

Vol.10 (2020) No. 2

ISSN: 2088-5334

An Intelligent Transportation System: the Quito City Case Study
Ana Zambranoa1, Marcelo Zambranob, Eduardo Ortiza2, Xavier Calderóna3, Miguel Botto-Tobarc,d

a Departamento de Telecomunicaciones y Redes de Información, Escuela Politécnica Nacional, Quito, Ladrón de Guevara, 17051, Ecuador

E-mail:1ana.zambrano@epn.edu.ec; 2eduardo.ortiz@epn.edu.ec; 3xavier.calderon@epn.edu.ec

bDepartamento de Telecomunicaciones, Universidad Técnica del Norte, Ibarra, Av 17 de Julio 5-21, 100110, Ecuador
E-mail: omzambrano@utn.edu.ec

c Eindhoven University of Technology, Eindhoven, The Netherlands

E-mail: m.a.botto.tobar@tue.nl

d University of Guayaquil, Cdla. Universitaria, Guayaquil, Ecuador
E-mail: miguel.bottot@ug.edu.ec

Abstract— Managing traffic in a large city has become a topic of great interest in both politics and science. The costs of poor traffic
management have been quantified as losses equal to millions of dollars, not counting the unquantifiable value of the time that a
person loses in traffic jams. Intelligent transport systems (ITS) offer a set of innovative solutions specific to the management of
different modes of transport. This article focuses on the development of an ITS for the city of Quito that allows smart decision-
making to direct heavy haul transporters that want to enter the city via one of its main access routes. Technologies such as Sensor
Web Enablement (SWE), in association with the Message Queuing Telemetry Transport (MQTT) communication protocol, facilitate
the development of a vehicular management platform/system capable of sending notifications in real-time and issuing instructions to
drivers regarding traffic delays along routes, average speeds, etc. The system supports a network of heterogeneous sensors accessible
through the web. It can integrate any device that uses HTTP protocol. Time interval and location range testing have been undertaken
to refine the accuracy of the system and make it adaptable to any geographic situation. The system allows communicate with the
server through MQTT or through web services, using technologies such as: MongoDB and GeoJSON. One of the most relevant
results is that the degree of accuracy of the system is within appropriate ranges when compared to commercial applications such as
Google Maps and Waze.

Keywords— internet of things; sensor web enablement; message queue telemetry transport; intelligent transport system;
crowdsensing.

I. INTRODUCTION

We are in the midst of the digital age and are witnesses to
the exponential growth in the development and use of
personal devices such as smartphones, tablets, the Rasberry,
etc. Together, these devices constitute a potential network of
heterogeneous sensors that enable the expansion of device-
based information exchange, thus improving autonomous
decision-making. From this digital environment, the IoT
(Internet of Things) has emerged as a platform for
interconnecting sets of autonomous digital systems to
society, and collecting and providing information between
end users [1]–[5]. The integration of heterogeneous sensors
(sources of information) with data management systems has
created intelligent environments capable of responding to all

types of imminent risk [6]–[8]. Big cities are host sites of
this new integration [9], [10]. In order to tackle issues arising
from the need to manage urban environments, big cities have
implemented a series of broadcasting technologies that
transmit relevant notifications that benefit society at large.
By adopting specified technologies as their preferred tools,
these cities have entered the ranks of the smart cities. For
example, using a set of sensors at the main access routes to a
city allows it to predict the duration of intercity delays.
These sensor networks are called SmartRoads [11]. Within
this context, our study focuses on optimizing the flow of
heavy transport into the city of Quito, a project we have
identified as ESR–Q (Ecuador Smart Roads - Quito).
Transportation is a key topic that plays a crucial role in
commerce and industry. During the past several years, the
number of vehicles in Ecuador has grown. Currently,

507

301,806 trucks with a minimum load-bearing capacity of 3.5
metric tons now circulate in Quito [12]. In 2016, traffic flow
into the city increased by 31,761 vehicles. This amount
jumped to 70,203 vehicles in 2017, representing a 121%
growth rate [12]. At the same time, the capacity of the access
roads to handle traffic flows into the most important cities in
Ecuador has remained the same. Among the most
representative effects of excess traffic flow are the inability
to make deliveries and delays in delivery schedules. On a
related topic, truck drivers in Ecuador are generally unaware
of motor vehicle accidents, highway blockages due to
landslides, and many other problems that complicate the
traffic flow panorama.

In the city of Quito, the 2016 statistics [13] show that
213,932 vehicles entered the city by the various routes
available. In 2017, there were 227,187 vehicles entered the
city, representing a 6.19% increase in traffic flow. This
problem entails a commute of between 1-2.5 hours for
travelling between work and home [14]. The newspaper El
Comercio reports that, on average, a person spends 28 hours
per month stuck in traffic in Quito [15], equal to 336 hours
or 14 days per year. However, among the alternatives that
Quito’s public officials have proposed to improve mobility,
there is no mention of developing an Intelligent
Transportation System (ITS) that takes advantage of the
population’s widespread access to smartphones. To address
this problem, our research project proposes an ITS to
manage the main access roads into Quito adapted to the
city’s unique characteristics (such as its challenging
geography). This system broadcasts real-time notifications
of traffic-related events on Quito’s main arteries. It presents
to the end user the most recent data about conditions on
selected routes, such as average traffic speed, delay time,
average traffic congestion (according to IMT, or
International Mobile Telecommunications), and ETA
(Estimated Time of Arrival). These parameters are assessed
in Section III in order to verify their effectiveness. To
complete this analysis, we used data obtained from
heterogenous sensors available throughout the community
(smartphones), along with electronic modules designed
exclusively to fulfill prototype testing. Based on these data,
we made improvements that improve drivers’ access to
information regarding the real-time conditions on favored
routes, thus enhancing their ability to make better decisions
regarding travel plans.

The prototype uses a distributed communications
architecture that integrates heterogeneous devices and
handles both data acquisition and results notification for end
users. The system allows any user, regardless of device, to
find, link to, and query any sensor in order to expand their
sources of information. Utilizing a sensor network allows
our system to cover a large area in which the system can
then strategically pinpoint sensors in order to take
measurements of other roadway conditions. In summary, our
system has been designed to incorporate new sensors,
regardless of whether they are components of mobile or
fixed devices, and regardless of their software or hardware
constraints. Incorporating new sensors increases data volume
and therefore allows the system to make new estimates that
help drivers navigate access into the city. According to our
study, the more information is generated about roadway

access, the better forecasts mimic actual roadway
conditions—this trend is examined in Section III. The
widening of the sensor network optimizes arrival times, and
minimizes produce loss and travel operating costs.

Even though there are off-the-shelf applications that fulfill
similar objectives, our project takes advantage of new ITS
tools and can be customized to the needs of specific cities.
Our pilot project produced minimal error percentages in
regard to predicted times compared to measurements of
actual highway conditions, and compared to the most
commonly used WAZE (community-based GPS navigation)
traffic management applications for commerce [16].

This article is divided into four sections. Section I
(Introduction) focuses on the different angles to ITS
implementation and synthesizes the general features of our
research. It also describes the research projects aimed at
developing proposals for transportation management that are
most relevant to our project. The second section presents the
technical architecture of our system (ESR-Q), focusing on
the information, sensor system, and notification blocks used
in this prototype. Next, it presents the results of trial run with
the software developed. Finally, it offers the conclusions and
follow-up research plans.

A. State-of-the-Art

We focused our study on heavy haul transport in Ecuador,
since heavy haul drivers experience ongoing economic
losses because they lack knowledge about roadway
conditions [17]. For example, lack of knowledge about a
landslide can result in a traffic jam that lasts hours and,
consequently, leads to loss of merchandise and failure to
meet the scheduled delivery. Ultimately, lack of situational
awareness significantly affects the economic development of
the country. Currently, the driver community uses social
networks such as WhatsApp, Facebook, and Twitter to stay
informed about roadway conditions. However, most
notifications are decontextualized, that is, they are not real-
time alerts, and are sometimes so out-of-date that they are
misleading. By applying ITS technology, a system tries to
reduce the impact that urban traffic has on a city [18], [19].
Several ITS-based traffic management projects have been
developed [20]–[22]. In the state of Michigan (USA),
various projects under the umbrella term, ITS-Michigan, are
underway. Their goal is to improve urban safety and
viability in Michigan [23]. One of the most characteristic
projects uses video cameras and adaptive traffic lights to
optimize and control intercity traffic. The Russian city of
Moscow has created a group of related projects, called ITS-
Russia, to address traffic management problems [24]. ITS-
Russia used the latest advances in technology, such as
outdoor camera detection, to identify and locate vehicles that
have broken down, vehicles moving in the opposite direction
to the traffic, etc. In contrast, Ecuador currently has no
projects that are using traffic management technology,
except for an isolated project in Ambato, Ecuador [25] that
measures vehicular traffic by counting passing vehicles by
means of cameras installed on city streets. The goal in
Ambato is to determine the number of autos travelling along
a certain route in order to optimize traffic light signal
changes. However, for a developing country such as Ecuador,
acquiring more cameras to cover a wider area is not feasible.

508

In contrast to the studies mentioned above, our project does
not require a large budgetary investment, since we are basing
our technology on a set of devices already deployed in our
community, i.e. smartphones, that host the on-demand
mobile application we have designed and developed.

There are off-the-shelf solutions, such as Waze, that
address traffic management concerns. These platforms allow
end user interaction via mobile applications. They can both
collect end user data and transmit results. For example,
Waze recompiles traffic data and classifies it into areas of
interest. Therefore, it can transmit detailed traffic data in
real-time to a community. Projects such as that of Banner
and Orda [26] have examined the various algorithms that
Waze uses in order to make traffic predictions, including the
Bayesian Nash Equilibrium, Price of Anarchy (PoA [27]),
and Price of Stability (PoS [26]). These algorithms are key
to describing traffic behavior and transmitting relevant
results to the community. In contrast, our research bases
itself on concepts in the SWE-SOS heterogeneous standard,
in combination with IoT MQTT protocol, that take
advantage of their crowdsensing capabilities. Our research
suggests that the more sensors there are in the system, the
lower the percent error in the analyzed data (velocities, times,
etc.) will be. (See Section III Results.) In short, the results of
this research are on par with or even exceed results using
Waze, an application adapted for global use. Another
advantage that our application delivers is that it adapts to a
wide variety of sensors; it is not limited to mobile
applications only. Our project is customized and adjustable
to conditions in Quito, whereas Waze might include
outdated routes that are no longer available, especially given
the high pace of change in developing countries, such as
Ecuador.

Within this field of research, we have identified several
projects that monitor vehicular traffic. One of the most
prominent is the Collaborative System for Monitoring
Vehicular Traffic developed by the Instituto Politécnico
Nacional (IPN, or National Polytechnic Institute) in Mexico
City [28]. This project addresses three challenging aspects of
monitoring traffic. First, data must be collected from mobile
users. Second, the data are stored in the Postgresql
repository. Finally, the data are processed to identify the
intensity of traffic congestion on selected routes in the city.
Technologies employed in the solution include PostGresSql
for data storage, Apache Tomcat for web service hosting,
and Android Studio for mobile applications development. In
contrast, we use a SWE-SOS standard interface, which
accepts web messages from a wide variety of sensors, in
such a way that it broadens the source base beyond just
smartphones operating with Android [28].

Another project aimed at improving urban mobility
through traffic monitoring is McGill University’s “Towards
a WIFI-Bluetooth system for traffic monitoring in different
transportation facilities” [29]. This project measures traffic
parameters such as travel time, average speed of travel, and
traffic volume. It employs wireless technology, due to its
low cost, and can collect large amounts of data in a short
period of time. The system uses at least two Bluetooth
sensors on major routes separated by a specified minimal
distance to measure variable shifts in vehicle times.
However, the project is limited by Bluetooth’s maximum

coverage—for Bluetooth 5.0, approximately 240 meters
[30]—and by the number of sensors that can be connected to
a single network. Regardless, the results closely approach
real-time conditions. For example, for a designated section
of the route, where the real speed was 27.34 km/h, the
calculated speed was 28.33km/h. This calculation represents
a low 3.49% margin of error. The limits of the system such
as its range, however, make the project unscalable to larger
cities such as Quito. Our current research project uses a
standard web interface that gives users more flexibility,
since sensors are not limited to certain geographical
distances, as in the Lesani et al project [29]. Our system can
have nearly ubiquitous reach, allowing it to send and receive
data independent of the geographic location of sensors.
Another research project known as “VANET based Real-
Time Intelligent Transportation System” [31] takes
advantage of the rapid growth of ad-hoc networks in vehicle
network technology (VANET). These systems use RFID
(Radio-Frequency Identification) and ARM (Advanced
RISC machine) technology to display the least congested
routes to drivers. But as is the case with the Lesain et al
project [29], we must analyze the technological limits of this
system. RFID, for example, has a restricted range that makes
it unsuitable for use in remote locations such as
interprovincial highways. Moreover, any improvements in
measuring devices directly affect the cost of implementing a
system. In contrast, in our project, display costs are nearly
zero for users equipped with smartphones.

II. MATERIAL AND METHODS

ESR–Q is built on a client-server architecture in which the
server uses a SWE-SOS interoperable web interface to
manage the remote queries of heterogeneous clients. It also
incorporates a REST software architecture style that uses
HTTP (Hypertext Transfer Protocol) and JSON data type
format for client-server messaging. We decided to use the
latest version (2.0) of the SWE (Sensor Web Enablement)
standard to implement the web interface, since it defines
specifications in XML and JSON for Given our desire for a
real-time system, we used the Message Queue Telemetry
Transport (MQTT) as our main communications protocol for
sending notifications to system users. MQTT manages both
the sending and receiving of notification messages. To
implement messaging, we installed a client MQTT on each
device to give it notification capabilities. As an alternative,
Arduino and Raspberry devices can be installed in certain
vehicles in which drivers do not have smartphones, or where
drivers are unable or unwilling to use mobile applications
due to confidentiality concerns. (See Figure 1.)

ESR-Q is adapted for use on the major routes into Quito.
Figure 2 identifies the routes targeted in our research. We
have taken into consideration differences in flow on round-
trip routes, e.g., traffic flow from Santo Domingo to Quito is
not the same as flow from Quito to Santo Domingo.
Otherwise, we would have client-server messaging that
maintain compatibility with the REST architecture. To
implement the messaging service, we used the SWE-O&M
(SWE Observations and Measurements) standard. SWE-
O&M uses a JSON schema to provide document data that
allows objects and locations stored in the database to be
georeferenced using spatial and temporal filters.

509

Fig. 1 System Architecture

Figure 1 shows the role that the web interface plays in the

ESR-Q system. The system collects data from the sensors
(smartphones, the Raspberry, and the Arduino), which
represent system users that are travelling on the main access
routes into Quito. These sensors automatically send their
observations of average transit speed and location
coordinates (in latitude and longitude) to the server.

Given our desire for a real-time system, we used the
Message Queue Telemetry Transport (MQTT) as our main
communications protocol for sending notifications to system
users. MQTT manages both the sending and receiving of
notification messages. To implement messaging, we
installed a client MQTT on each device to give it notification
capabilities. As an alternative, Arduino and Raspberry
devices can be installed in certain vehicles in which drivers

do not have smartphones, or where drivers are unable or
unwilling to use mobile applications due to confidentiality
concerns. (See Figure 1.)

ESR-Q is adapted for use on the major routes into Quito.
Figure 2 identifies the routes targeted in our research. We
have taken into consideration differences in flow on round-
trip routes, e.g., traffic flow from Santo Domingo to Quito is
not the same as flow from Quito to Santo Domingo.
Otherwise, we would have seen inconsistencies in the traffic
data returned by the sensors along the same route. The
MQTT application uses the host to store the traffic
parameters that are captured, such as average speeds and
transit times. Thus, each driver becomes an information
source for the system at zero cost.

(a)

(b)

(c)

Fig. 2 Sensorization Block

510

The system architecture is composed of three main blocks:
The Information Block, the Sensorization Block, and the
Notification Block. The combination of these three blocks
gives the system the ability to be heterogeneous,
opportunistic, and to operate in real-time. The following
sections explain in detail how each of these blocks’
functions.

A. The Information Block

This research project included both mobile and fixed
devices as sources of information: smartphones, the Arduino
Uno [32] and the Raspberry Pi 3 [33]. All these devices
made onboard measurements of transit speeds and then sent
these data to the main server. To transmit these data, we
integrated a GPS (GY-GPS6MV2) [34] module into the
Arduino and Raspberry devices in order to boost their
georeferencing capabilities and thus enable them to
determine transiting speeds. We also added a GSM 900
module [35], [36] for sending data to the remote server via
the web. Both the Raspberry and the Arduino devices were
installed in vehicles whose drivers did not have access to
smartphones, or those who were reluctant to use a mobile
application on their smartphone due to concerns about
security and/or confidentiality. We should mention that we
recaptured the energy needed to operate these devices from
lost vehicle power.

The system captures two types of data/information. The
first is the variation in average speed of the final user (∆v ⃗),
and the second is an informative message about traffic
incidents along the route, for example, accidents, damaged
vehicles, etc. The system calculates the speed in conjunction
with the user’s geographic location (latitude and longitude).
First, the application determines the variation in distance
travelled (∆d ⃗), which are two coordinates taken over a
defined change in time (∆t ⃗), and is used as a configuration
parameter for sensors such as smartphones, the Raspberry, or
the Arduino. Combining these two data gives the transit
speed, which is then sent to the server to be stored in a
standard specified by SWE-SOS. The speed is calculated
and automatically sent to the server with a period (T) of 1
minute in order to avoid draining the device’s battery, as
well as to capture data that better approximate real time. In
contrast, the event notification message is sent manually by
end user when she or he runs into a traffic problem on the
roadway.

B. The Sensor Block

This block captures data from all kinds of devices in the
system, not just from the mobile application. It uses an
SWE-SOS web interface to mediate between the
heterogeneous clients and the MongoDb data repository. The
SWE-SOS standard allows the system to query registered
sensors, roadway measurements, etc. It includes a database
that, together with the SWE-SOS interface, registers the
sensors along with their metadata. This register facilitates
sensor identification and allows the system to simplify data
search and filtering operations. The standardized SWE-SOS
interface is described in Figure 3.

Fig 3. Sensorization Block

Figure 3 illustrates the standardized SWE-SOS interface,

which is the main gateway to server resources. It manages
remote sensor queries. Using PHP, we designed the SWE-
SOS interface so that it could accept and process JSON
messages according to the guidelines documented in OGC
Observations and Measurement – JSON Implementation.
This standard note that data should include metadata, such as
geographic location. The web interface is stored on a
physical server at EPN (Escuela Politècnica Nacional in
Quito) that has been assigned a public IP address so that it
can be accessed via the web, thus making the system nearly
ubiquitous.

1) Sensor Web Enablement: The design for the
standardized SWE-SO interface uses a series of client-server
messages for data transfer.

Fig 4. SOS Message Flow

Figure 4 outlines the implementation procedure for a new

device (including hardware and software characteristics), i.e.,
how to register it in the system so that it can begin to send

511

observations to the server. SWE-SOS manages the
observation format (observation), which is a property
measured within the object under investigation, for example,
transit velocity. This observation is a numeric value (int,
double, float) that measures a specified property, for
example, a vehicle’s average speed. At the client end,
sensors include any device that can carry out these
measurements and send the results to the remote server.

Figure 4 illustrates the message relay. The first message
sent is GetCapabilitiesRequest(), which is used to find the
operations that the SWE-SOS implementation supports.
These operations include insertSensor(), updateSensor(),
deleteSensor(), insertObservation(), getObservation() and
getCapabilities(). After identifying the SOS operations that
are available, if the insertSensor() is available, the sensor is
registered in the system using insertSensorRequest()—see
Figure 4. If the operation is structured according to
specifications, the data from that sensor is stored and its
identification is transmitted. At this point, the sensor is
enabled and can generate its own observations and send
them to the communications server.

The operation GetCapabilities() displays the operations
available to the sensor. If the InsertObservation() is available,
a sensor can send data to the server. For this project, a device
periodically calculates its average speed (∆v⃗). These speed
data are then sent to the server in observation format. This
set of observations is used to determine the average speed
for the whole route (V⃗) and the average time of any delay.
If needed, the users can manually send incident type
observations to the server. An incident is any unfavorable
happening that drivers experience such as vehicular
accidents, landslides, road construction, or other problems.

The insertObservation() message registers the speed
measured at a defined geographic location along the route.
There are several main parameters needed to assemble a
message of type observation. For example, the
featureOfInterest property identifies the target object and, in
this case, is assigned the value “SDaQ”, representing the
Santo- Domingo-to-Quito route. Likewise, procedure and
offering procedures represent the physical identity of a
device (MAC address). The OM_Observation property is a
JSON object that contains the most important metadata of
the main observation, including phenomenonTime, which
registers the instant when the observation is made. We
should note that date and time formats conform to the ISO
8601 standard [37], specifically year, month, day, and hour.

insertObservation() also includes a procedure that is used
to identify the device that makes the measurement. The
observation datum (speed or incident) is stored in result,
which stores the final result of the roadway measurement.
For example, if the measurement is 25km/h, the data type
will be double with a value of 25 and units of measurement
km/h. Or if the value has an incident type of “accident,” the
data type will be string with a value of “accident” without
units of measurement. Result is a JSON object that contains
the name of the observation, its data type, the units of
measurement, and its value. Finally, the geographic location
is stored in location for georeferencing purposes. Location
identifies the exact site where the measurement is taken.
These metadata allow users to understand the context of the
observation, that is, the system can identify the place, the

route number, sensor details, the exact time when the
observation is made, etc.

2) Heterogeneous Communications: As Figure 5
illustrates, all devices have two ways to communicate with
the server.

Fig 5. Communication pathways to the server

The first use MQTT server to receive messages in real-

time. The second uses web services to store data in
MongoDb; these data are stored on the same server.
MongoDb provides massive data storage capability for
mobile device observations, since it uses a flexible, NoSQL
database manager for storage. To query observations, we
used GeoJSON [38] format. GeoJSON is an open standard
that allows systems to code geographic identifications with
special features derived from JavaScript (JSON) notation.
GeoJSON allows developers to differentiate between
documents by geographic dimensions (circle, rectangle, or
any polygon) circumscribed by the user. For example, with
JSON the system can derive observations that are distant
from a certain point-of-interest. We implemented time filters
in order to request observations within time ranges specified
by the user. By integrating GeoJSON with the time filters,
we can create queries that represent observations about a
certain section of a route over a given interval of time. The
query results are processed by the mobile application and
displayed to the user, along with average speed (∆v⃗).

Fig 6. Implementation of GeoJSON of MongoDB

512

Figure 6 illustrates the GeoJSON MongoDb
implementation using spatial (rectangle) and a time filter of
type combo Box, with options to select the times of the last
observations. Inclusion of these features gives the ESR-Q
system the real-time capabilities of intelligent transportation
operations. By combining the SWE-SOS and MongoDb
technology, we can create a sensorization block that can
capture relevant roadway data and broadcast predictions
during trips.

C. The Notification Block

The notification block sends real-time messages to
devices linked into the ESR-Q system. One of its main
components is the messaging system used to communicate
with end user devices. The messaging function was
implemented using the Message Queue Telemetry Transport
(MQTT) communications protocol on the client side and the
Mosquito Broker [39] server on the server side.

The real-time notification system is based on publish-
subscribe architecture. This relationship is client-dependent;
once an object’s status is known, the object must register
itself with a publisher in order to pass on the latest updates
on events. The client receives notifications and messages
from all objects to which it is subscribed, and thus “learns”
the object’s status. The MQTT communications protocol
allows our system to split the communications channels into
various subchannels that can be used according to a project’s
needs. In our case study, each communications channel was
assigned to each of the available routes, that is, there are as
many communications subchannels as there are routes into
the city. For example, for the Santo-Domingo-to-Quito route,
the subchannel is assigned the code “SDaQ”. (For more
details, see Table 1 in Section II.).

TABLE I
ACCESS ROUTES INTO QUITO

Route Identification Point of Origin (city) Destination Point
(city)

SDaQ Santo Domingo Quito
QaSD Quito Santo Domingo
IaQ Ibarra Quito
QaI Quito Ibarra

LBaQ Los Bancos Quito
QaLB Quito Los Bancos

The subchannels referred to above are mapped to the

Topics filter of MQTT. Topics identifies a communications
channel from its alphanumeric string. (By the way, the
string is hierarchical, that is, it divides communications
media in a granular way.) Thus, the hierarchical string can
be used to generate different notification systems for the
same route. For example, we can create an emergency
communications channel for the Santo-Domingo-to-Quito
route and call it “SDaQ/Emergency.” On this channel, we
can classify emergencies according to type, e.g.,
“SDaQ/Emergency/ Accident.” Using this schema, we can
subdivide channels according to the system’s design.

Figure 7 shows how a message circulates from a message
publisher to subscribers. In order for a device to receive a
message using the MQTT protocol, the device must enable
an MQTT client that has the capability to establish a network
connection with the Mosquito Broker [39]. The connection
parameters must specify the listening port number, the

username and password for the server, the service quality
(QoS), a level for MQTT message delivery, and an SSL
security certificate for channel encryption (if the server
requests it). In addition, the connection must specify the
message sending (PING) frequency—known as “Keep
Alive”—for the server. MQTT uses this message to maintain
a permanent network connection with Mosquito.

Fig 7. Real-time notification system.

As shown in Figure 7, there is no limit to the number of

devices that can connect to the server, since the protocol
accepts connects from all types of sensors (such as
smartphones, the Raspberry, or the Arduino) that have the
capability to implement an MQTT client and use a web
connection to access the Mosquito server. We should point
out that, in the future, we will be able to incorporate new
sensors of types yet to be developed into this flexible system.

The main parameters to implement an MQTT client on a
smartphone include the IP address of the MQTT server
(broker) and the access credentials (username and password).
The message service quality is 2 (QoS=2), which indicates
that, for all messages sent, the protocol guarantees that the
message will arrive exactly one time at the target. Once
configured, the smartphone is enabled for publishing and
receiving messages.

III. RESULTS AND DISCUSSION

The test scenario follows the steps outlined in Figure 2 of
the Technical Architecture Section II. Figure 8 illustrate the
Santo-Domingo-to-Quito route (SDaQ). This route is traced
onto an interactive Google Map that the end user can
navigate.

Fig 8. Details of the Route of entrance to Quito.

513

The map identifies any ongoing traffic incidents and
corresponding relevant data, such as the average transit
speed on the route (km/h), delay time (in hours: minutes),
and the (approximate) Average Traffic Density (IMT, or
Intensidad Media de Tráfico in Spanish)—that is, the
average number of vehicles on the route. There are three
routes registered in the ESR-Q system. Details can be found
in Table 1 of the System Architecture section.

The ESR-Q system is based on requirements specified by
the heavy transportation companies associated with
FENATRAPE (Federación Nacional de Transporte Pesado
del Ecuador, or The National Federation of Heavy
Transportation of Ecuador) [40]. For the test phase, we
contacted two Ecuadorian heavy haul enterprises through
this federation. We wanted each truck in their fleet to
become a separate data source using the modules we
developed for the Raspberry and Arduino, or through an
application installed on the mobile device (smartphone) of
each driver. Our sample included 50 vehicles tested over a
period of 30 days. Our goal was first, to determine if the
predictive values generated by the system were within
acceptable ranges of true values and, second, to verify
whether the instantaneous messaging system enhanced
driver awareness about roadway conditions so that they
could make better decisions in time. We tested our system
progressively, that is, we started with a sample of five
drivers in order to validate errors and improve the ITS
application After that, we expanded the test to 10 drivers,
then continued expanding until we included all 50 truckers.
The data were then tabulated for analysis. We calculated the
percent error deviation from real conditions. Then the data
obtained from the ESR-R system were compared to data
from the commercial applications, Waze and Google Maps,
in order to verify whether the ESR-Q system’s degree of
accuracy fell within expected ranges.

We also evaluated the performance of the database
server’s hardware and the mobile application. We needed to
verify that host resources could handle operations, e.g., that
there was enough RAM memory, processing power, and
bandwidth for operability. The results are presents in the
next section (4.1)

A. System Performance

In this section, we analyze the feasibility of the ESR-Q
system. That is, we discuss our results in terms of our
predictions for average speed and delay times in comparison
with real conditions. Table 2 shows the results for the tests
undertaken on the entry routes into Quito.

TABLE II

 % ERROR FOR PREDICTED TIME VS ACTUAL TIME

 SDaQ IaQ LBaQ
Predicted time (min) 174,96 125,46 151,44
Actual time (min) 182,25 123 157,74
% Error 4% 2% 4%

As one can see, predicted delay times are congruent with

real delay times. Also, the percent error between the
predicted measurement and the actual one is minimal, which
indicates that the system under development fulfills drivers’
expectations. We can also say that the test results match

times predicted by the commercial applications that are
widely available. Once can even say they are better, since
Waze, for example, is a non-flexible application, in the sense
that its route catalogue is not up-to-date, nor can it offer
customized services.

We have been able to validate, as seen in Table 2, that
predicted times closely match actual times, since the percent
error is low. Undoubtable, the percent error depends on
crowdsensing scale. That is, the more observations are
available as input to the calculations, the closer the projected
times will approach actual times. It is quite different to base
predictions on dozens of user observations versus thousands
of observations. The more that data accurately reflect true
roadway conditions from different perspectives, the more we
can will significantly reduce possible sampling errors. We
should emphasize that that the ESR-Q system can link to any
roadway incident, such as accidents or landslides, since it
captures the average speed of every device under any
circumstance in real time. For example, when traffic is
intense, the inserted observations will record a low average
speed (<10 Km/h), which is reflected in the delay time on
the route.

Fig 9. Resources consumed by the mobile application

As Figure 9 shows, the application uses a minimal level of

resources; bandwidth use does not exceed 2 megabytes for a
two-and-a-half-hour trip, indicating that the application
consumes a minimal amount of resources. Resource
consumption is an important consideration for this
application, since excessive use of the system’s energy or
storage resources can cause the mobile application to
deinstall, and the Rasberry and Adruino platforms to be
disconnected. We should emphasize that both the Raspberry
and the Arduino devices are permanently connected to a
vehicle’s power outlets, which eliminates any risk to the
device’s autonomy.

Battery longevity, on the other hand, is directly related to
the amount of data sent to the server. If the rate of data
transmission increases, battery consumption also increases.
Before data is sent from the server, the mobile application
uses a device’s sensors to determine the average speed of
host transmission. The most frequently tapped sensor is the
global Geo Positioning System (GPS), since the GPS is
periodically measuring geographic location in order to
determine average speed. Our project, therefore, proposes
that drivers use either the Raspberry o Arduino devices as an
alternative to the mobile application, since we noticed some

514

reluctance in some end users to use the mobile application
because of its resource consumption and/or lack of privacy
or confidentiality.

Both battery consumption and storage space are
determinant factors for end users. A real-time application
will consume host resources in order to keep the client
informed of system events. Smartphones need to establish
permanent connections with the Mosquito server in order to
receive real-time notifications. Figure 9 shows the minimal
levels of resource consumption on a mobile application. The
results show that resource consumption does not have a
significant impact on devices. Our anonymous questionnaire
to drivers revealed that they did not experience any type of
technical problem with the mobile application, nor did they
experience excessive loss of storage space. They noted, on
the contrary, that the mobile application was intuitive and
easy to use.

B. Server Performance

We conducted performance tests on the data server in
order to determine the number of transactions that it could
handle. We used JMeter [41] software to simulate a large
flow of queries to the server. These tests were conducted
progressively, that is, the number of connections was
increased gradually by 1,000 queries per pass. We began
with 1,000 simultaneous requests, and reached a maximum
of 20,000 requests. Results are given in Figure 10. The
server performed according to expectations.

Fig 10. Data server performance

For the initial tests, the percent error was small, and when

the number of queries was increased, server performance
declined gradually. Since the error rate was not exponential,
we were able to adjust server hardware resources to the
number of clients that needed to be managed on the system.

Fig 11. Maximum and minimum times for server request

Figure 11 illustrates how much time a server request may
be delayed. Results are given in milliseconds; the maximum
wait time for a server response falls within normal tolerances
for an end user. Slow system response could cause users to
stop using the ESR-Q system, which would affect the
system’s crowdsensing scale. Delays in information
processing can also diminish the system’s ability to mimic
real time performance. During the test execution, the system
maintained optimal conditions for end users. These test show
that the server is capable of handling massive amounts of
simultaneous queries through the SOS web interface. The
number of requests is given in increments of ten thousand,
which offer an advantage to deployment in the general
community.

In addition, server performance does not degrade
significantly when the number of queries increases. This
indicates that the server maintains its capacity to handle real-
time responses for many users. We also monitored the
Mosquito server, focusing on the service implemented on the
server at EPN (Escuela Politécnica Nacional), in order to
determine how much RAM, the server uses to handle one
client-server connection. We found that Mosquito needs
about 5KB to manage a network connection, as shown in
Figure 12.

Fig 12. Memory required for MQTT connections

These data imply that, for a server with approximately

2GB of RAM memory, Mosquito has the capacity to handle
430,000 simultaneous network connections. These data
indicate that a Mosquito-based implementation would have a
light footprint, and the system would not need lots of
hardware resources to handle thousands of network
connections. Ultimately, the physical characteristics of the
server will define the limits of the application solution.

C. Mobile Application Performance

The performance of the mobile client was evaluated,
comparing it to other mobile applications with global
distribution such as Waze and Google Maps. Our objective
was to validate our proposal against two heavyweight
commercial transportation applications networked for
smartphones. We should point out that all types of sensor-
based devices, not just smartphones, can use the ESR-Q
system, which gives it an advantage over these other mobile
systems. This adaptability implies that it is theoretically
possible to add any type of sensor to the system and capture
all types of measurements, e.g., asphalt temperature,
humidity, wind speed, precipitation levels, etc. Adaptability
allow the ESR-Q system to scale modularly with time. ESR-
Q also avoids being limited to only one type of data.

515

Fig 13. Predicted time vs. real-time on Route SDaQ

Figure 13 shows a comparison between times predicted

by the ESR-Q systems and the actual time needed to
complete one route. The graph makes clear the fact that the
times coincide closely, proving that our prototype simulates
real conditions and can be reliably used by end users. As
shown in Figure 14, the ESR-Q system produces results that
are comparable to those produced by Waze and Google
Maps. Our tests were undertaken with a sample of 50 users
who completed 90 trips in 30 days.

Fig 14. % Error between predicted time and actual time on the SDaQ route

The times forecasted by ESR-Q closely approximate the
actual time taken to complete one trip into Quito. The
percent error between real and forecasted time is less than
4% for a trip that takes 150 minutes. Clearly, these results
will improve with denser crowdsensing. Increasing the
number of users will increase the amount of data sent to the
server. These data, in turn, feed back into the calculations of
delay times on each of the routes.

Fig 15. % Error vs Number of sensors

Figure 15 shows the effect of crowdsensing on the system.
Basically, the greater the number of sensors in the system,
the more the percent error between forecasted time vs. actual
time decreases. Nevertheless, towards the end of the test
cycle, the percent error no longer decreased, indicating that
there remains a minimal percent error associated with the
forecasting system. But we can expect that when the number
of users is significantly high (in the tens of thousands), the
percent error for minimal tolerance will also decrease.

To measure the performance of the mobile application, we
used the application App tune-up kit (or similar) [42], which
monitors an application’s performance in terms of power
consumed, percent CPU used, and percent GPU used.
Mobile application performance was measured in two modes:
first, when the application was used in the foreground
(intensive use), and second, with the application running in
the background, i.e., with only MQTT and the sensorization
block actively waiting for MQTT protocol messages. In the
second mode, the end user is not interacting with the system.
Testing was conducted on the drivers’ smartphones, meaning
that the efficiency and performance of these devices
depended on how long they were used, as well as their
maintenance and care.

Fig 16. Use of hardware resources when application is foregrounded

Figure 16 depicts performance when the mobile
application is used in the foreground, with energy
consumption measured in Watts (W). ESR-Q did not exceed
2W of energy use, implying that our application will not
significantly drain a smartphone’s battery. In terms of
consuming CPU and GPU resources, energy use is around
4% and 6%, respectively. These latter figures show that
hardware resource consumption is minimal in comparison
with the other applications. We should underscore the fact
that this consumption relates to patterns of foregrounded use,
i.e., times when the user is interacting intensively with the
application.

Figure 17 show hardware resource consumption while the
application is running in background mode. This is a
measurement of background processes that remain active,
specifically, real-time reception of messages and delivery of
observations to the data server. These modules were

516

programmed as services (service) on the Android platform,
so they operate independently of the mobile application’s
main thread. In short, these background processes keep the
server informed of the relevant data used to describe the
route, and they maintain a permanent host connection for
receiving MQTT messages.

Fig 17. Use of hardware resources when application is backgrounded

Comparing Figure 17 (foreground use) to Figure 16
(background use), we see that ESR-Q uses far fewer
resources when running in background mode. For example,
energy consumption falls below 1 W, and CPU and CPU
resource consumption remain below 1. In both modes,
consumption is below that of the social networking
applications. The results indicate that our application will
not significantly or negatively impact either the end user’s
economic resources or his or her hardware resources.

Overall, the results show that our platform, developed to
manage traffic in the city of Quito, can be successfully
integrated into its heavy transportation system. Drivers in
Quito have remarked that they do not have any other
software package with these characteristics that alerts them
about the status of the main access routes into the city.
Survey participants also noted that the data that are available
via social networking applications is mostly
decontextualized, thus engendering distrust in users and
doubts about receiving true information based on real
circumstances.

The results obtained from our integration testing parallel
those derived from actual conditions that drivers experience
when trying to enter Quito. The ESR–Q system
competitively in communications server. In comparison with
the other applications mentioned, like the state-of-the-art
systems ITS-Michigan or ITS-Rusia, our solution costs very
little to implement, thus making it an attractive option for
traffic managers in other cities. In contrast to the research
projects undertaken by Olvera [28], Lesani et al [29], and
Pallavi and Satone [31], our project uses a standard web
interface based on SWE-SOS for data capture, thus making
it much easier to simultaneously collect data and metadata.
Under test conditions, our pilot project registered low
percentages of error [29], even for a roadway that is

hundreds of kilometers long, compared to the roadway
studied by Lesani et al [29], which only incorporated a few
hundred feet. Furthermore, our solution offers a notification
system in real-time that keeps users informed of changing
conditions along the route. Real-time capability improves the
situational awareness of drivers, thus also improving the
decisions that drivers make.

IV. CONCLUSION

Cities whose populations and vehicular traffic flows are
increasing should implement ITS (Intelligent Transportation
Systems) that allow them to balance traffic flows and
improve mobility throughout these cities. Quito, for example,
has experienced a disproportionate growth in parking lots,
which has encouraged even more traffic and subsequently
increased travel times within the city. Our research offers an
ITS solution for Quito called ESR–Q. ESR-Q issues real-
time notifications to drivers about traffic problems occurring
on roadways. It also broadcasts data on roadway conditions
such as average vehicular speed, approximate delay times,
and Average Traffic Density (ATD). With these data, drivers
can develop and enhance a reality-based, situational
awareness that lets them make timely decisions and optimize
their operating costs for trips to and from Quito. The ESR-Q
system meets the needs of the heavy haul drivers who are
likely enter Quito along its major routes.

The technology employed for our pilot project allows
developers to integrate all types of heterogeneous sensors
into the system, since the application is based on an SWE-
SOS standard that includes a web interface for handling data
interoperability between all types of devices. A real-time
platform for traffic notifications that uses MQTT messaging
services was implemented. This configuration allowed us to
send notification messages to everyone in the driver
community. Clearly, enhanced community awareness
increases overall situational awareness. Now end users can
always be informed of roadway conditions and in all places.

Our use of a non-relational database such as MongoDb
increases the communications system’s flexibility, since it is
possible to store observations in SOS format directly into the
database. The database’s GeoJSON capability allows users
to query the database using geospatial and time-based filters.
This means that the system can obtain observations for s
specific place over a specific interval of time.

Our systems testing was performed on a sample of 50
users who completed 90 trips on major access routes into
Quito. Tests were carried out over a 30-day period, a enough
time to make improvements to the system based on the
truckers’ expressed needs. We used the data generated by the
system to successfully optimize the budgets assigned to
operating costs for travel to Quito. The trucker community
(test base) affirmed that, during the test phase, our
application met their expectations and successfully gave
them useful information about roadway conditions and
alerted them to traffic problems on the route before they
were directly encountered, thus fulfilling the goal of raising
situational awareness on the road. Ecuador does not have an
ITS system for vehicular management; this software really
represents a pioneering effort to solve traffic management in
this country.

517

The test results confirm that we have developed an
intelligent transportation system for Quito, Ecuador that is
capable of broadcasting relevant data that assists drivers to
optimize their decision-making and thus reduce operating
costs related to long haul transportation.
It should be noted that the forecasts delivered by the system
have an error rate of 3.21% compared to actual roadway
times. We have noted that when the number of sensors
incorporated into the system increases, the closer the
forecasting approaches real-time conditions, which affirms
that crowdsensing density plays a fundamental role in
system deployment. In addition, we have presented evidence
that shows that results from our system are comparable to
results obtained from commercial applications such as
Google Maps and Waze. To summarize, this system fulfills
driver expectations for predicting arrival times and for
sending real-time notifications that alert drivers about any
type of incident that affects traffic flow, thus aiding drivers
in planning their trips. This application has proven to be a
viable and useful tool to meet logistical challenges.

The performance of our ESR-Q application was optimal.
Test results show that demand on device resources,
including the battery, CPU, and GPU, is less than that for
commonly used mobile applications such as Google Maps
and Waze. Regarding Google Maps, ESR-Q makes 0.8%
less demand on device CPU and 2.1% less on the GPU. In
comparison to Waze, ESR-Q makes 1% less demand on
CPU and 2.5% less on GPU. In terms of energy
consumption (battery), the ESR-Q application uses less than
2W for a 1 hour 45-minute trip (approximately). We can
thus conclude that our system does not make intense
demands on the hardware resources of the host device. These
are useful conclusions for developers, who know that
straining hardware resources can cause N application to
deinstall itself, and thus bring down the whole
communications system.

In the future, we plan to incorporate new technology into
our system related to data visualization. For example, we
want to research an implementation that uses Lambda
Architecture [40], in which data processing operations run in
parallel with data production. In our case, notification alerts
on roadway changes would be transmitted while data was
being generated. In addition, we want to implement other
features offered by the MQTT protocol, such as hierarchies
for communications media and connectivity to remote
MQTT servers, in order to eliminate any potential single
points of failure in the system.

ACKNOWLEDGMENTS

We express our gratitude to the Escuela Politécnica
Nacional (National Polytechnic Institute) for financing the
following project: PIJ 15-20 “E-iRoads: Ecuador -
Intelligent Roads. Un Sistema inteligente para la gestión de
tráfico en las periferias de grandes ciudades (Caso de
Estudio: Quito)” [“E-iRoads (Intelligent Roads) in Ecuador:
An Intelligent System for Traffic Management on the
Outskirts of Large Cities. The Quito Case Study”].

REFERENCES
[1] S. Singh and N. Singh, “Internet of Things (IoT): Security challenges,

business opportunities & reference architecture for E-commerce,” in

2015 International Conference on Green Computing and Internet of
Things (ICGCIoT), 2015, pp. 1577–1581.

[2] R. Gunasagaran et al., “Internet of things: Sensor to sensor
communication,” in 2015 IEEE SENSORS, 2015, pp. 1–4.

[3] G. B. Satrya, H. T. Reda, K. J. Woo, P. T. Daely, S. Y. Shin, and S.
Chae, “IoT and Public Weather Data Based Monitoring & Control
Software Development for Variable Color Temperature LED Street
Lights,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 7, no. 2, p. 366, Apr.
2017.

[4] A. I. Niculescu, B. Wadhwa, and E. Quek, “Smart City Technologies:
Design and Evaluation of An Intelligent Driving Assistant for Smart
Parking,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 6, no. 6, p. 1096,
Dec. 2016.

[5] L. Benny and P. K. Soori, “Prototype of Parking Finder Application
for Intelligent Parking System,” Int. J. Adv. Sci. Eng. Inf. Technol.,
vol. 7, no. 4, p. 1185, Aug. 2017.

[6] S. Kaur, S. Jain, and D. Virmani, “Deployment of Wireless Sensor
Networks for intelligent information retrieval in marine
environment,” in 2015 IEEE International Conference on Control
System, Computing and Engineering (ICCSCE), 2015, pp. 371–376.

[7] Q. Wang, J. Zheng, H. Xu, B. Xu, and R. Chen, “Roadside Magnetic
Sensor System for Vehicle Detection in Urban Environments,” IEEE
Trans. Intell. Transp. Syst., vol. 19, no. 5, pp. 1365–1374, May 2018.

[8] Y. Liang, X. Meng, Y. Hu, and K. Zhang, “Design and
implementation of an ultra-low power wireless sensor network for
indoor environment monitoring,” in 2017 IEEE 17th International
Conference on Communication Technology (ICCT), 2017, pp. 937–
940.

[9] B. S. Leelar, E. S. Shivaleela, and T. Srinivas, “Cognitive Sensing in
Smart Cities Using Optical Sensors,” in 2015 International
Conference on Advanced Computing and Communications
(ADCOM), 2015, pp. 13–15.

[10] V. H. Gonzalez-Jaramillo, “Tutorial: Internet of Things and the
upcoming wireless sensor networks related with the use of big data in
mapping services; issues of smart cities,” in 2016 Third International
Conference on eDemocracy & eGovernment (ICEDEG), 2016, pp. 5–
6.

[11] T. Nguyen, “Ahead of the Curb: Smart Roads,” in 2018 IEEE
International Smart Cities Conference (ISC2), 2018, pp. 1–2.

[12] AEADE, “Sector Automotor en Cifras,” 2018. .
[13] R. Mena, “Análisis, caracterización y simulación del transporte de

vehículos de carga pesada (caso de estudio: Quito),” Escuela
Politécnica Nacional, 2018.

[14] G. Coba, “Dos ciudades ecuatorianas entre las 100 urbes principales
con más horas perdidas en el tráfico,” El Comercio, Quito - Ecuador,
2017.

[15] D. Bravo and A. Carvajal, “¿Cuántas horas al año pasan los quiteños
atascados en el tráfico?,” El Comercio, Quito - Ecuador, 2018.

[16] Waze, “Waze official page,” 2019. .
[17] I. Thomson and A. Bull, La congestión del tránsito urbano: causas y

consecuencias ecnonómicas y sociales. Santiago de Chile: United
Nations, 2001.

[18] R. Sanchez-Iborra, J. F. Ingles-Romero, G. Domenech-Asensi, J. L.
Moreno-Cegarra, and M.-D. Cano, “Proactive Intelligent System for
Optimizing Traffic Signaling,” in 2016 IEEE 14th Intl Conf on
Dependable, Autonomic and Secure Computing, 14th Intl Conf on
Pervasive Intelligence and Computing, 2nd Intl Conf on Big Data
Intelligence and Computing and Cyber Science and Technology
Congress(DASC/PiCom/DataCom/CyberSciTech), 2016, pp. 544–
551.

[19] G. Baban, A. Iovanovici, C. Cosariu, and L. Prodan, “Determination
of the critical congestion point in urban traffic networks: A case
study,” in 2017 IEEE 14th International Scientific Conference on
Informatics, 2017, pp. 18–23.

[20] A. El Mrini and A. Ghacham Amrani, “Wireless Sensors Network for
Traffic surveillance and management in Smart Cities,” MATEC Web
Conf., vol. 200, p. 00024, Sep. 2018.

[21] F. Zhu, Z. Li, S. Chen, and G. Xiong, “Parallel Transportation
Management and Control System and Its Applications in Building
Smart Cities,” IEEE Trans. Intell. Transp. Syst., vol. 17, no. 6, pp.
1576–1585, Jun. 2016.

[22] A. Dubey, M. Lakhani, S. Dave, and J. J. Patoliya, “Internet of
Things based adaptive traffic management system as a part of
Intelligent Transportation System (ITS),” in 2017 International
Conference on Soft Computing and its Engineering Applications
(icSoftComp), 2017, pp. 1–6.

518

[23] ITS-Michigan, “Sociedad Inteligente de Transporte de Michigan,”
2018. .

[24] ITS-Rusia, “Intelligent Transport Systems of Russia.” .
[25] P. Mendez, “Red privada virtual como alternativa para el respaldo de

información digital en el ilustre municipio de Baños,” UNIANDES,
2017.

[26] R. Banner and A. Orda, “Bottleneck Routing Games in
Communication Networks,” IEEE J. Sel. Areas Commun., vol. 25, no.
6, pp. 1173–1179, Aug. 2007.

[27] H. Youn, M. T. Gastner, and H. Jeong, “Price of Anarchy in
Transportation Networks: Efficiency and Optimality Control,” Phys.
Rev. Lett., vol. 101, no. 12, p. 128701, Sep. 2008.

[28] X. Olvera, “Sistema colaborativo para el monitoreo de tráfico
vehicular,” Instituto Politécnico Nacional, 2014.

[29] A. Lesani, S. Jackson, and L. Miranda-Moreno, “Towards a WIFI-
-‐Bluetooth system for traffic monitoring in different transportation
facilities.” McGil University.

[30] Bluetooth official page, “Bluetooth 5 | Bluetooth Technology
Website.” .

[31] P. A. and M. P., “VANET based Real-Time Intelligent
Transportation System,” Int. J. Comput. Appl., vol. 145, no. 4, pp.
34–38, Jul. 2016.

[32] Arduino official website, “Arduino UNO R3,” 2014.
[33] Raspberry official website, “Raspberry Pi 3.”.
[34] Synacorp Trading & Services, “Arduino GY-NEO6MV2 GPS

Module c/w Antenna & Flight Control EEPROM.”.
[35] Rhydo Technologies (P) Ltd, “SIM 900-RS232 GSM/GPRS Modem

User Manual,” 2011.
[36] Itead Studio, “Raspberry PI GSM Datasheet,” 2013.
[37] ISO, “ISO 8601 Date and time format.”.
[38] MongoDB Manual, “GeoJSON Objects.”.
[39] Eclipse Mosquito official page, “Eclipse Mosquito,” 2018.
[40] FENATRAPE official page, “FENATRAPE.”.
[41] Apache JMeterTM official page, “Apache JMeter.”.
[42] Qualcomm Developer Network, “App Tune-up Kit.”.

519

