbl 3.54 2.35 1.75 1.30 1.02 0.8
db2 3.85 2.54 1.92 1.55 1.25 0.94
s 10} ] db3 446 | 293 2.20 168 149 1.1
% db4 3.98 2.95 2.15 1.75 1.35] 0.94%
£ 10m ] db5 3.85 | 2.80 2.35 101 121 1.0
db6 3.65 2.25 1.95 1.43 1.20 0.93
EDD mu 200 300 400 500 500 mn 800 db7 3.71 2.37 1.65 1.50 1.32 1.03
sduiples db8 4.22 2.95 2.48 1.55 154 0.9
_ N o db9 365 | 325| 235 | 164] 124 08
g7 e o g o) e eonsved o s 0ol —gn [0 o 15T 100 1ol —onl s
biorl.1 3.23 2.65 1.88 1.42 1.12] 0.8
biorl.3 3.62 2.56 2.32 1.66 1.23] 0.8
150 : . . . biorl.5 3.52 2.46 1.92 1.52 1.13 0.7]
bior2.2 3.71 2.56 1.84 1.75 1.44 0.84
bior2.4 3.62 2.86 2.15 1.36 1.02 0.7
bior2.6 3.40 2.75 2.58 1.82 1.18] 0.9
il | bior2.8 3.32 2.45 2.25 1.65 1.21] 0.9
bior3.9 3.59 2.35 2.45 1.72 1.35 1.0]
biord.4 3.25 2.23 1.65 1.15 0.75 0.5
bior5.5 4.01 3.64 2.55 1.91 1.38] 1.13
bior6.8 3.85 2.82 2.42 1.65 1.25] 0.8
S0r 1 PS1 2.85 2.34 1.73 1.25 0.85 0.4
PS2 2.75 2.45 1.94 1.32 0.76 0.3
PS3 2.88 2.14 1.76 1.28 0.83 0.4
1E1 1.91 1.42 0.95 0.49 0.35 0.1
" ‘ . ; . 1E2 1.74 1.35 0.81 0.55 0.24] 0.1
A LU L Rl 1E3 195 | 1.35 0.95 061] o027 02
2E1 1.85 1.22 0.72 0.55 0.32 0.1%
Fig. 8a.Singular Value of the reconstruction matrix without a dc base 2E2 1.66 1.15 0.92 0.49 0.21)  0.1%
2E3 1.81 1.22 0.82 0.41 0.19 0.0
700 . . . . . TABLE Il

600 k

PRD OBTAINED FOR THE DATASET 104.MFROM MIT DATA BASE FOR
DIFFERENTWAVELETS AND SPLINE COORDINATES

Compressiot

S T Ratio(CR) 10 2 3( 4 5p 6

A0 | Wavelet Filter] PRD-104.m
dbl 3.65 2.24 1.61 1.25 1.14 0.74
= 1 db2 350 | 235] 212] 166 119 0.8
5 | db3 4.24 2.72 1.93 1.52 1.03 0.8
db4 3.85 2.75 2.35 1.82 1.24 0.93
100 F E db5 3.62 2.50 2.16 1.74 1.46 1.19
db6 3.95 2.45 2.04 1.32 1.10 0.8
s e = 0 0 T B db7 3.46 2.65 1.93 1.42 1.43 1.14
db8 3.85 2.75 2.35 1.31 1.15 0.8
db9 3.32 2.65 211 1.55 1.22 0.8f
Fig. 8b.Singular value of the reconstruction matrix with dc base db10 302 1.92 1.60 0.91 0.55 03
biorl.1 3.32 2.75 1.75 1.35 1.02 0.7§

continued..
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bior1.3 355 272 216 152 113 080 SNR CALCULATED FOR DATAEEEIia\./M FROM MIT DATA BASE FOR
biorl.5 3.72 2.65 2.01 1.38 1.04 0.82 DIFFERENTWAVELETS AND SPLINE COORDINATES
bior2.2 3.88 2.45 1.72 1.42 1.29 0.61 _
bior2.4 355 | 270 228] 174 114 o072 Compressiol
. Ratio(CR) 10| 24 3( 4 50 ep
bior2.6 3.45 2.57 2.15 1.63 1.34 0.9 -
- Wavelet Filter SNR
bior2.8 3.39 2.45 2.03 1.52 1.34 0.81
or3.0 345 > oo a0 Tos 1o 09 db1 28.76| 32.98] 35.8F 3810 3885 4267
biord.4 3.12 230 1.60 1.04 0.84 0.4 db2 29.11| 32.59| 334 3542 38.80 41881
bior5.5 383 334 > a4 185 143 124 db3 27.46] 31.32| 343]L 36.39 39.19 41k5
bior6.8 3.75 3.02 2.35 1.55 1.14 0.71 db4 28.30] 31.22| 32.6p 34.719 38.17 4059
PS1 2.63 2.15 1.63 1.32 0.75 0.51 db5 28.84| 32.03] 3338 35.17 36.y2 387
PS2 2.52 2.05 1.83 1.25 0.81 0.5 db6 28.08| 32.23] 33.8p 37.948 39.19 41l4
PS3 2.46 2.26 1.93 1.39 0.74 0.61 db7 29.23] 31.55| 34.3] 36.98 36.87 38I80
1E1 199 | 152| 085| 063 044 02 db8 28.29| 31.22| 3259 37.4 385 41)95
1E2 175] 126] 062] 042 033 02 db9 29.59| 31.55| 3350 36.20 3830 41u2
1E3 181 ] 145) 095] 072 029 0N db10 30.41f 34.35 3591 4048 45p0 4923
2E1 Lri] 150] 0B85] 061 033 02 bior1.1 20.57] 3123 351 3742 30.f9 42)55
2E2 1.62 1.26 0.72 0.51 0.31 0.21 bior1.3 29.01] 31.32] 333 36.34 38.99 4199
2E3 1.85 1.55 0.95 0.42 0.29 0.11 -
biorl.5 28.60] 31.55 33.98B 37.47 39.y0 41]68
TABLE IV bior2.2 28.23] 32.23] 353l 36.94 38.09 43]76
SNR CALCULATED FOR THE DATASET 101.MFROM MIT DATA BASE FOR bior2.4 2900l 3139 328k 3518 3883 42l80
DIFFERENTWAVELETS AND SPLINE COORDINATES
bior2.6 29.25] 31.79] 33.3p 35718 37.85 4047
Compressio bior2.8 29.40 32.23] 33.8p 36.34 37.J3 41|78
Rat'o_(CR 10 20 30 40 20 50 bior3.9 29.25| 31.54/ 3228 35492 37.93 40[13
Wavelet Filter SNR
bior4.4 30.10] 32.76] 35.98 39.10 41.57 4740
db1 29.03| 3259 35.14 3771 39.19 41jo4
b2 2830l 31921 343b 3642 3889 aoko bior5.5 28.33] 2952 32.2F 3448 36.88 38|16
db3 2702l 3065 3316 3532 3646 a3slog bior6.8 28.51] 30.39] 32.5p 36.0 38.67 42|55
dba 28.011 3061 3336 3515 3741 40le PS1 3159 33.371 35.7B 37.87 425 45|81
dbs 28.30| 31.07] 3250 3436 38383 3979 PS2 31.99 33.79 34.78 38.Q7 41.p6 44|96
db6 28.77| 32.96| 34.2p 36.92 38.45 40J74 PS3 32.18 3290 34.3L 37.14 4268 44]23
db7 28.61| 32.52| 35.6Y 36.49 37.56 39J79 1E1 34.04] 36.39] 41.4p 44.J6 47.%4 51)00
dbs 27.50| 30.61] 32.1p 36.41 36.p2 4046 1E2 35.16] 37.97| 44.2p 4740 50.03 54p0
db9 28.76| 29.77] 3258 3573 38.]2 4158 1E3 34.83| 36.80] 4048 4291 5066 5796
db10 30.40| 33.42] 36.3p 41.47 43.¥y9 46]10 2E1 35.32 36.50 41.4% 44943 50.03 54pP0
biorl.1 20.81| 31.54] 34584 3693 38.98 41l44 SE2 3580l 37971 429b 4541 5012 53bs
bior1.3 28.83| 31.82] 327 35498 387 416 2E3 3268l 3622 4048 2743 5210 56l
biorl.5 29.08| 32.200 34.3F 36.39 38.97 42|90
bior2.2 28.60 31.82] 3478 35.04 36.86 41|50
bior2.4 28.83| 30.88] 33.3F 37.35 39.J9 4293 VII. CONCLUSIONS
bior2.6 29.38| 31.22] 31.7y 34.42 38.p6 40480 The problem of increasing the reconstruction quality with
bior2.8 29.59| 3223 329p 35645 3882 4048 3 |imited number of random samples in compressed sensing
bior3.9 28.90] 32.56| 3228 3531 37.42 3979 s addressed here by the use of splines. Both polynomial and
bior4.4 20.77| 33.02] 35.6p 38.90 42.53 45[74 exponential splines were experienced and our experiment
bior5.5 27.93| 28.77] 31.8F 3437 37.p3 39jos shows that spline basis performs better than wavelets. We
bior6.8 2829 31.01] 32.3h 35d3 3889 a41lr9 have introduced a low-frequency base in the sparsifying
PS1 3001l 3263 3520 38d9 a41ha 47|31 domain in order to capture the low-frequency information
PS2 3122 3224 3428 3782 22B2 a9l30 from the random_ samples a_no_l this proves to ha\{e_ a higher
ps3 3083 3331 3m0F 3786 a1k a7las effect in decreasing the variation between the erglnal data
el 3230l 3603 2048 2632 2900 sabs and the reconstructed one. A total of 360 experiments were
conducted on two sets of ECG data. The effect of the
12 3521 37.40) 4178 4541 52%6 5819 jnirgduction of a dc base is also studied here.
1E3 34.22| 37.40| 40.4 4436 51.32 51p1
2E1 34.68| 38.30] 42.9p 45.25 50.00 56J59
2E2 35.62| 38.75| 40.76 46.1f2 53.37 5654
2E3 34.83| 38.25| 41.77 47.d5 54.24 6049
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