Advanced Science Engineering Information Technology

Vol.8 (2018) No. 6 ISSN: 2088-5334

Trust Model Based on Islamic Business Ethics and Social Network Analysis

Nor Faradila Kolan^{#1}, Norleyza Jailani^{#2}, Marini Abu Bakar^{#3}, Rodziah Latih^{#4}

[#] Center for Software Technology and Management, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia Email: ¹faradila.kolan@yahoo.com, ²njailani, ³marini, ⁴rodziah.latih@ukm.edu.my

Abstract—Buyers and sellers in e-commerce market such as e-auction form a virtual community. They use the feedback system to rate each other following a completed transaction and these ratings are used to build their reputation in the virtual community. Existing reputation systems can often be easily manipulated by forming cohesive group in giving fake user feedbacks to increase their respective reputation. This practice is a clear violation of Islamic business ethics. In addition, there is currently no real-time support for reputation system and this causes users to be misinformed on the reputation of a seller. To improve the reputation system this study developed a trust framework based on business Islamic ethics. In this paper, a trust model which evaluates conformance to nine Islamic business ethical codes is proposed to calculate users' initial trust value based on their ethical behavior. The trust model proposed the Islamic business ethics algorithm which calculates the user compliance to Islamic business ethics (IBE) score based on trading partner's feedbacks. Because of feedback frauds can still occur, this study introduces a cohesive group algorithm to track users who collaborate to give false feedbacks. The cohesive group algorithm applied k-core algorithms which is capable of determining the strength of the relationship of every user in the cohesive group. The cohesive group algorithm also proposed a cohesive score to determine the feedback reliability of every user's transaction based on the user's k-core and the highest k-core. In the group user reputation (trust score) is measured by considering the feedback reliability status for all transactions. A reputation prototype system for e-auction was developed as the test bed to validate the trust model through simulation of the set of initial experiments, showing the feasibility and benefit of the model.

Keywords—trust model; e-auction; reputation; islamic business ethics; K-Core algorithm.

I. INTRODUCTION

Most e-auction systems such as eBay, Amazon, Yahoo!, eBid, Webstore.com, OnlineAuction.com, eCRATER, swoopo as well as Lelong.my use reputation systems in order to increase consumer trust towards e-auction systems [1]. Reputation system allows users to provide feedback on services and customer support in a particular transaction. However, some users conspire in exploiting the reputation system by giving positive feedback to increase their reputation.

An earlier study which compared three techniques to detect fraud in e-auction and discovered that the reputation system is highly unsatisfactory in comparison to both data mining-based system and social network analysis [2]. The reputation system may provide the most comfortable and fastest access for users. Nonetheless there are a few weaknesses which can be identified, in that there is no real-time support, plus the failure to give users credible and accurate information and to inculcate trust among users. Li

[1] also identified some other problems with the reputation system, which include providing low incentives in giving feedback, the tendency towards having only positive feedbacks, potential misuse of the system, and the frequent changes in the identity of the users.

Lin Jheng and Yu [3] combined both the reputation system and network analysis in order to detect group frauds in e-auction. There is minimal study that investigates technical trust model from the Islamic standpoint [4], [5], and yet it emphasizes only on the integrity and welfare aspects. Hence, this research aims to improve the trust model of the e-auction reputation system by taking into account three widely accepted principles (ability, integrity, and benevolence), the adherence to Islamic business ethics, as well as social network analysis algorithm to identify users who manipulate the reputation system, in an attempt to build a sharia-compliant e-auction system. This paper consists of an introduction in the first section, the second section discusses the theory and techniques used for establishing trust, the third section describes the proposed trust model

and explains the formulas along with experiment results and discussion, and finally, the fourth section provides the conclusion of the study.

II. MATERIAL AND METHOD

A. Trust Theory and Models

Early studies have found that the reputation system has been widely used in almost all e-commerce businesses including e-auction. An e-auction reputation system is sometimes manipulated in such a way that causes fraud. However, it can be remedied by combining social network analysis elements to identify dishonest and untrustworthy users despite having received positive feedback from other users.

Majd and Balakrishnan [6] explained trust as a multidimensional entity that emphasizes various attributes for example; reliability, integrity, security, and honesty. Consumer trust is essential, especially in online businesses. With regards to e-auction, consumer trust is essential because transactions do not occur face-to-face; instead, all transactions happen virtually. Trust can be measured in various ways. Among the things which are highlighted is the accuracy of the information content related to the products, the quality of the products, the efficiency of the services provided, as well as the attitude of the consumers. Literature studies have found that many researchers recognize the three characteristics of trust in a person or a service (See Table 1). The trust model put forward by Mayer et. Al. [7] encompasses ability, benevolence, and integrity as its main characteristics. The ability feature covers reliance on the skills, competency, and expertise of the trustees in specific areas. The benevolence feature suggests that a trustee owes a fiduciary duty to his trustor, who is willing to put his trust on the trustee in providing him the best service. The relationship between integrity and trust involves the acknowledgment by the trustor that the trustee will abide by the principles acceptable to the trustor. These three attributes may seem different from each other, but they are generally interconnected and overall contribute to the credibility of an individual.

Table 1 is a summary of the critical attributes of trust presented in previous studies which characterize the concept of trust in general. The five attributes that take precedence over any other features are ability, benevolence, integrity, motivation, and competency. The three main attributes which can be asserted to be the strong key elements are ability, benevolence, and integrity. Under the ability feature, the level of consumer trust is measured byways of protection, fairness, and reliability in safeguarding the rights of consumers in times when they are facing problems. On the other hand, the benevolence attribute focuses more on cooperation, privacy and mutual concessions between parties in a transaction. Also, integrity ensures transparency, honesty and full commitment on behalf of the users concerning the matters concerning sale and purchase in ensuring that business principles are fully complied. Alaaidroos [4] developed a model of trust based on Islamic business ethics by studying both the integrity and benevolence attributes. However, since the ability feature is

an attribute recognized by many researchers, it is worth being examined and included in the trust model.

In conclusion, the nine trust models have been compared based on the attributes each contains. Five out of nine models agree on three trust attributes which are integrity, benevolence and ability. Hence these three attributes are the basic trust attributes selected to be examined further.

TABLE I COMPARISON OF TRUST MODEL AND ATTRIBUTES

Trust	Attributes of Trust									
Model	Integrity	Benevolence	Ability	Motivation	Competency					
[7]	✓	✓	✓	-	-					
[8]	✓	✓	✓	✓	-					
[9]	√	✓	-	-	✓					
[10]	✓	✓	✓	-	-					
[11]	✓	✓	-	-	✓					
[12]	✓	✓	✓	-	-					
[13]	√	√	√	-	-					
[14]	✓	✓	-	-	✓					
[4]	✓	✓	-	-	-					

B. Islamic Business Ethics

Ethics is a branch of philosophy that revolves around the idea of moral behavior which states whether something is right or wrong, or whether if it is good or bad. Religious traditions differ on what is right or proper [15]. Sidani and Al Ariss [15] emphasized that a critical use of religious ethics cannot be ignored in business ethics. In Islamic theology and philosophy, akhlaq, an Arabic term, is generally used to refer to a noble character, morality and ethical conduct. Islam places great emphasis on embodying akhlag. According to Sved and Medcalfe [16], in Islamic philosophy, the disposition towards akhlaq may appear because of one of the following reasons: (a) fitrah, i.e. the original or natural state in which humans are created by God; (b) aadah, i.e. the habit formed by continual repetition of certain acts that creates a certain disposition; and, (c) mumarisah, i.e. practice and conscious effort which will eventually produce a disposition. Clearly, the topic of business ethics falls under the third type of Islamic ethical disposition, i.e. practice and effort. The view of Islam as a way of life elevates ethics as an essential element in all aspects of a Muslim's life, including issues involving business and administrative. A Muslim should not only uphold the five pillars of Islam but he must also adhere to the Islamic codes of ethics in any type of activity. Hundreds of paper works have been written on business ethics. However, only a few discuss Islamic business ethics [15]-[18].

In the Islamic arena, businessmen have to face various ethical issues which are sometimes difficult to find the solution to. Issues faced by administrators and employees may include bribery, nepotism, theft, fraud, conflict of interest, quality control issues, discrimination, misrepresentation, abuse of public funds and environmental pollution. Business decisions must be based on *iman* (faith), abide by Islamic law and avoid the impermissible. Those involved in making business decisions are free in making their own decisions based on the information given, the

interests of the company. However, religious principles particularly Islam, establish a framework which governs the way in which a decision is made. Each should be responsible for his or her own decisions and actions, and should not blame the organization involved.

In business dealings, many business ethics are emphasized to help increase the level of trust and sense of responsibility. The Quranic verse mentions that accountability and fairness are required during business. Among the positive impacts of Islamic ethics on business include an improvement in the efficiency and proficiency; the prevention of cheating, corruption, as well as misappropriation of power; the creation of new initiatives; the protection of the welfare of the staffs involved; better consultation and cooperation; and lastly, the improvement in the quality of products and services offered.

In general, business ethics which are sharia-compliant are known as Islamic business ethics. The involvement of an organization in a business operation or transaction is considered ethical only if it meets all Islamic claims by applying the Islamic business guidelines. The existing guidelines provided under Islamic business ethics comprise of some moral values to cultivate honesty and sincerity; to avoid the impermissibility; to restrain from the mistreatment of others, and to allow the gaining of profit only through ways which are lawful. According to Rameli et. al [19], Islamic business ethics are inherent in product marketing, financial management, human resource management, and product development. Ali and Al-aali [20] asserted that Imam Abu Ahmed Al-Ghazali advised individuals involved in product marketing. The advice are (1) to study religious principles; (2) to not commit fraud; (3) to refrain themselves from overvaluing the quality of goods when selling goods and degrading their status when purchasing goods from other sellers; (4) to disclose full information about the products; (5) to avoid errors when bidding; (6) to strive in avoiding arguments with other marketers; and (7) to reduce conflicts.

It is important to note that Islamic business ethics is elementary to apply, and can help guarantee the rights of both sellers and buyers. The Islamic business ethics codes can be summarized in Table 2:

TABLE II
ISLAMIC BUSINESS ETHICAL CODES

Islamic Business Ethical Code	Description
Commitment	- Changes of terms or conditions, e.g. date of delivery need to be notified.
[15], [21]	- Full commitment should be given to fulfill the intended contractual promise.
	- Justice to business partners
	- Business activity should be done with a conscious effort not to inflict harm on others
Transparency	- Information must be true and accurate so that both parties can decide whether or not to proceed
[15], [21], Quran:asy Syu'araa:	with the sale. No conditions or hidden costs.
181-183	- Businesses need to be pure and clear as what has been stated in the contract.
	- Business activity should be conducted with a sincere intention to benefit the other parties
Truthfulness	- Trust and truthfulness in business dealings
[15], [21]	- The terms that have been agreed upon by the parties should abide.
2 3/2 3	- All the details of the product and price need to be explained clearly. Also, payment receipt should
	be recorded as a proof of the transaction.
	- The prohibition of cheating in measurement by scales or product marketing
Protection	- In Islam, the rights and obligations of an individual towards others are stressed heavily
[21], [22]	- Islamic law as it has provided detailed rules for consumer protection which cover liability
2 3/2 3	(Daman), contracts, deception (Tadlis), uncertainty (Gharar), hoarding, the law of options, and
	ombudsman (<i>Hisba</i>) explaining consumer's safety from adulteration, and concealment of defect,
	etc.
	- Protection for information of the users is implemented through a security system which seeks to
	prevent the intrusion and leakage of data/user's information.
	- Also, the authorities (government) should interfere with the data/information protection
	(confidentiality) if there is public interest justification to do so
	- Fair pricing, traders will earn a reasonable profit and the buyer will get the goods or services in
	correspondence with the price paid.
Fairness	- Fair advertising/no deception
[4], [15], [21], [23]	- Fairness is achieved through freedom of choice and no coercion from others.
Quran : Muthaffifiin: 1-7, Al-	-One should be treated fairly according to his needs. Discrimination based on one's social position
Baqarah: 275	which may result in unfairness is prohibited.
•	- Fairness should be emphasized in the negotiating contract
	- No profiteering
	- Misrepresentation in the contract may result in the product being delivered/received not as
	expected.
D 11 1 111	- The user will make sure that each product is as described in the contract
Reliability	- Where purchases are made based on product descriptions and the products received are of low
[15], [21]	quality, the buyer is entitled to have the right to cancel the contract.
	- On the other hand, if the product is damaged, then there should be an option to reject the offer or
	claim for compensation.
Cooperation	-Full cooperation is given in addressing the problem of mistreatment either intentionally or without
[21]	intention.

	-Consistent consultation and assistance should be accommodatedAction to report should be taken in the event of an unethical practice
Privacy [21], [24]	 The need to ensure that there is no disclosure of private information which may be exploited by irresponsible parties. The protection of consumer rights by granting an agreed period of time to make decision/make payments.
Leniency [15], [16], [21], [25]	 The alleviation of product price according to one's capability to pay and the ability to negotiate price. Debtors are given a specified period within which they should settle their debts with the creditors Forgiveness of mistakes

C. Social Network Theory

Social Network Analysis (SNA) is a structural analysis method which uses the application of graph theory. The nature of relationships in graph theory is used by analysts and is illustrated in various types of major problems. Social Network Analysis is used to identify structures in a system based on the relationship between users. Some of the advantages of SNA include: (i) the movement of social network analysis in the form of groups; (ii) the focus on group interaction rather than individual behavior; (iii) the fact that the smaller the group that interacts, the more accurate the outcome of the analysis. The network is commonly used to exemplify complex systems which comprise of entities represented by nodes that interact with each other Rombach et. al. [26]. When a network is represented using a graphic representation, all the connections between the nodes are paired and represented as the edge or side. Such representation has spawned many studies in the field of social science (e.g., sale and purchase interactions in the community), nature (e.g., linkages between plants and water that are mutually needed) and networks (e.g., relationships in the network which may consist of computers, routers, and switches).

Network analysis is formed through structure, function, and interaction. The relationship between the networks is considered as a source, and the structure is the transaction channel for the source. This relationship is measured by density, distance, frequency and other measures. Access in relationships is examined either from one network to another network type or individual access within the network itself. The measure for analyzing the dynamic relationship status in networks and groups is known as centralization. Centralization is a structural indicator of a network, group, and an individual or a node that is relevant. Sub-groups consist of small groups of networks, individual features, and group status, as well as the whole network.

A cohesive sub-group is a subset of network nodes that have a strong, direct, frequent, deep, or positive relationship. Some concepts have been introduced to formalize algorithms represent cohesive groups such as cliques, n-cliques, n-clans, n-clubs, k-plexes, k-core, lambda sets, and most of them with complexity or degree of difficulty NP (non-deterministic polynomial hard), and k-core algorithm is the most efficient [27]. Thus, the k-core algorithm is chosen as a social network analysis technique to see the relationship between users, particularly to identify a cohesive sub-group that conspires to construct false feedback.

Previous studies have shown that SNA has been used to detect frauds. Lin and Khomnotai [28] stated that in order to

utilize the network position, each node represents the user and each link represents the feedback. However, in this study, every link has a weighting value derived from the user's feedback in the reputation system. Since sellers and buyers give feedback by placing the weight, hence a non-directional graph is suitable to be used for the representation. Network analysis found that k-core algorithms use nondirectional graphs which identify a cohesive sub-group that is present in a particular network. The k-core algorithm is an operation or a step-by-step that is constructed to identify nodes or entities in that cohesive sub-group. The cohesive sub-group that needs to be identified in this research is a sub-group that conspires or colludes to commit fraud by providing useful feedback to each other in an attempt to enhance their positive reputation as a good user.

The k-core algorithm is the best method to detect problems involving fraud by way of conducting random search processes, as well as sharing information through social networks. Due to the rewarding opportunities that await users when the reputation score turns positive, the cohesive group will seek to commit fraud by raising the reputation score to be positive even though it is not appropriate to do so.

Lin and Khomnotai [28] mentioned that there are various approaches to differentiate between dishonest and honest users in bidding through social network analysis. Feedbacks on social networks have shown that k-core algorithms and SNA are a combination of mediums that can be used to detect fraudulent schemes in social networks. Analysis from the sociological and methodological viewpoints in social network analysis can provide the basis for analyzing group structure, as well as the relationship and status of individual position within the group. The gathering of feedback from consumers about their experience may help other potential users to choose reliable products and users [28].] Fraud is a time-dependent phenomenon, and design the trust model such that a subject's characteristics and fraud probability can change over time [4], [29].

Some studies used a reputation model and agent-based management schemes [4] and social network analysis [29]. The research conducted by Lin et. Al [3] also incorporated the reputation system with network analysis by suggesting a solution which consists of five steps, i.e. (i) using web crawling agents to collect real auction data and using k-core algorithm to detect group frauds; (ii) determining the process of data cleaning and discarding any irrelevant data; (iii) using Page-Rank algorithm to search for critical accounts in the group; (iv) developing a feedback method for the assessment of fraudulent reputation in the auction, this method is an extension of the Page-Rank algorithm and

combines web structure concepts and risk assessments; (v) using the Adaptive Neuro-Fuzzy Inference System (ANFIS) as an experiment for the study.

Table 3 refers to the summary of the comparison between the eBay reputation system and lelong.my. eBay developed one of the first feedback mechanisms, allowing buyers and sellers to trade under pseudonyms rather than their realworld names. Through eBay's existing policy, every user is not allowed to exchange feedbacks just for increasing their positive score. Also, eBay also does not allow other parties to ruin the feedback that users have made. According to [30], with the existence of this policy, it is not surprising that eBay has become a prosperous community that is trusted by society. Poee [31] mentioned that the new user would start a zero feedback (0) and have a specific icon displayed beside the name within the first 30 days of membership. The eBay reputation system had many deficiencies before 2007 [31]. However, in 2007, eBay introduced a new version of the reputation system by developing four new components to ensure that feedbacks from the reputation system are more transparent.

As explained by [32], the four extra questions are: (i) Are items delivered as stated? (ii) How is the communication between users? (iii) How long is the delivery time? (iv) Are the delivery and handling charges satisfactory? On top of that, eBay also uses positive (1), negative (-1) and neutral (0) scales. Disappointed buyers often do not leave feedback and buyers can be deterred from truthful reporting by the threat of retaliatory feedback [30]. Since 98% of positive/negative feedback is positive, average feedback scores appear to have relatively little information content. Nevertheless, eBay's reputation system seems to have worked well enough to screen out most of the horrible actors and deter highly fraudulent behavior.

Lelong.my is a major e-auction company in Malaysia. In line with the research conducted, Lelong.my is the most popular business auction in Malaysia today. Besides that, Lelong.my has succeeded in generating more than hundreds of thousands ringgit as its monthly income. Table 3 presents the characteristics of eBay and Lelong.my reputation systems.

TABLE III
REPUTATION SYSTEM CASE STUDY

Case Study	Characteristics							
eBay [32]	One-way feedback							
	2. Using the scales of;							
	Negative (-1)							
	Neutral (0)							
	Positive (+1)							
	3. Advantage;							
	The focus on giving of scores which							
	makes it easy to detect positive							
	percentages.							
	4. Disadvantage;							
	One-way feedback cannot detect							
	conspiring cohesive groups.							
Lelong.my	Two-way feedback							
(www.lelong.my)	2. Feedback by the representation of							
[33]	percentages							
	i Feedback scores: 4092+							
	ii Positive feedback: 99.98%							
	iii Total products: 377							

3. Using the scales of;
i. Good
ii. Poor
iii. Neutral
3. Advantage;
Easy to detect the percentage of positive feedback in the reputation system
4. Disadvantage;
Two-way feedback but no function for the buyer's feedback section. The seller's feedback is only useful for the assessment of future buyers and cannot be used to

detect the conspiracy of cohesive groups.

According to [34], based on the year 2016 report released by the Internet Crime Complaint Centre (IC3), 298,728 complaints were received, with a total victim loss of \$1.33 billion. The highest reported crime for the year 2016 is related to non-payment/non-delivery (81,029 victims) which is followed by a personal data breach (27,573 victims). The total number of complaints received since the year 2000 is 3,762,348. IC3 receives approximately 280,000 complaints each year, or more than 800 per day. In distinguishing between both the credible users and the untrusted ones, a feedback model trust in a reputation system is required. Trust can be increased if the users practice ethics in transactions. As stated by Rice [23], the relevant Islamic business ethics which needs to be practiced during a trade is fulfilling responsibility and upholding trust in business relationships. Rice [23] quoted the Qur'anic verse (04:58) which means "Allah commands you to deliver trusts to those worthy of them."

III. RESULTS AND DISCUSSION

The proposed trust model is developed to improve the trust model implemented in [4]. It is based on Islamic business ethical codes which can be mapped to the three generic trust attributes namely ability, benevolence, and integrity. The value of the rating score is taken into account in producing a measurement for the trust model as emphasized by Jayasinghe et. Al. [35]. Table 5 shows the mapping of 3 selected trust attributes to 9 Islamic business ethical codes and the corresponding feedback questions. Each question is scored using 3 Likert scales following eBay system namely score 1 (agree), 0 (neutral) and -1 (disagree). Algorithm Islamic Business Ethics (IBE) calculates a buyer's or seller's score using the following formula:

$$IBEScore_{U} = totalRate - totalMinMarks/totalMarks * 100$$
 (1)

where totalMarks = totalMaxMarks - totalMinMarks totalMaxMarks = +9 and totalminMarks = -9, Hence, totalMarks = (+9) - (-9) = 18 $totalRate = \sum_{i=1}^{l=9} x_i$ where $x_i = \max$ for each question

1,0,0,0,0) for all 9 questions. His IBEScore = -5 - (-9)/18*100 which is 22.2. On the other hand, a buyer/seller is considered ethical if he gets at least 5 positive feedbacks out of 9 questions. The worst a buyer/seller can get in the best-case scenario is 5 positive and 4 neutral feedbacks (+1,+1,+1,+1,+1,0,0,0,0) and his IBEScore = +5-(-9)/18*100 which is 77.7. In general, the IBEScore will determine his adherence to Islamic business ethics. If he gets IBEScore larger or equal to 77.7, he can be considered adhering to Islamic business ethics and may assume to be trusted. The user status is determined as follows:

$$status = \begin{cases} Unethical \ kence \ untrusted, & 0 < IBEScore \leq 22.2 \\ Neutral, 22.2 < IBEScore < 77.7 \\ Ethical \ until \ proven \ otherwise, 77.7 \leq IBEScore \leq 100 \end{cases}$$

Determining a user's IBEScore is only the first step. This is because the IBEScore is totally based on users' feedback. Users can still cheat in the process of giving feedback. Users who fall under the category "Ethical (assumed trusted) until proven otherwise" will be further evaluated using the k-core algorithm. We have adopted the k-core algorithm into our algorithm for determining a user's trustworthiness.

The k-core algorithm proceeds as follows:

Initialize an output list *L*.

- 1. Compute a number d_v for each vertex v in graph G, the number of neighbors of v that are not already in L. Initially, these numbers are just the degrees of the vertices.
- 2. Initialize an array D such that D[i] contains a list of the vertices v that are not already in L for which $d_v = i$.
- 3. Initialize k to 0.
- 4. Repeat *n* times:
 - a. Scan the array cells *D* [0], *D* [1], until finding an *i* for which *D*[*i*] is nonempty.
 - b. Set k to $\max(k, i)$
 - c. Select a vertex *v* from *D[i]*. Add v to the beginning of *L* and remove it from *D[i]*.
 - d. For each neighbor w of v not already in L, subtract one from d_w and move w to the cell of D corresponding to the new value of d_w .

At the end of the algorithm, k contains the degeneracy of G and L contains a list of vertices in an optimal order. The i-cores of G are the prefixes of L consisting of the vertices added to L after k first takes a value greater than or equal to i.

We have a total of 348 transactions simulated from 23rd June 2016 to 23rd June 2017. To demonstrate we have chosen data generated via feedback giving simulation in 24 hours (dated 20th June 2017). Fig. 1 depicts a graph which represents a network of potentially trusted 17 buyers and sellers whose IBEScores equivalent or more than 77.7 from the user's feedback in an e-auction reputation system. Four users (A301, A302, A303, and A305) have been identified to have strong connections in a cohesive group.

To determine whether these users can genuinely be trusted or otherwise, we first run the k-core algorithm to identify members of a cohesive group and discovered a cohesive group with 2-core as the highest *k* which comprised of users A301, A302, A303 and A305 as its members.

Another cohesive group with 1-core has all the users as its members. A user might belong to more than one cohesive group. Fig. 3 shows the results of k-core algorithm execution which list a user's id, followed by his k-core value and other members of the cohesive group. Note that members (vertex) which are highly cohesive will have higher k-core value.

To calculate a user's cohesive score, we take into consideration several parameters namely the average IBEScore of buyer-seller (in a buyer-seller feedback relationship), the duration of feedback given (to see its relevance based on how recent the feedback is), the frequency of feedbacks between buyer-seller, user's k value and the highest k-value in a cohesive group.

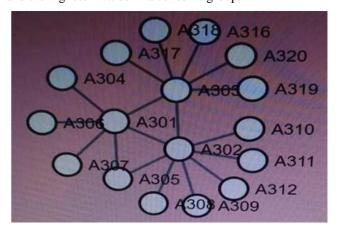


Fig.1 Graph Representing Users Assumed Trusted

Table 4 shows the corresponding points for each parameter's value.

TABLE IV
COHESIVE SCORE PARAMETER-POINT MAPPING

Parameters	Values	Point
Buyer-seller IBEScore average	> 92.0	3
	84.1 – 92.0	2
	77.0 – 84.0	1
IBEScore age (days ago)	0-73	5
	74 - 146	4
	147 - 219	3
	210 - 292	2
	> 292	1
Buyer-seller feedback	1 - 5	5
frequency	6 - 10	4
	11 -15	3
	16 - 20	2
	> 20	1

TABLE V COHESIVE SCORE-STATUS

Range score	Status
0<= CohesiveScore<= 33.34	Low cohesiveness:
	Trusted
33.34< CohesiveScore < 66.67	Medium cohesiveness:
	Neutral
66.67<= CohesiveScore <= 100	High cohesiveness:
	Untrusted

Equation 2 is used to calculate the cohesive score for a vertex or user. Higher cohesive score implies the strong bond between suspected users; hence if a transaction cohesive score >= 66.67, it is regarded as untrusted. The calculation is rounded up to 2 decimal point. We calculate

each cohesive score for every feedback given by a buyer to seller and vice versa, before finally determine a user's trust score. To demonstrate, Table 6 shows detail data for user A301.

CohesiveScore_y = (IBEScoreAve_{voint} * IBEScoreAge_{voint} * freq_{voint}/75) * (kvalue_{partner}/highest kvalue) * 100
(2)

		_	-	- 11						_								
A301	2	A301	A302	A303	A305													
A302	2	A301	A302	A303	A305													
A303	2	A301	A302	A303	A305													
A304	1	A301	A302	A303	A304	A305	A306	A307	A308	A309	A310	A311	A312	A316	A317	A318	A319	A320
A305	2	A301	A302	A303	A305													
A306	1	A301	A302	A303	A304	A305	A306	A307	A308	A309	A310	A311	A312	A316	A317	A318	A319	A320
A307	1	A301	A302	A303	A304	A305	A306	A307	A308	A309	A310	A311	A312	A316	A317	A318	A319	A320
A308	1	A301	A302	A303	A304	A305	A306	A307	A308	A309	A310	A311	A312	A316	A317	A318	A319	A320
A309	1	A301	A302	A303	A304	A305	A306	A307	A308	A309	A310	A311	A312	A316	A317	A318	A319	A320
A310	1	A301	A302	A303	2304	A305	A306	A307	A308	A309	A310	A311	A312	A316	A317	A318	A319	A320
A311	1	A301	A302	A303	A304	A305	A306	A307	A308	A309	A310	A311	A312	A316	A317	A318	A319	A320
A312	1	A301	A302	A303	A304	A305	A306	A307	A308	A309	A310	A311	A312	A316	A317	A318	A319	A320
A316	1	A301	A302	A303	A304	A305	A306	A307	A308	A309	A310	A311	A312	A316	A317	A318	A319	A320
A317	1	A301	A302	A303	A304	A305	A306	A307	A308	A309	A310	A311	A312	A316	A317	A318	A319	A320
A318																		
A319																		
A320	1	A301	A302	A303	A304	A305	A306	A307	A308	A309	A310	A311	A312	A316	A317	A318	A319	A320

Fig. 2 K-core Results for Users With IBEScore > 77.7

TABLE VI DETAIL DATA EXAMPLE: USER

				A301			
Seller Id	Buyer Id	Buyer score	Seller score	Timestamp	IBE average	IBEage (days)	Frequency
A301	A302	100	94.44	6/20/2017 14:27	97	1	3
A301	A302	88.89	94.44	6/20/2017 14:28	92	1	
A301	A302	94.44	94.44	6/20/2017 14:29	94	1	
A301	A303	94.44	94.44	6/20/2017 14:30	94	1	3
A301	A303	94.44	94.44	6/20/2017 14:31	94	1	
A301	A303	88.89	100	6/20/2017 14:32	94	1	
A301	A304	94.44	100	6/20/2017 14:33	97	1	2
A301	A304	94.44	94.44	6/20/2017 14:34	94	1	
A301	A305	88.89	94.44	6/20/2017 14:35	92	1	2
A301	A305	88.89	94.44	6/20/2017 14:36	92	1	
A301	A306	88.89	94.44	6/20/2017 14:37	92	1	3
A301	A306	88.89	100	6/20/2017 14:38	94	1	
A301	A306	88.89	94.44	6/20/2017 14:39	92	1	
A301	A307	94.44	100	6/20/2017 14:40	97	1	3
A301	A307	94.44	94.44	6/20/2017 14:41	94	1	
A301	A307	94.44	100	6/20/2017 15:42	97	1	

For example in the first line of Table 6, the IBEaverage for A301 and A302 is 97.0 hence the IBEScoreAverage_point (from Table 7) given is 3, IBEage is 1 and IBEScoreAge_point given is 5, freq is 2 and frequency_point is 5, k-value Partner is 1 (for A302, as computed and shown in Fig. 2) and highest k-value (for A301) is 2. Then we can calculate CohesiveScore for a specific transaction between A301 and A302 as follows:

CohesiveScore_{A301} = (3 * 5 * 5/75) * (2/2) * 100 = 100

Table 7 shows detail data of all transactions involved in the calculation to derive trustworthiness status for each user. Note that results from Table 7 show that the trust status for all feedbacks given by the members of the 2-core cohesive group to each other is untrusted.

$$TrustScore_v = (trustedNo/relationNo) * 100$$
 (3)

Next, equation. Three is used to calculate the trust score of a user which considers the number of trusted feedbacks out of all feedbacks involving the user. This value is mapped to the star rating based on the following ranges:

$$StarRating = \begin{cases} 0, & 0 \\ 1, & 1 - 19 \\ 2, & 20 - 39 \\ 3, & 40 - 59 \\ 4, & 60 - 79 \\ 5, & 80 - 100 \end{cases}$$

TABLE VII

COHESIVE SCORE AND TRUST STATUS FOR EACH RELATIONSHIP FOR 2 CORE GROUP MEMBERS

Seller	Buyer	IBEaverage	IBEage	Frequency	Partner's	Highest	Cohesive	Trust Status
ID	Id	Point	Point	Point	K-Core	K	Score	
A301	A302	3	5	5	2	2	100	U (Untrusted)
A301	A302	2	5	5	2	2	66.67	U(Untrusted)
A301	A302	3	5	5	2	2	100	U(Untrusted)
A301	A303	3	5	5	2	2	100	U(Untrusted)
A301	A303	3	5	5	2	2	100	U(Untrusted)
A301	A303	3	5	5	2	2	100	U(Untrusted)
A301	A304	3	5	5	1	2	50	N(Neutral)
A301	A304	3	5	5	1	2	50	N(Neutral)
A301	A305	2	5	5	2	2	66.67	U(Untrusted)
A301	A305	2	5	5	2	2	66.67	U(Untrusted)
A301	A306	2	5	5	1	2	33.34	T(Trusted)

A301	A306	3	5	5	1	2	50	N(Neutral)
A301	A306	2	5	5	1	2	33.34	T(Trusted)
A301	A307	3	5	5	1	2	50	N(Neutral)
A301	A307	3	5	5	1	2	50	N(Neutral)
A301	A307	3	5	5	1	2	50	N(Neutral)
A302	A303	3	5	5	2	2	100	U(Untrusted)
A302	A303	3	5	5	2	2	100	U(Untrusted)
A302	A303	3	5	5	2	2	100	U(Untrusted)
A302	A303	3	5	5	2	2	100	U(Untrusted)
A302	A305	3	5	5	2	2	100	U(Untrusted)
A302	A305	3	5	5	2	2	100	U(Untrusted)
A302	A305	3	5	5	2	2	100	U(Untrusted)
A302	A308	2	5	5	1	2	33.34	T(Trusted)
A302	A308	3	5	5	1	2	50	N(Neutral)
A302	A308	3	5	5	1	2	50	N(Neutral)
A302	A308	3	5	5	1	2	50	N(Neutral)
A302	A309	3	5	5	1	2	50	N(Neutral)
A302	A309	3	5	5	1	2	50	N(Neutral)
A302	A309	3	5	5	1	2	50	N(Neutral)
A302	A309	3	5	5	1	2	50	N(Neutral)
A302	A310	3	5	5	1	2	50	N(Neutral)
A302	A310	3	5	5	1	2	50	N(Neutral)
A302	A310	3	5	5	1	2	50	N(Neutral)
A302	A310	3	5	5	1	2	50	N(Neutral)
A302	A311	3	5	4	1	2	40	N(Neutral)
A302	A311	3	5	4	1	2	40	N(Neutral)
A302	A311	3	5	4	1	2	40	N(Neutral)
A302	A311	3	5	4	1	2	40	N(Neutral)
A302	A311	3	5	4	1	2	40	N(Neutral)
A302	A311	3	5	4	1	2	40	N(Neutral)
A302	A311	3	5	4	1	2	40	N(Neutral)
A302	A311	3	5	4	1	2	40	N(Neutral)
A302	A312	3	5	5	1	2	50	N(Neutral)
A302	A312	3	5	5	1	2	50	N(Neutral)
A302	A312	2	5	5	1	2	33.34	T(Trusted)
A303	A316	3	5	5	1	2	50	N(Neutral)
A303	A317	3	5	5	1	2	50	N(Neutral)
A303	A318	3	5	5	1	2	50	N(Neutral)
A303	A319	3	5	5	1	2	50	N(Neutral)
A303	A320	3	5	5	1	2	50	N(Neutral)

Table 8 shows the star rating of the 2-core cohesive group members.

TABLE VIII
COHESIVE SCORE AND TRUST STATUS

User Id	Trusted No	Relation No	Trust Score	No Star
			(%)	
A301	2	16	12.50	1
A302	2	30	6.67	1
A303	0	12	0	0
A305	0	5	0	0

In order determine whether these users can genuinely be trusted or otherwise, we first run the k-core algorithm to identify members of a cohesive group and discovered a cohesive group with 2-core as the highest k which comprised of users A301, A302, A303 and A305 as its members. Another cohesive group with 1-core has all the users as its members. A user might belong to more than one cohesive group. As shows the results of k-core algorithm execution

which list a user's id, followed by his k-core value and other members of the cohesive group.

To calculate a user's cohesive score every feedback is evaluated by considering three parameters namely, IBEScore average given by the buyer to seller and vice versa, the IBEScore's age (how long ago was the feedback given) and the frequency of feedback given between a buyer and seller. Each parameter value is given a point. The user's partner's k-core also is taken into consideration.

Based on the trust score result the model allocates star rating to the user. User A301 trust score almost doubles from A302's although two members (A301 and A302) are given a 1star rating, from the detail results,. On the other hand, users A303 and A305 do not deserve any star since neither the feedback they gave nor received can be trusted. Our model shows that users who conspire to give false feedback can be identified. This could help new users to avoid doing business with untrusted users.

IV. CONCLUSION

The trust model for e-auction reputation system proposed in this paper was to complement our previous work [4, 5, 30] which have incorporated several features towards the establishment of a Sharia-based e-auction. Supporting literature also highlights the relationship between trust and ethics, and became the premise for introducing Islamic business ethic score (IBEscore) in the design of the feedback system to measure user's adherence to Islamic business ethical codes. Since feedback system is vulnerable to manipulation we adapted k-core algorithm to identify existence of cohesive group of users and demonstrated the use of parameters namely IBEscore average, IBEScore's age and the frequency of feedback given between a buyer and seller, as well as the k-core value to determine whether a user lied when giving feedbacks to trading partners. We have shown that when the identified cohesive group members gave false feedback to one another, the proposed trust model can determine the trustworthiness of a user through his trust score. Some recommendations for further research are to work further on trust update algorithms that take into account the dynamics of trust as well as to engineer existing k-core algorithms to scale to large graphs of billions of edges in life auction system.

ACKNOWLEDGMENT

This research is funded by the Ministry of Education (MOE) Malaysia under the FRGS/1/2014/ICT07/UKM03/2 project.

REFERENCES

- L. Li. Reputation, Trust, and Rebates: How Online Auction Markets Can Improve Their Feedback Mechanisms. Journal of Economics and Management Strategy, 19(2), 303–331. 2010.
- [2] V.M. Noufidali, J.S. Thomas & F.A. Jose. E-auction frauds-a survey. International Journal of Computer Applications, 61(14). 2013.
- [3] S.J. Lin, Y.Y. Jheng & C.H. Yu. Combining ranking concept and social network analysis to detect collusive groups in online auctions. Expert Systems with Applications, 39(10), 9079–9086. 2012.
- [4] M. Al-aaidroos. A Reference Model for Shariah Based e-Auction. Ph.D. Thesis, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia. 2017.
- [5] N. Jailani, M. Mukhtar, M.A. Al-aaidroos, A. Patel, S. Abdullah, Y. Yahya & Z. Abdullah. Agent-Based Auction E-Marketplace with Value Added Services and Islamic Shariah Compliance. In Encyclopedia of E-Commerce Development, Implementation, and Management (pp. 888-904). IGI Global. 2016.
- [6] E.Majd & V. Balakrishnan. A trust model for recommender agent systems. Soft Computing, 21(2), 417-433. 2017
- [7] R.C. Mayer, J.H. Davis & F.D. Schoorman. An integrative model of organizational trust. Academy of Management Review, 20(3), 709– 734, 1995.
- [8] S.L. Jarvenpaa, N. Tractinsky & M. Vitale. Consumer Trust in an Internet Store. Information Technology and Management, 1(1), 45–71.
- [9] M.B. Ribadu & W.N.W.A. Rahman. An Integrated Approach towards Sharia Compliance E-commerce Trust. Applied Computing and Informatics. 2017.
- [10] H. Hallikainen & T. Laukkanen. National culture and consumer trust in e-commerce. International Journal of Information Management, 38(1), 97-106. 2018
- [11] T. Oliveira, M. Alhinho, P. Rita & G. Dhillon. Modeling and testing consumer trust dimensions in e-commerce. Computers in Human Behavior, 71, 153-164. (2017).
- [12] Y. Gao. A conceptual framework of trust in C2C E-commerce: From multi-disciplinary perspectives. 2010 International Conference on Networking and Digital Society, ICNDS 2010, 1, 195–198. 2010.

- [13] M. Muhammad, R. Muhammad, & M. Adam. Building trust in ecommerce from an Islamic perspective: A literature review 5(5), 161– 169, 2013.
- [14] M.A. Suhaimi, M.J.M. Razi, H. Hussin, M.R. Muhammad, M. Muhammad & K. Abdullah. Conceptualizing trust-based online behavior model for Muslim consumers. 2013 5th International Conference on Information and Communication Technology for the Muslim World, ICT4M 2013. 2013.
- [15] Y. Sidani & A. Al Ariss. New conceptual foundations for Islamic business ethics: The contributions of Abu-Hamid Al-Ghazali. Journal of business ethics, 129(4), 847-857. 2015.
- [16] J. Syed & B.D. Metcalfe, B. Guest Editors' Introduction: In Pursuit of Islamic akhlaq of business and development. Journal of Business Ethics, 129(4), 763-767. 2015.
- [17] M. Hashim. Islamic Perception of Business Ethics and the Impact of Secular Thoughts on Islamic Business Ethics 2(3), 98–120. 2012.
- [18] M. Ismaeel and K. Blaim. Toward applied Islamic business ethics: responsible halal business. Journal of Management Development, 31(10), pp.1090-1100. 2012.
- [19] M.F.P. Rameli, M.R.A. Aziz & K.A. Wahab. Etika Perniagaan Islam: Pengalaman Usahawan Muslim di Melaka. Persidangan Kebangsaan Ekonomi Malaysia (PERKEM 2014), Oct. 17-19, 2014, 9, 442–450. 2014.
- [20] A.J. Ali, and A. Al-Aali. Marketing and ethics: What Islamic ethics have contributed and the challenges ahead. Journal of Business Ethics, 129(4), pp.833-845. 2015.
- [21] A.R. Zaharuddin. Fiqh kewangan Islam: Halal Dan Haram Dalam Sistem Jual Beli Islam. PTS ISLAMIKA SDN BHD. 2014.
- [22] P. Bagheri & K.H. Hassan. The application of the khiyar al-Tadlis (option of deceit) principle in online contracts and E-consumer rights. Mediterranean Journal of Social Sciences, 6(4), 155. 2015.
- [23] G. Rice. Islamic ethics and the implications for business. Journal of business ethics, 18(4), 345-358. 1999.
- [24] A.S. Khan & F. Rasheed. Human resource management practices and project success, a moderating role of Islamic Work Ethics in Pakistani project-based organizations. International Journal of Project Management, 33(2), 435-445. 2015.
- [25] M. Al-Aaidroos, N. Jailani, and M. Mukhtar. Lenient negotiation model based on altruistic utility and its implication on agent-mediated negotiation. In Electrical Engineering and Informatics (ICEEI), 2015 International Conference on (pp. 37-42). IEEE. 2015.
- [26] P. Rombach, M.A. Porter, J.H. Fowler, and P.J. Mucha. Coreperiphery structure in networks (revisited). SIAM Review, 59(3), pp.619-646. 2017.
- [27] J. Torrents and F. Ferraro. Structural cohesion: visualization and heuristics for fast computation. arXiv preprint arXiv:1503.04476.
- [28] L. Khomnotai & J.L. Lin. Detecting Fraudsters in Online Auction Using Variations of Neighbor Diversity. International Journal of Engineering and Technology Innovation, 5(3), 156-164. 2015.
- [29] V. Van Vlasselaer, T. Eliassi-Rad, L. Akoglu, M. Snoeck, & B. Baesens. Gotcha! Network-based fraud detection for social security fraud. Management Science, 63(9), 3090-3110. 2016.
- [30] L. Einav, C. Farronato, and J. Levin. Peer-to-peer markets. Annual Review of Economics, 8, pp.615-635. 2016.
- [31] L.Z. Poee. Reputation System For An E-Commerce System Using Fuzzy Logic. Ph.D. Proposal, 1. 2012.
- [32] M.A. Morid & M. Shajari. An enhanced e-commerce trust model for community-based centralized systems. Electronic Commerce Research, 12(4), 409–427. 2012.
- [33] Lelong.my. https://www.lelong.my accessed 23rd Nov 2017.
- [34] 2016 Internet Crime Report, https://pdf.ic3.gov/2016_IC3Report.pdf accessed 16th April 2018.
- [35] U. Jayasinghe, N.B. Truong, G.M. Lee & T.W. Um. Rpr: A trust computation model for the social internet of things. In Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), 2016 Intl IEEE Conferences (pp. 930-937). IEEE. July 2016.