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Abstract

In 1988, Beck [10] introduced the notion of coloring of a commutative

ring R. Let G be a simple graph whose vertices are the elements of R

and two vertices x and y are adjacent if xy = 0. The graph G is known

as the zero divisor graph of R. He conjectured that, the chromatic

number χ(G) of G is same as the clique number ω(G) of G. In 1993,

Anderson and Naseer [1] gave an example of a commutative local ring

R with 32 elements for which χ(G) > ω(G).

Further, this concept of zero divisor graphs is well studied in alge-

braic structures such as rings, semigroups; see Anderson et. al. [1, 2],

F. DeMeyer et. al. [14, 15], LaGrange [31, 32], Redmond [53, 54],

and in ordered structure such as lattices, meet-semilattices, posets and

qosets; see Alizadeh et. al. [9], Estaji and Khashyarmanesh [17], Halaš

and Länger [21], Joshi et. al. [27, 28, 29], Lu and Wu [37], Nimbhorkar

et. al. [48, 49, 68].

In this Thesis, we deal with the basic properties such as connectivity,

diameter, girth (gr), eccentricity (e), radius (r), center, cut-set, clique

number (ω), chromatic number (χ), domination number (γ) etc. of the
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zero divisor graph of a poset and its complement. This Thesis contains

four chapters.

In the first Chapter, we relate lattice properties of a distributive lat-

tice L with graph properties of the corresponding zero divisor graph,

G{0}(L). Cycles in G{0}(L) are investigated. Also an algebraic and a

topological characterization is given for the graph G{0}(L) to be tri-

angulated or hyper-triangulated. Further, we study edge chromatic

number χ′ of G{0}(L).

In Chapter two, we study the zero divisor graph of a Boolean poset.

We determine the diameter, radius, center, eccentricity and domination

number of the zero divisor graph of a Boolean poset.

It is easy to observe that the non-isomorphic posets may have iso-

morphic zero divisor graph. In view of this, the following problem is

worth to study.

Problem 2: Find the class P of posets for which G(P ) ∼= G(Q) if

and only if P ∼= Q for P,Q ∈ P .

We partially answer this problem by proving that the class of Boolean

posets is contained in P .

One of the main problems in the theory of zero divisor graphs is

the realization of zero divisor graphs. LaGrange [32] characterized the

graphs which are realizable as zero divisor graphs of Boolean rings

while Lu and Wu [37] considered this problem for general posets. In

this Chapter, we also considered the realization problem for Boolean

posets.
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Chapter three deals with (GI(L))
c, the complement of the zero-

divisor graph GI(L) with respect to a semiprime ideal I of a bounded

lattice L. We have obtained necessary and sufficient conditions for

(GI(L))
c to be connected and also determined its diameter, radius,

center and girth. Further, we have calculated the vertex chromatic

number of (GI(L))
c, where L = 2n. Also a form of Beck’s conjecture

is proved for GI(L) when ω((GI(L))
c) < ∞. In the last section of this

Chapter, we study the cut-sets in (GI(L))
c.

The fourth Chapter is devoted for the study of matrices over lat-

tices. The concept of matrices over Boolean algebra was first studied

by Luce [38]. He proved that the set of matrices over a Boolean al-

gebra forms a lattice ordered semigroup with zero. Rutherford [55]

studied the eigenvalue problem for Boolean matrices. Further, this

concept was generalized for more general class of distributive lattices

by Tan in [60, 62], see also [30, 40, 61]. Redmond [53] introduced the

concept of zero divisor graphs over a non-commutative ring. Among

non-commutative rings, matrix rings have received special attention in

[11, 13, 42]. Motivated with the work of Redmond [53] about zero divi-

sor graphs of non-commutative rings, we have studied the zero divisor

graphs of matrices over lattices.

In this Chapter, we study the basic properties such as connectivity,

diameter and girth of the zero divisor graph Γ(Mn(L)) of n×n matrices

over a lattice L with 0. Further, we consider the zero divisor graph

Γ(M2(Cn)) of 2 × 2 matrices over an n-element chain Cn. We have
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determined the domination number of Γ(M2(Cn)). Also we have shown

that Beck’s Conjecture is true for Γ(M2(Cn)). Further, we have proved

that Γ(M2(Cn)) is a hyper-triangulated graph.

Lemmas, Theorems, Remarks and Definitions are numbered con-

sequently in each chapter without making distinction between them.

Figures are sectionally numbered. References and Index are given at

the end of the Thesis. References are listed alphabetically and yearwise.

The end of the proof is indicated by the symbol 2.

Place: Pune Ms Anagha U. Khiste

Date: 28th February 2014.
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