-

View metadata, citation and similar papers at core.ac.uk brought to you byj: CORE

provided by International Journal on Advanced Science, Engineering and Information Technology

International Journal on Vol.7 (2017) No. 6
H ISSN: 2088-5334

Advanced Science >5N: 2088-533

Engineering

Information Technology

Implementation of Robot Operating System in Beaglebone Black
based Mobile Robot for Obstacle Avoidance Application

Mohamad Fauzi ZakariaJoo Chin Shing Mohd Razali Md Tomafi

#Advanced Mechatronics Research Group (AdMiRe) Faculty of Electrical and Electronic Engineering Universiti Tun Hussein Onn Malaysia
(UTHM), 86400 Batu Pahat, Johor, Malaysia
E-mail: mfauzi@uthm.edu.my, franciscs125@gmail.com, mdrazali@uthm.edu.my

Abstract— The Robot Operating System (ROS) is a collection of tools, libraries, and conventions that focus on simplifying the task of
creating a complex and advanced robotics system. Its standard framework can be shared with another robotics system that has a
similar platform and suitable for being introduced as an educational tool in robotics. However, the problems found out in the current
robot platform available in the market are expensive and encapsulated. The development of an open source robot platform is
encouraged. Therefore, this research is carried out to design and develop an ROS based obstacle avoidance system for existing
differential-wheeled mobile robot. The ROS was installed under Ubuntu 14.04 on a Beaglebone Black embedded computer system.
Then, the ROS was implemented together with the obstacle avoidance system to establish the communication between program
nodes. The mobile robot was then designed and developed to examine the obstacle avoidance application. The debugging process was
carried out to check the obstacle avoidance system application based on the communication between nodes. This process is important
in examining the message publishing and subscribing from all nodes. The obstacle avoidance mobile robot has been successfully tested
where the communication between nodes was running without any problem.

Keywords— robot operating system; differential-wheeled mobile robot; beaglebone black; obstacle avoidance

embedded controller. Their dimension is more than 30 cm x

[. INTRODUCTION 15 cm, consequently not suitable for academic purpose
especially when the testing area is limited [8]-[13].
Therefore, there is a need a small size robot to be designed
that uses an embedded Linux single-board computer. This
embedded Linux board is low power consumption and open
ource in hardware and software capabilities which fulfil the
deal features of the educational robot.

The specific objectives of this paper are to implement the
ROS on embedded Linux system and to design and develop
an obstacle avoidance application for the differential-
wheeled mobile robot. This robot would be a teaching tool

that can be shared and used in other robots when using thg)r a course 9f Mob?le RQbOtiCS at th_e_FacuIty of El_ectrical
same standard software framework. The current frameworkand El_ectron_lc Engineering, Universit Tun_ Husse'n an
widely used is Robot Operating System (ROS). ROS Malay5|a. This course covers robot perceptlon,_ localization,
provides standard operating system faciliies such asPl@Nning and navigation that would be relied on the
hardware abstraction, low-level ~device control, Successful projects done by ROS community.
implementation of commonly used functionalities, message
passing between processes and package management [4], [5].
It is based on graph architecture with a centralized topology The mobile robot is a differential wheeled configuration
where processing takes place in nodes that may receive othat developed based on 2WD miniQ robot chassis. The
post, such as multiplex sensor, actuator, control, state,chassis diameter is 12.2 cm, and the wheel diameter is 4.2
planning, and navigation [6], [7]. cm. Two DC micro gear motors are used for the movement
The current implementation of ROS in mobile robotics of the robot. An Infrared rangefinder sensor is used to detect
system is using a laptop computer integrated with anthe obstacle in front to stop the robot from moving. A servo

Mobile robotics in education is a pedagogical tool that
promoting active learning and involve multi-disciplinary
knowledge [1], [2]. Educators in Science, Technology,
Engineering and Math (STEM) frequently choose robotics
system as a subject STEM-focused problem-based learnin
(PBL)[3]. Therefore, the ideal features of an educational
robot for a group of students are a small physical size for
minimum workspace area, low power consumption, high
power computational and modular configuration.

Most mobile robotics systems have similar functionalities

Il. MATERIAL AND METHOD

2213

https://core.ac.uk/display/296920135?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

motor is attached to the infrared sensor to detect the obstacl® ifconfig ethl 192.168.7.1

in three angles. (45°, 90°, and 135°). The main controller $ iptables —table nat —append POSTROUTING —out-
board is a Beaglebone Black Revision C, and its baseinterface wlan0 - MASQUERADE

operating system is Ubuntu ARM 14.04 LTS. Under this $ iptables —append FORWARD —in-interface ethl —j
operating system, the ROS Jade version is installed. ACCEPT

echo 1 > /proc/sys/net/ipv4/ip_forward
A. System Architecture $ P y Ipv4/ip_

The overall system architecture of this research is shown
in Fig. 1. This system consists of three major applications
that are obstacle avoidance system and motor control systen
The obstacle avoidance system will continuously receive
data from the infrared sensor and servo motor. These dat:
will further be processed by the obstacle avoidance

eMMC Pins
HDMI Pins

algorithm. After that, the processed information will be [| |
transferred to the motor control system to trigger the dc
motors to turn to the desired direction. The motor control o ® = @
system is implemented to move the robot by trigger the DC [sav 0 04 |[+3.3V e ﬁ; gj e
motor in the forward direction or left, and right direction [06 crl0.# |05 06 [GPIO.35
depends on the obstacle detected. PWR BUT - @ SYS. RESETN Roe ¥ % opoe
SHIO SR 11 12 |GEIGRE) GPI0.45 |11 12[GPIO 44
Beaglebone ﬁ::g—:; i: :‘; E::g—:‘l’ GPI0.23 |13 14 |GPIO_26
= = GPIO_47 15 16 GPIO_46
Jbunt 05 il 1 18 GRIOSY G027 |17 18 |GPIO_65
ROS GPIO_13 19 20 [GPIO_12 @022 |19 20| GPIO. 63
Infrared il 21| ITi\ 22 GPIO_2 GPIO_62 21 nQ 22 (GPIO_37
Sensor Obstacle Motor GPIO_49 25 24 [GHIGE LY GPi0_36 |23 kit 24 [Grio 33
Avoidance Control Motor Driver gz:g—ﬂ; :3 z: 2::2—1:3 GPIO_32 |25 26 | GPIO_6L
Servo Motor | System System GPlO.121 |29 30 [GPIO_122 g::g:z: i; ;? g::g::
Motor right GEIO LU 51 = GPIO_10 |31 32|GPio_11
g: GPIO_09 |33 34 | GPIO_81
Fig. 1 Block diagram of system architecture = g::z:;”; > » 2::2::‘;
A0 GPIO_76 |30 40 |GPIO_77
B. Hardware :ﬁ GPIO_7 GPIO_74 |4l 42| GPI0_75
H H H H H GPIO_72 43 44 | GPIO_73
Fig. 2 _shows the circuit connection of the electronics [pe % o S
hardware interface. The infrared sensor that attached to RC ® ®
Servo Motor is connected to an analog pin, AINO of
Beaglebone Black. The position control of Servo Motor is
based on pulse width modulation (PWM) signal from pin
P9-P13. The Beaglebone Black control the speed and IR RANGEFINDER A RC SERVOMOTOR
direction of two DC motors via an L293D motor driver. The T . GPZYDAOZYK
power supply system has relied on a 5VDC power bank _ . o =V Po_13 Q
battery with maximum 2A current. - 2 GND
| A ==
C. ROS Installation on Beaglebone Black -
. g . LEFT MOTOR
The Beaglepone.BIack is communicated through Secure MOTOR DRIVER|:s [s
Shell (SSH) in a Linux system. The command to access SSk 1293D
is: P8 8 24 N1 vss Vs ouTt =2
P9_10 8: IN2 OUT?2 =2 558
$ ssh ubuntu@192.168.7.2 P9_15 O] EN
After that, the system will prompt the user to enter the pg 46 0_13 N §
username and password. The default username is ubuntt gg_ﬁgi ::3 SHE =
and the default passwordtemppwd In order to install ROS - oo oW
on Beaglebone Black, the network access is necessary. Th
network of main OS can be shared with the OS on RIGHT MOTOR
Beaglebone Black with the following command: -
On the Beaglebone Black: -
$ sudo ifconfig usbh0 192.168.7.2 Fig. 2 Schematic diagram of electronics circuit
sudo route add default gw 192.168.7.1 . . S
$ 9 The following installation guideline is based on [6].
On the main OS: Step 1:
#wlan0 is the main OS internet facing interface, ethl is the Before the installation of ROS, the system locale needs to be
Beaglebone USB connection. set with the command:
$ sudo su

2214

$ sudo update-locale LANG=C LANGUAGE=C LC_ALL=C will stop moving, and the servo motor will turn to 0° and
LC_MESSAGES=POSIX 180° to detect the distance at 0° and 180°. If the distance at
Step 2: 0° is more than the distance at 180°, the motor will turn to

The sources.listis set up with the following command to the right (0%). On the other hand, the motor will wm to the

accent software from ARM mirror on packaes. ros.ora: left (180°) if the distance at 180° is more than the distance at
P P ges.ros.org: 0°. If the distance at left and right is less than 30cm, the

$ sudo sh —c ‘echo “deb http://packages.ros.org/ros/ubuntu robot will turn backward. After that, the robot will continue
trusty main” > /etc/apt/sources.list.d/ros-latest.list’ to move in the forward direction until an obstacle is detected.
) In Fig. 4, the motor control node consists of a program
Step 3: .) that is used to control the rotation direction of the motor.
Set up the keys with the command: This node will continuously subscribe to teop_moving

$ wget message antlrn_direction message from the sensor node
https://raw.githubusercontent.com/ros/rosdistro/master/ros.k and compare_distancenode. Normally, if no obstacle is
ey -O - | sudo apt-key add — detected, the motor control node will control the rotation of

the motor in the forward direction. If thetop_moving

message is received means obstacle is detected, the motors

will be stopped from rotating to stop the robot from moving.

$ sudo apt-get install ros-indgo-ros-base If turn_direction message is received, motors are triggered
to move the robot in left or right direction depends on the

Step 5: message received. After the robot finished the move in a

rosdepneed to be installed first to enable the installation of direction, the motor control node will then control the

system dependencies with the command: rotation of the motor to rotate in the forward direction. To

Step 4:
The ROS packages is installed with the following command:

$ sudo apt-get install python-rosdep start with, the node should register with the ROS Master to
$ sudo rosdep init locate the message passing path to the destination node.
$ rosdep update

Step 6:
The ROS environment is setup with the command:

$ echo “source /opt/ros/indigo/setup.bash” >> ~/.bashrc
$ source ~/.bashrc

Step 7:
Finally, after all, the requirements are set up, the ROS can be
installed with the following command:

4)| Step moving
EE—

)

Serro rrotor (07)
Fead distance

$ sudo apt-get install python-rosintall

D. ROS System Setup

First, a workspace is created as the project folder of ROS,
In ROS, the developer standardizes the project folder of
ROS ascatkin workspaceThe user can create tlvatkin
workspacewith the following command:

Servo motor (1307
Eead distance

$ mkdir —p ~/catkin_ws/src
$ cd ~/catkin_ws/src
$ catkin_init_workspace

distaire_right>
distarzne Jeff ?
Trae

After the workspace is created, it must be built first to insert
the project folder into ROS system. This can be enabled by
the following command:

$ cd ~/catkin_ws/ False

$ catkin_make

E. Application Software

The programming language for software development is
in Python. Before the coding was written, the overall
software flow-chart should be designed. As in Fig. 3, once
the program is running, the robot will start moving in a
forward direction when no obstacle is detected. The infrared
sensor attached to the servo motor will repeatedly detect the
distance in front from angle 96845°—-90°—135°. When
the distance of obstacle detected is less than 15 cm, the robot

Serro motor (135%)

Fig. 3 Obstacle-avoidance software flow-chart

2215

turn_right message is published. Otherwise,twan_left
message is sent. Fig. 7 shows the block diagram for compare

Registrati i
o}').\fc.rc'fc'_.:r’c‘m:'rc‘u" < cgtstration dIStance nOde'
message
subscribe DC Motor ROS Master obstalce_detected
— - message —> DC Motor Node
furn directiont 0
message
~ distance right
message
Fig. 4 Motor control system Compare
f Distance Node
The sensor node continuously receives data from the dﬁ‘;’;gzgﬁ
infrared sensor and the data received is converted into
centimeter to indicate the distance detected in the current -
. - . distance _detected
moment as shown in Fig. 5. The sensor node is always | servo Motor message
subscribed to the check message. When the check messac
is received, the sensor node will run the program to detect _ block di
the distance obstacle in front. The distance detected is Fig. 6 Servomotor block diagram
published as distance_detectemhessage to the servo motor
node. Thedistance_detectethessage will be subscribed by ROS Master
servo motor node to receive current distance detected by the i
robot; this data will be further processed by servo motor
node. disiance leff
message
Compare .
Distance subscribe
Node distance _right
message
subscribe check message
direction N .
publish message DC Motor Node
‘ distance_detected |) Servo Motor Fig. 7 Compare distance block diagram
message Node
Fig. 5 Infra-red sensor block diagram 111. RESULT AND DISCUSSION

The implementation of ROS in obstacle avoidance

the motion of servo motor. This node will always subscribe SyStem is debugged based on the communication between
to thedistance_detectetbpic. Due to the limitation of the ~Nodes. In a ROS system, many nodes are communicating
infrared sensor that is unable to detect object not With each other for an applicatioroscoreis a collection of
perpendicular to the sensor, thus the servo motor is usedodes and programs that are pre-requisites of a ROS system.
together with the sensor. The sensor will always check theTo enable communication of all the nodesscore must be
distance in front from theistance_detectetbpic in 45° to ~ launched. Once theoscoreis launched, it will start up: a
135° with the use of servo motor; once an obstacle isROS Master; a ROS Parameter Server; arasautlogging
detected, the sensor will check the distance of left and right.node. All the systems above are required to start up the
The distance detected in the direction of left and right is thencommunication between nodes. It can be terminated with
published to compare distance node aslistance_right keyboard interrupt to shut down the ROS system.
message andistance_leftmessage. Then compare distance
node will further process these two messages to decide™ ROS Graph
which direction to be moved to. Moreover, this node will The ROS graph provides a visualization graph for the
also publish ambstacle_detectechessage when an obstacle ROS computation graph. It is used to visualize the
is detected in front. communication between different nodes [14]. Each of the
The compare distance node is constructed to compare théodes initializes a specific topic to communicate with the
distance at 0° and 180°. This node is continuously specific node. As a result, the sensor node initialized a topic
subscribed to two messagedistance leftmessage and called distance_detectthis topic was subscribed by servo
distance_rightmessage. Two of this message is sent by motor node by connecting to the same topic. This means that
servo motor node when an obstacle is detected. Theonce the topic is subscribed by a node, communication can
messages received are the distance detected at 0° and 180% stabilized by publishing and subscribing to a message.
which is an Int16 data type. The program of compare
distance node will compare the distance received and
publish a message called direction to DC motor node. If the
distance at 180° is more than the distance at 0° the

In Fig. 6, the servo motor node is responsible for control

2216

Sensor /check

/String “check_distance”

/Mntl6 distance right

compare
distance

/Int16 distance left

/direction

/distance_detect /dist_detect_right

SEIrvo

motor /dist_detect left

[/String “turn_left”

/Float32 distance

»

/String “turn_right

/obstacle_detect

dc motor
[String “stop”

”

/String “move

/forward

/String “furn_backward”

Fig. 8 ROS graph

Fig. 8 shows the ROS graph for communication between [***

four nodes. The topidistance_deteds initialized by sensor

node and subscribed by servo motor node to detect the;i;_
obstacle distance. Besides, the servo motor initializing three|

topics calldist_detect_rightdist_detect_leftanddist_detect
The topics of dist_detect_rightand dist_detect_leftare

subscribed by compare distance node to compare h P
distance of left and right, and then publish a message to D(Js»

motor by throughdirection topic. Whereas, thdist_detect

B. Execution of ROS Nodes

started roslaunch server http://arm: 48830/
: o vetston 1. 11 16

topic is subscribed by DC motor node to stop the robot from e
moving. The DC motor node also initializes a topic called
forwardto publish anovemessage to servo motor node.

auto-starcing new master

process|[master): started with pid [2365)
ROS_MASTER URI=htcp://arm:11311/

sectting /ru:_‘.d to b3cd4984-d13e-11e5-9226-84eb18e63450

process[roscut-1]: started with pid [2378)

starced

cora service [/rosoc

In a ROS system, many nodes are communicating with
each other for an applicatiorscoreis a collection of nodes
and programs that are pre-requisites of a ROS system. T
enable communication of all the nodesscore must be
launched. Once th®scoreis launched, it will start up:

a ROS Master
a ROS Parameter Server
arosoutlogging node

Fig. 10 Execution ofoscore

&. Execution of Application Nodes

After the roscoreis launched, the application’s program

can be run by usingpbsruncommand. In a ROS system, the
program is called as a node. Most of the nodes in ROS
system are required to communicate with another node to

send and receive a message at that instafiees, all the
All the systems above are required to start up the nodes must be run so that all the features of an application
communication between nodes. It can be terminated withcan be executed. The command to run the program is:

keyboard interrupt to shut down the ROS system. Before

In terminal 1:

running a roscore, the ROS must be source first to enable the $ rosrun ultra_class ultra_class.py

access to the ROS commands and build into the workspace:

$ cd ~/catkin_workspace
$ source /opt/ros/jade/setup.bash
$ source devel/setup.bash

Fig. 9 and 10 show thsourceandroscoreare run in the
terminal.

1p.bash

2217

In terminal 2:
$ rosrun servo_class servo_class.py

In terminal 3:
$ rosrun compare_distance compare_distance.py

In terminal 4:
$rosrun dc_motor dc_motor.py

The sensor node and servo motor needed to be executed

together to establish the communication between these two

nodes. When the sensor node was executed, the prograrco"f7m:/neme/upunra/earian st zossun g2 motes de metor.oy
would not be run if the servo motor node was not executed.scep

This is because the sensor node was always waiting for the;"=" *=**

message from the servo motor to detect the distance. stop

Once the servo motor was executed, communication was:. . 25"
established, message publishing and subscribing werester
initiated. The programs of the sensor node and Servo Motolsarses
node would be executed. Figs. 11 and 12 show the=cer
communication between the sensor node and servo motoi
node.

Moreover, compare distance node, and DC motor node
could be executed after the sensor node, and servo moto
node was executed. The compare distance node woulc
always wait for the message published by a servo motor.
Thus, the program of this node would not be run if the servo
motor node was not executed. Once the compare distanc
node received a message from servo motor node, the
direction message would be published after the distance
received was compared. Thus, the DC motor node would
control the DC motors depended on the message receive(
from compare distance node. Figs. 13 and 14 show the
communication between compare distance node and DC
motor node. The complete prototype of mobile robot system
was successfully built and tested as shown in Fig. 15.

Fig. 14 Execution of DC motor node

root@arm: /home/ubuntu/catkin_ws# rosrun ultra_ class ultra_class.py
Distance detected: €4.9450746534

Distance detected: 15.8309595414

Distance detected: 65.0191808673

Distance detected: €4.8987583474

Distance detected: 112.836396103 Fig. 15 Side view of complete prototype
Distance detected: 64.9172848698

Distance detected: 15.8402628492

M S

Distance detected: 66.140042803 IV. CONCLUSIONS

Distance detected: 66.140042803 . . .

Distance detected: 146.94391071 As a conclusion, Robot Operating System (ROS) is a
Fig. 11 Execution of sensor node system designed for the development of a robotic system.

The system is an open source where the robotic researchers
or engineers can share their idea or system to the public in
terms of source code, system design or hardware design.

Barm: /home/ubuntu/catkin_ws/src/servo_class/scripts§ rosrun servo_clasa serv

35.DY

e Moreover, the information shared was kept on maintained by
Distance detected: 56.1356685224 the engineer which the engineer will continuously update
A their system. The objective of the research is achieved by
ek aiﬁdqwep integrating the ROS on the mobile robot designed. The
Check 45 degree obstacle avoidance mobile robot is successfully designed
e ke based on the ROS where the communication between the
Distanc : 10.5601746116 programs is successfully integrated. Besides, the performance
Fig. 12 Execution of servomotor node of the robot is fast and smooth which the delay of
communication between programs is approximately in a
T millisecond. Thus, the Beaglebone Black based mobile robot
Lopgl o that equipped with ROS is recommended as a teaching tool
tuming left for mobile robotics course.
Boras Gt Here il Some improvement could be made in the future. The
SR possible improvement found out is to reduce the wobbling
Distance left: data: 10 during navigation. Thus, two encoders are recommended to
Stteioh e s attach with DC motors for the implementation of
Vighance Jecke skbasds proportional, integral, and differential (PID) control system.

With PID control system, the speed of the two DC motors
can be altered to obtain the same speed in both DC motors.
Another possible improvement of the mobile robot is to
detect a small and thin object due to the limitation of
detection on the infrared sensor. Implementation of vision
technique can solve this limitation to detect the small and

Fig. 13 Execution of distance comparison node

2218

thin object. Thus, a webcam is attached to the mobile robotl6]
so that the current image can be processed by a vision

system.

ACKNOWLEDGMENT

The authors would like to thank the Office of Research,
Innovation, Commercialization and Consultancy (ORICC),
Universiti Tun Hussein Onn Malaysia (UTHM) for the
funding of this paper publication.

REFERENCES

[1] S. F. R. Alves, H. F. Filho, R. Pegoraro, M. A. C. Caldeira, J. M.
Roséario, and W. M. Yonezawa, “Proposal of educational
environments with mobile robots,” i2011 IEEE 5th International
Conference on Robotics, Automation and Mechatronics (R204),
pp. 264-269.

[2] M. Beschi, R. Adamini, A. Marini, and A. Visioli, “Using of the
Robotic Operating System for PID control educatidirAC-Pap,
vol. 48, no. 29, pp. 87-92, Jan. 2015.

[3] C. Vandevelde, F. Wyffels, M.-C. Ciocci, B. Vanderborght, and J.

Saldien, “Design and evaluation of a DIY construction system for [13]

educational robot kits,Int. J. Technol. Des. Edyazol. 26, no. 4, pp.
521-540, Nov. 2016.

[4] “About ROS.” [Online]. Available: http://www.ros.org/about-ros/.
[Accessed: 26-Mar-2017].

[5] A. Koubaa,Robot Operating System (ROS): The Complete Reference
Springer, 2016.

2219

Enrique Fernandez, L. Sanchez Crespo, A. Mahtani, and A. Martinez,
Learning ROS for Robotics ProgramminBackt Publishing Ltd,
2015.

L. Garber, “Robot OS: A New Day for Robot DesigGomputer

vol. 46, no. 12, pp. 1620, Dec. 2013.

E. Ruiz, R. Acufia, N. Certad, A. Terrones, and M. E. Cabrera,
“Development of a Control Platform for the Mobile Robot Roomba
Using ROS and a Kinect Sensor,”2013 Latin American Robotics
Symposium and Competitia2013, pp. 55-60.

E. M. H. Zahugi, A. M. Shabani, and T. V. Prasad, “Libot: Design of
a low cost mobile robot for outdoor swarm robotics,2012 IEEE
International Conference on Cyber Technology in Automation,
Control, and Intelligent Systems (CYBER)12, pp. 342-347.

V. Bayar, B. Akar, U. Yayan, H. S. Yavuz, and A. Yazici, “Fuzzy
logic based design of classical behaviors for mobile robots in ROS
middleware,” in2014 |IEEE International Symposium on Innovations
in Intelligent Systems and Applications (INISTA) Proceedi2@$4,

pp. 162-169.

A. Araljo, D. Portugal, M. S. Couceiro, and R. P. Rocha,
“Integrating Arduino-Based Educational Mobile Robots in RQES,”
Intell. Robot. Systpp. 1-18, Feb. 2014.

G. Fu and X. Zhang, “ROSBOT: A low-cost autonomous social
robot,” in 2015 IEEE International Conference on Advanced
Intelligent Mechatronics (AIM)2015, pp. 1789-1794.

H. I. M. A. Omara and K. S. M. Sahari, “Indoor mapping using
kinect and ROS,” ir2015 International Symposium on Agents, Multi-
Agent Systems and Robotics (ISAM2RB]5, pp. 110-116.

M. Quigley, B. Gerkey, and W. D. Smarogramming Robots with
ROS: A Practical Introduction to the Robot Operating System
O’Reilly Media, Inc., 2015.

