
 

 

 

Vol.9 (2019) No. 5 

ISSN: 2088-5334 

Determining Optimal Mining Work Size on the OpenCL Platform for 
the Ethereum Cryptocurrency 

Pavel V. Sukharev#1, Dmitry S. Silnov#2, Maxim O. Shishkin#3 
#Department of Computer Systems and Technologies, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 

Moscow, Russia 
 E-mails: 1suharev_p@mail.ru; 2ds@silnov.pro; 3petshig@yandex.ru 

 
 
Abstract— In terms of cryptocurrency, mining is a process of creating a new transaction block to add it to the blockchain. The 
cryptocurrency protocol should ensure the reliability of new transaction blocks. One of the popular mining protocols is the Proof-of-
Work protocol, which requires the miner to perform a certain work to verify its right to add a new block into the blockchain. To 
perform this work, high-performance hardware is used, such as GPU. On the program level, hardware needs special computing 
framework, for example, CUDA or OpenCL. In this article, we discuss Ethereum cryptocurrency mining using the OpenCL standard. 
The Ethereum cryptocurrency is the most popular cryptocurrency with GPU-based mining. There are several open-source 
implementations of the Ethereum cryptocurrency miners. The host-part of the OpenCL-miner is considered, which makes the research 
results independent of the mining algorithm and allows using the results of the research in the mining of other cryptocurrencies. 
During the research, we have found the problems, which lead to mining productivity loss, and we are looking for the ways to resolve 
these problems and thus increase mining performance. As part of solving these problems, we have developed the algorithm for the 
functioning of the miner and proposed the methodology of determining the optimal size of OpenCL work, which allows to reduce the 
impact of problems found and achieve maximum mining productivity using OpenCL framework. 
 
Keywords— cryptocurrency mining; Ethereum; OpenCL; performance optimization. 
 
 

I. INTRODUCTION 

Cryptocurrencies are relatively new and rapidly 
developing section of the digital economy. The purpose of 
cryptocurrencies is to create a distributed system of digital 
currency. Cryptocurrencies has a number of benefits in 
comparison to ordinary money - transaction openness, high 
protection, restricted and known ahead emission, general 
system transparency. Cryptocurrency funds exchange occurs 
through transactions. List of all transactions is stored in 
blockchain. Once the transaction is completed, it remains in 
the blockchain forever [1], [2]. 

To conduct a new transaction, it must be added in 
blockchain. Mine nodes, which compose, add transactions a 
new transaction blocks for blockchain. To achieve integrity 
and reliability of transaction, validation mechanisms are 
used, which miners must follow to have opportunity to add 
new block to blockchain [3]. One of such mechanisms is 
Proof-Of-Work, which idea is that miners should perform a 
certain amount of work to prove the system that it has the 
right to add a new block [4]. 

One of the main characteristics of cryptocurrency is its 
decentralization. Decentralization is a factor, which ensures 
the system reliability. For example, high centralization 

increases the risk of "attack 51%" which can inflict a serious 
harm to cryptocurrency system [4], [5]. To achieve 
decentralization it is necessary to avoid concentration of 
system computation resources. However, according to 
Bitcoin experience, with the cryptocurrency popularity 
growth the specialized mining solutions are developed, 
which concentrates computation power in relatively small 
group of specialized companies and makes cryptocurrency 
vulnerable for attack [6]. 

Such problem is tried to solve by creating the 
cryptocurrency, which has resistance to possibility of 
creation special mining hardware (ASIC) [7], [8]. One of 
such cryptocurrencies is Ethereum coin, which limits mining 
speed with large number of input-output operations, which 
are difficult to optimize [9], [10]. Now, Ethereum mining 
uses general-purpose GPUs available to wide range of 
miners, which increases system decentralization. 

To create a new valid block in Ethereum cryptocurrency 
system, miner must found such block header that its hash 
value, calculated by ethash algorithm [11], is below the 
specified target difficulty. To achieve this miners sort 
through the values of nonce field, which is the part of block 
header, and count hash value for every nonce. Since the 
calculations of nonces do not depend on each other, it is a 

1528

CORE Metadata, citation and similar papers at core.ac.uk

Provided by International Journal on Advanced Science, Engineering and Information Technology

https://core.ac.uk/display/296921219?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


work with a high level of parallelism. Miner should quickly 
calculate as many hashes for different nonces as possible. 
For this purpose, high performance software frameworks are 
used. 

GPU mining is performed using, depending on the GPU 
manufacturer, CUDA [12] and OpenCL [13] technologies.  
OpenCL is an open standard for writing program executing 
parallel computation on different types of processing 
devices, such as CPU, GPU, FPGA. OpenCL program 
consists of a host-part and kernel-part. Host-part is executed 
on control device (generally, CPU). It configures and sends 
computational task to the GPU, and read the results. Kernel-
part is responsible for task computation and runs on high-
performance computation device (for example, GPU). 
OpenCL specifies programming language, based on C. In 
addition, OpenCL 2.1 implements OpenCL C++ [14]. In 
addition, OpenCL provides API for host-part and kernel-part 
interaction. Because OpenCL is an open standard, everybody 
can port it at any computing hardware. There are many 
OpenCL standards both proprietary (such as NVIDIA 
OpenCL implementation) and open-source (for example, 
AMD ROCm OpenCL implementation). There are many 
enthusiasts, who can also develop their own OpenCL 
compiler. For example, pocl project [15] provides LLVM 
compiler for a different set of architectures. Now, there are 
implementations of OpenCL for all popular GPUs exist. 

In this article, we discuss Ethereum cryptocurrency 
mining using the OpenCL standard. We find the problems, 
which lead to mining productivity loss and looking for ways 
to increase its performance. The host-part of the OpenCL-
miner is considered, which makes the research results 
independent of the mining algorithm and allows using the 
results of the research in the mining of other 
cryptocurrencies. 

II. MATERIAL AND METHODS 

A. OpenCL 

Consider the basics of the OpenCL framework. When 
user wants to execute computation program on OpenCL, he 
should do an initial configuration. First, user should choose 
OpenCL platform, which will hold the work processing. 
Further, user should choose OpenCL devices, which would 
be used for computation. After that user defines OpenCL 
context for chosen devices. OpenCL context manages 
memory, command-queues, kernel objects, etc. 

OpenCL uses command-queues for device task 
processing. Command-queues are defined in bounds of a 
OpenCL context. In the OpenCL command-queues, you can 
send commands such as reading or writing a memory buffer, 
or sending tasks to execute on device. To create a new 
computational task, you should compile OpenCL kernel 
object from sources, and send execution arguments. Creation 
of the command queue, kernel object, and buffers occurs 
once within the initialization. 

To launch kernel object, OpenCL uses 
clEnqueueNDRangeKernel() function. This function accepts 
command-queue in which program will be enqueued, the 
kernel object itself and work sizes local_work_size and 
global_work_size as parameters. Parameter local_work_size 
defines size of an OpenCL work-group. Parameter 

global_work_size defines total work size. For reading 
results, function clEnqueueReadBuffer() is used. It accepts 
command-queue and reading buffer as parameters. In 
addition, it can be specified, if buffer read is blocking or not. 

The minimum OpenCL computational element is the 
work-item. One work-item corresponds to one thread on the 
real computing device. The total number of work-items is 
determined by the global_work_size parameter. If the 
number of work-items is greater than the allowed number of 
threads running on the device, the extra work-items are 
waiting for the device resources to be freed. Working 
elements are combined into work-groups. The size of the 
work-group is determined by the local_work_size parameter. 
For each device there is an optimal size of the work-group, 
which defined by its the hardware architecture and allows to 
achieve maximum performance [16]. 

B. Open-source Ethereum Miners 

There are few miners for Ethereum cryptocurrency. Since 
miner implementation quality is defined by its mining speed, 
users tend to choose the most productive mining solution, 
and highlight it among others, thus decrease mining 
implementation variety. Some of the miners have a closed 
code and require the user to pay developer fees for its usage. 
An example of such closed-source miner is a Claymore 
project [17]. 

In addition, there are few open-source Ethereum miners, 
such as sgminer and ethminer. Sgminer is a GPU miner for a 
large number of cryptocurrencies, including Ethereum. 
Developers can add new cryptocurrency mining realisations 
as a kernel-parts of OpenCL code. 

Ethminer mining is an open-source miner solely for 
Ethereum cryptocurrency [18]. It supports both CUDA and 
OpenCL frameworks. Ethminer is the most popular open-
source Ethereum miner. 

In this article we use open-source ethminer for mining and 
testing. 

Current open-source Ethereum miners OpenCL 
implementations have cyclic mining algorithm: 

• Launching mining process using the OpenCL function 
clEnqueueNDRangeKernel() with specified work size 
values local_work_size and global_work_size. 

• Blocking waiting for work completion and reading 
mining result using the OpenCL function 
clEnqueueReadBuffer (). 

After completion of reading mining results from GPU 
new mining command will be launched with new nonce 
parameters and cycle will be repeated. If valid block is 
found, then miner will send its info to others. If new mining 
task is received, miner changes its mining parameters. So, 
the miner repeatedly launches GPU processing task with 
different nonces for current header and looking for proper 
result. Each OpenCL device work-item takes a specific 
nonce depending on its ID. 

This mining process is used in OpenCL host-part 
implementation of all popular open-source Ethereum miners. 
Fig.1 shows the algorithm of the completely mining process. 

1529



 
Fig. 1. Mining algorithm of open-source Ethereum miners 

C. Cryptocurrency Mining Process 

Mining uses the generated header of the current block. 
Block header contains information about the previous block, 
as well as Merkle Patricia Tree root hashes [19], which are 
the root hashes for Ethereum block trees: storage tree, 
transaction tree, receipt tree. These parameters differ for 
each new block in cryptocurrency system. Thus, the mining 
process can only be carried out for the actual block header 
with the current transaction list and information about the 
previous block.  

When a new block is created in the cryptocurrency system 
and added to the blockchain, the information about received 
block is distributed to all system miners. At the same time, a 
change of work takes place on the miners, and the miners 
begin to form a new block based on the new data obtained. 

Since GPU execution requires a certain computation time, 
there is often occurs a situation when the new computing 
task comes from server, while the GPU has not finished 
current cycle of execution of old work. This happens 
because GPU execution is not instantaneous, and miner 
cannot send another work to the device before finishing the 
previous one.  

In this case, the work that is processed on GPU becomes 
obsolete and unsuitable for obtaining a correct result. As a 
result, part of work time of miner is wasted. The percentage 
of wasted work depends on the time spent by the GPU for 
one cycle of work. Therefore, execution time of one cycle of 
work should be decreased to reduce percentage of wasted 
work.  

Execution time of one cycle of work depends linearly on 
whole work size global_work_size, which we specify as an 
OpenCL parameter every time we send new work to GPU. 
This parameter determines the number of hashes that the 
miner must calculate in the current work cycle [20]. 

D. Mining Overhead Time 

It must be noted that every software has some overhead 
time, which is spent on various machine operations that are 
not related to main work. These operations are such as 
context change, new work uploading, results reading. 
Typically, the execution time for this operation is negligible.  

However, in case of mining with small size of the 
global_work_size, and, as a result, small execution time, this 
overhead time can amount a significant percent of the whole 
time spent to work.  

Because miner implements cyclic calculation of block 
header hash, it calls identical OpenCL functions cyclically. 
When miner cycle work size for 
clEnqueueNDRangeKernel() function is reduced, number of 
cycles per second increases, which leads to number of 
clEnqueueNDRangeKernel() and clEnqueueReadBuffer() 
calls increase. 

It can be expected that in case of launching two miners 
with different size of work on the same equipment, a miner 
with a large work size will perform a slightly larger amount 
of hash calculations. 

E. Determining Lost Work Percentage 

As a result, it can be argued about presence of two factors, 
which reduce mining productivity. Influence of one of this 
factors enhance when work size of one mining cycle gets 

1530



bigger, and influence of second factor enhance when work 
size of mining cycle decreases. Fig. 2 shows this problem 
schematically. As we can see, a miner with a large work size 
has less total overhead time that allows it to calculate more 
hashes per second, but in the case of a new block, miner 
loses more work due to a slower switching of the task. 

The aim of this work is to find the optimal size of work in 
one mining cycle, which allows to reach the maximum value 
of the calculated actual hashes in case of long-term mining 
in the real Ethereum system. 

 
Fig. 2. Diagram of the lost work of the miner when a new block is received 
and when the work size is reduced in one cycle. 
 

Evaluate percentage of work, which miner loses when 
new block header from server is receiving. In case of task 
change, the whole cycle of calculations is lost, regardless of 
when exactly the information about the new task came. 
Therefore, during the mining, one cycle of calculations will 
be lost each time the information about the new task has 
arrived. The percentage of lost work will depend on the 
execution time of one cycle and the time of obtaining a new 
task by the miner. Suppose that execution time of one cycle 

of miner is wt , then the percentage of lost work is described 

by equation (1).  

 
block

w

T

t
k =1

 (1) 

where blockT - value equal to new block mean time in 

Ethereum cryptocurrency system and which is constant 
during long periods of time [21]. Fig. 3 shows the change of 
new block mining mean time of Ethereum cryptocurrency. 
As we can see, system tends to maintain constant mean time 
of new block over long periods. 

By decreasing global_work_size value, we can reduce the 
time spent per cycle and thereby reduce the percentage of 
useless work in equation (1). 

Let us measure influence of overhead time on mining 
efficiency. Overhead time is a part of completely mining 

cycle time. Thus, if we denote overhead time as ht , then 

percent of time, spending on non-important operations, will 
be equal to 

 
w

h

t

t
k =2   (2) 

 uhw ttt +=   (3) 

where ut - time of useful work in one cycle of mining, spent 

directly on hash calculation. 

 
Fig. 3. Change of new block mining mean time in Ethereum cryptocurrency 
since its launch 

 
Equation (2) limits infinite reduction of the work size sent 

to GPU. However, it needs to be noted, thatht  does not 

depend on global_work_size and is always approximately 
the same within the same computing platform. 

In order to calculate the optimal size of the 
global_work_size mining operation, it is necessary to 
determine the time of the work cycle in which the useful 
time of the miner will be maximal. As follows from 

equations (1), (2) time wt  should achieve some compromise 

value, when coefficients 1k  and 2k  will have minimal 

impact. 

F. Determining Optimal Cycle Execution Time 

It can be seen that coefficients 1k  and 2k  have similar 

meaning. They both describe the percentage of time the 
miner spends on useless work. Therefore, after summing (1) 
and (2), we will get the value of the total coefficient, 
describing the percentage of time spent on all useless work. 

 
w

h

block

w

t

t

T

t
k +=   (4) 

 21 kkk +=  (5) 

 
Fig. 4 represents the form of the function (4). The optimal 

wt  value corresponds to the situation when the left part of 

(4) achieves a minimum value. To find this situation, 
differentiate the equation and find points of minimum: 

 0
1

2 =−
w

h

block t

t

T
 (6) 

 )( hblockw tTt ×=  (7) 

 
Equation (7) describes the optimal execution time for one 

Ethereum mining cycle for a specific hardware system with 

1531



overhead time ht  and at a time when the new block mean 

time in the system is equal to blockT . 

 

 
Fig. 4. Graph of work loss versus cycle execution time function 

 
It should be noted that the new block time varies for each 

new block, as the overhead time varies for each calculation 
cycle. In equation (7), we operate with the mean values of 
these time variables, since we consider the performance of 
the miner in the case of long-term operation. 

III.  RESULTS AND DISCUSSION 

A. Experimental Determining of the Optimal Work Size 

In order to determine the optimal running time of one 
cycle, we need to find an approximate mean overhead time. 
It can be found for a specific hardware experimentally by 
running two cycles of mining speed measurements for 
different values of global_work_size. 

In the course of the experiment, it is necessary to obtain 
the following parameters for different mining work sizes: 

• total number of calculated hashes, 
• number of actual hashes, 
• number of obsolete hashes, 
• number of cycles of calculations, 
• time of experiment, 
• the amount of new block headers during the 

experiment. 
The number of actual hashes is required to estimate the 

increase in real mining productivity. The total number of 
hashes demonstrates the absolute speed of mining. It is 
expected that the total number of hashes will be directly 
proportional to the work size sent for calculation in one 
mining cycle. The number of obsolete hashes determines the 
percentage of obsolete work performed by the miner. The 
hashes are considered obsolete if they were calculated in a 
loop, during which a new job came from the server. With the 
total number of hashes and number on obsolete hashes, we 
can calculate count of work, which is lost due to mining task 
switching. 

The number of cycles is an important parameter, it 
determines how many times clEnqueueNDRangeKernel() 
and clEnqueueReadBuffer() functions were invoked during 
the experiment. It is expected that the number of cycles is 
inversely proportional to the size of the work, since a larger 
work size requires a longer execution time. The number of 
cycles is required to link the duration of one cycle and the 
amount of work in one cycle. 

The experiment time is a parameter that allows us to 
accurately determine the time for which all the cycles of 
mining were performed. Experiment time is counted with 
millisecond precision. 

Since the experiment is performed under real mining 
conditions, one should take into account the heterogeneity of 
the time of finding a new block. For this purpose, the 
number of new blocks calculated in the Ethereum system 
during the experiment is counted. 

The experiment was conducted in the Ethereum-pool 
nanopool. 

The experiment was carried out on hardware that uses 
GPU NVIDIA GTX970m for mining. For testing two work 
sizes were selected: 32 x 32768 and 32 x 8192. This choice 
is explained by the fact that default ethminer miner work 
size is 128 x 8192, while optimal OpenCL local work size 
parameter for GPU NVIDIA GTX970m is 32. Therefore, 
size 32 x 32768 has the same global_work_size as default 
128 x 8192 and has local_work_size 4 times less than 
default. Both experiments lasted 10 minutes. The results of 
experiment are shown in Table 1. 

Note that this test fulfils equation (1). Despite the fact that 
in experiment No. 2 the total hash count is less than in 
experiment No. 1, the number of actual hashes in test No. 2 
bigger because of shorter execution time of one cycle and 
faster miner block switching. At the same time, count of 
received new block headers during the test was bigger in test 
No. 2. 

Let us calculate mean overhead time for the received data. 

Denote st  - overall test time, n - count of work cycles, 

which were calculated during the experiment, then one cycle 
work time, is calculated by equation: 

 
n

t
t s

w =  (8) 

 whu ttt =+  (9) 

ut  - actual work time on GPU, hence it is proportional to 

GPU work size. Then if in case of experiment No. 2 

execution time is ut  then in experiment No. 1 execution 

time will be equal 4 * ut .  

Write equation (8) for two tests. 

 
1

14
n

t
tt s
hu =+×  (10.1) 

 
2

2

n

t
tt s
hu =+  (10.2) 

From given pair of equations follows: 

1532



 
3

)4(
1

1

2

2

n

t

n

t

t

ss

h

−×
=  (11) 

 msth 245485688,0=  (12) 

TABLE I 
RESULTS OF MINING WITH DIFFERENT WORK SIZE 

No. Work Size Total Hash 
Count 

Actual Hash 
Count 

Obsolete 
Hash Count 

Count of 
Mining Cycles 

Execution 
Time 

Count of New Block 
Headers During 

Experiment 
1 32x32768=1048576 3382706176 3346006016 36700160 3226 599934 35 
2 32x8192=262144 3369598976 3357540352 12058624 12854 599976 46 

TABLE II  
THE COUNT OF CALCULATED HASHES FOR OPTIMAL WORK SIZE 

No. Work Size Total Hash 
Count 

Actual Hash 
Count 

Obsolete 
Hash Count 

Count of 
Mining Cycles 

Execution 
Time 

Count of New Block 
Headers During 

Experiment 
1 32x32768=1048576 3382706176 3346006016 36700160 3226 599934 35 
2 32x8192=262144 3369598976 3357540352 12058624 12854 599976 46 
3 128x8192=1048576 3380609024 3337617408 42991616 3224 599879 41 
4 32x10377=332064 3380079456 3368457216 11622240 10179 599952 35 

TABLE III 
THE COUNT OF CALCULATED HASHES FOR OPTIMAL WORK SIZE IN CASE OF MEAN BLOCK TIME 

No. Work size Count of 
mining cycles 

Total Hash 
Count 

Actual Hash Count Obsolete Hash 
Count 

Execution Time 

1 32x32768=1048576 3226 3382706176 3338665984 44040192 599934 
2 32x8192=262144 12854 3369598976 3358588928 11010048 599976 
3 128x8192=1048576 3224 3380609024 3336568832 44040192 599879 
4 32x10377=332064 10179 3380079456 3366132810 13946646 599952 

 

With a known mean overhead time ht , mean block time 

and equation (7) optimal miner cycle execution time can be 
found. Mean block time at the time of experiment was 14210 
milliseconds. 

 

 245485688,014210×=wt  (13) 

 mstw 06226902,59=  (14) 

Now, with experimental data and known miner working 
time, it is possible to find optimal miner work size. Denote 

 as a multiplier of the useful work of the miner. Then make 
equation: 

 whu tttw =+×  (15) 

 
Take one of equations (10.1), (10.2) and calculate 

coefficientw . 

 1whu tttw =+×  (16.1) 

 2whu ttt =+  (16.2) 

 
u

ww

t

tt
w 211

−+=  (17) 

 2667,1=w  (18) 

Result optimal work size is 332064)8192(32 =×× w . 

Calculate the expected percentage of lost work for each of 
the factors for the optimal work size found. We substitute 

the calculated wt  value into equations (1) (2), and calculate 

the coefficients 1k  and 2k . Take the actual blockT  and 

overhead time ht . In this case, we get the following values 

of coefficients 1k  and 2k . 

 

 00416,021 == kk  (19) 

 Hence, the expected percentage of the lost work of 
mining is approximately 0.83%. 

B. Testing 

Carry out an experiment for obtained optimal miner work 
size. For comparison, take the values of experiments No. 1 
and No. 2, and conduct another experiment for the default 
settings of miner. The results of experiment and its 
comparison with other experiments are shown in Table 2. 

As can be seen from Table 2, the total number of 
calculated hashes in the case of mining with the optimal 
work size lesser than the number of calculated hashes in 
experiments with a larger work size. This is explained by the 

influence of the coefficient2k , which increases with a 

decrease in the size of the work. However, since the total 

value of 1k  and 2k  for the experiment with the optimal 

work size is minimal, the number of actual calculated hashes 
for the experiment with the optimal work size is greater than 
for all other experiments. The percentage mining production 
increase can be estimated by comparing actual hash count 
for different experiments. For the obtained optimal value in 
comparison with the standard parameters of the mining 
production, increase is 0.924%. 

Note that due to uneven new block time, count of non-
actual work cycles for different tests varies. We should 
expect that in case of long-term mining count of non-actual 
work cycles would approach the mean frequency. To 

1533



estimate obtained performance growth in long-term time, we 
should equate new block count received by the miner during 
the experiment to the expected count (at the moment of 
testing and in terms of 10-minute testing time it is 42) and 
recalculate the number of actual and obsolete hashes for 
experimentally obtained count of mining cycles.  

As we can see from Table 3, test with calculated optimal 
work size shows performance growth in comparison to other 
tests. In comparison to mining with default miner settings, 
performance growth is 0,886%. We can measure real work 
loss due to work switching in case of optimal mining work 
size. We should take a number of obsolete hash count and 
divide it by total calculated hash count. According to Table 
3, mining work loss in case of long-term mining will be 
0,413%. This value coincides with the theoretical value of 

1k coefficient from equation (19). 

IV.  CONCLUSION 

In this paper, we have conducted a research of the 
Ethereum cryptocurrency mining for GPUs on the OpenCL 
platform. A search was made for problems that led to the 
loss of useful work when mining on the OpenCL platform. 
The following problems were identified: loss of work when 
receiving a new computational task; slowing down the 
mining process when the size of the mining work cycle is 
decreased. For each of the problems found, we derived the 
equation to estimate the percentage work loss of the miner 
because of the problem effect. 

According to the problems found, a method was 
developed to find the optimal size of work for the OpenCL 
platform, which allows reducing the total percentage of lost 
work as much as possible. In accordance with the developed 
methodology, the results were tested on real equipment. The 
results of the test confirmed the calculated data and showed 
that use of the developed methodology allows achieving an 
increase in the productivity of the mining of the Ethereum 
cryptocurrency, in comparison with the standard settings of 
the miner. 

 It should be noted that due to regular DAG size change 
[22], the speed of mining for the same global_work_size 
value would regularly change. Since the parameter 
determining the optimal speed of the work of the miner is 
the cycle time calculated by equation (7), it is necessary to 
regularly change the value of global_work_size to maintain 
the average execution time of one cycle of calculations. In 
addition, it is necessary to take into account possible changes 
in the average time of finding a new block. In addition, this 
study does not take into account the delay in obtaining a new 
job, which can play a role in the resulting mining speed. 

REFERENCES 
[1] M. Swan. Blockchain: Blueprint for a New Economy. O’Reilly, US, 

2015. 
[2] C. Decker and R. Wattenhofer, “Information Propagation in the 

Bitcoin Network,” 2013 IEEE Thirteen. Int. Conf. Peer-to-Peer 
Comput., no. September, pp. 1–10, 2013. 

[3] J. Newsome, E. Shi, D. Song, and A. Perrig, “The sybil attack in 
sensor networks,” Proc. third Int. Symp. Inf. Process. Sens. networks 
- IPSN’04, pp. 259–268, 2004. 

[4] A Narayanan, J Bonneau, E Felten, A Miller, S.Goldfeder. Bitcoin 
and Cryptocurrency Technologies: A Comprehensive Introduction, 
Princeton University Press, 2016 

[5] X. Li, P. Jiang, T. Chen, X. Luo, and Q. Wen, “A survey on the 
security of blockchain systems,” Futur. Gener. Comput. Syst., no. 
Xiaoqi Li, pp. 1–25, 2017. 

[6] M. B. Taylor, “Bitcoin and The Age of Bespoke Silicon,” Proc. 2013 
Int. Conf. Compilers, Architecture and Synthesis for Embedded 
Systems, pp. 1–10, 2013. 

[7] K. J. O’Dwyer and D. Malone, “Bitcoin mining and its energy 
footprint,” ISSC ’14 Proc. 25th IET Irish Signals Syst. Conf., pp. 
280-285, 2014. 

[8] J. Barkatullah and T. Hanke, “Goldstrike 1: CoinTerra’s first-
generation cryptocurrency mining processor for bitcoin,” IEEE 
Micro, vol. 35, no. 2, pp. 68–76, 2015. 

[9] V. Buterin, “A next-generation smart contract and decentralized 
application platform,” [Online] Available: 
https://github.com/ethereum/wiki/wiki/White-Paper 

[10] T. Dryja, “Hashimoto: I/O bound proof of work,” 2009. 
[11] Ethash [Online] Available: 

https://github.com/ethereum/wiki/wiki/Ethash  
[12] D. Kirk, “NVIDIA CUDA software and GPU parallel computing 

architecture,” Proceedings of the 6th international symposium on 
Memory management - ISMM '07, pp. 103–104, 2007. 

[13] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A Parallel 
Programming Standard for Heterogeneous Computing Systems,” 
Computing in Science & Engineering, vol. 12, no. 3, pp. 66–73, 
2010. 

[14] Khronos Group, “An Introduction to OpenCL C++” [Online] 
Available: 
https://www.khronos.org/assets/uploads/developers/resources/Intro-
to-OpenCL-C++-Whitepaper-May15.pdf 

[15] P. Jääskeläinen, C. S. de La Lama, E. Schnetter, K. Raiskila, J. 
Takala, and H. Berg, “pocl: A Performance-Portable OpenCL 
Implementation,” International Journal of Parallel Programming, 
vol. 43, no. 5, pp. 752–785, 2015. 

[16] OpenCL Specification [Online] Available: 
https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf 

[17] Ethereum miner with OpenCL, CUDA and stratum support [Online] 
Available: https://github.com/ethereum-mining/ethminer  

[18] Claymore miner [Online] Available: 
https://github.com/nanopool/Claymore-Dual-Miner 

[19] Patricia Tree [Online] Available: 
https://github.com/ethereum/wiki/wiki/Patricia-Tree 

[20] OpenCL User Guide [Online] Available: 
http://developer.amd.com/wordpress/media/2013/12/AMD_OpenCL
_Programming_User_Guide2.pdf 

[21] V. Buterin, “Toward a 12-second Block Time.” [Online] Available: 
https://blog.ethereum.org/2014/07/11/toward-a-12-second-block-
time/  

[22] Dagger Hashimoto [Online] Available: 
https://github.com/ethereum/wiki/wiki/Dagger-Hashimoto  

 

1534




