

Vol.7 (2017) No. 6

ISSN: 2088-5334

Implementation of Robot Operating System in Beaglebone Black
based Mobile Robot for Obstacle Avoidance Application

Mohamad Fauzi Zakaria#, Joo Chin Shing#, Mohd Razali Md Tomari#

#Advanced Mechatronics Research Group (AdMiRe) Faculty of Electrical and Electronic Engineering Universiti Tun Hussein Onn Malaysia

(UTHM), 86400 Batu Pahat, Johor, Malaysia
E-mail: mfauzi@uthm.edu.my, franciscs125@gmail.com, mdrazali@uthm.edu.my

Abstract— The Robot Operating System (ROS) is a collection of tools, libraries, and conventions that focus on simplifying the task of
creating a complex and advanced robotics system. Its standard framework can be shared with another robotics system that has a
similar platform and suitable for being introduced as an educational tool in robotics. However, the problems found out in the current
robot platform available in the market are expensive and encapsulated. The development of an open source robot platform is
encouraged. Therefore, this research is carried out to design and develop an ROS based obstacle avoidance system for existing
differential-wheeled mobile robot. The ROS was installed under Ubuntu 14.04 on a Beaglebone Black embedded computer system.
Then, the ROS was implemented together with the obstacle avoidance system to establish the communication between program
nodes. The mobile robot was then designed and developed to examine the obstacle avoidance application. The debugging process was
carried out to check the obstacle avoidance system application based on the communication between nodes. This process is important
in examining the message publishing and subscribing from all nodes. The obstacle avoidance mobile robot has been successfully tested
where the communication between nodes was running without any problem.

Keywords— robot operating system; differential-wheeled mobile robot; beaglebone black; obstacle avoidance

I. INTRODUCTION

Mobile robotics in education is a pedagogical tool that
promoting active learning and involve multi-disciplinary
knowledge [1], [2]. Educators in Science, Technology,
Engineering and Math (STEM) frequently choose robotics
system as a subject STEM-focused problem-based learning
(PBL)[3]. Therefore, the ideal features of an educational
robot for a group of students are a small physical size for
minimum workspace area, low power consumption, high
power computational and modular configuration.

Most mobile robotics systems have similar functionalities
that can be shared and used in other robots when using the
same standard software framework. The current framework
widely used is Robot Operating System (ROS). ROS
provides standard operating system facilities such as
hardware abstraction, low-level device control,
implementation of commonly used functionalities, message
passing between processes and package management [4], [5].
It is based on graph architecture with a centralized topology
where processing takes place in nodes that may receive or
post, such as multiplex sensor, actuator, control, state,
planning, and navigation [6], [7].

The current implementation of ROS in mobile robotics
system is using a laptop computer integrated with an

embedded controller. Their dimension is more than 30 cm x
15 cm, consequently not suitable for academic purpose
especially when the testing area is limited [8]–[13].
Therefore, there is a need a small size robot to be designed
that uses an embedded Linux single-board computer. This
embedded Linux board is low power consumption and open
source in hardware and software capabilities which fulfil the
ideal features of the educational robot.

The specific objectives of this paper are to implement the
ROS on embedded Linux system and to design and develop
an obstacle avoidance application for the differential-
wheeled mobile robot. This robot would be a teaching tool
for a course of Mobile Robotics at the Faculty of Electrical
and Electronic Engineering, Universiti Tun Hussein Onn
Malaysia. This course covers robot perception, localization,
planning and navigation that would be relied on the
successful projects done by ROS community.

II. MATERIAL AND METHOD

The mobile robot is a differential wheeled configuration
that developed based on 2WD miniQ robot chassis. The
chassis diameter is 12.2 cm, and the wheel diameter is 4.2
cm. Two DC micro gear motors are used for the movement
of the robot. An Infrared rangefinder sensor is used to detect
the obstacle in front to stop the robot from moving. A servo

2213

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal on Advanced Science, Engineering and Information Technology

https://core.ac.uk/display/296920135?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

motor is attached to the infrared sensor to detect the obstacle
in three angles. (45°, 90°, and 135°). The main controller
board is a Beaglebone Black Revision C, and its base
operating system is Ubuntu ARM 14.04 LTS. Under this
operating system, the ROS Jade version is installed.

A. System Architecture

The overall system architecture of this research is shown
in Fig. 1. This system consists of three major applications
that are obstacle avoidance system and motor control system.
The obstacle avoidance system will continuously receive
data from the infrared sensor and servo motor. These data
will further be processed by the obstacle avoidance
algorithm. After that, the processed information will be
transferred to the motor control system to trigger the dc
motors to turn to the desired direction. The motor control
system is implemented to move the robot by trigger the DC
motor in the forward direction or left, and right direction
depends on the obstacle detected.

Fig. 1 Block diagram of system architecture

B. Hardware

Fig. 2 shows the circuit connection of the electronics
hardware interface. The infrared sensor that attached to RC
Servo Motor is connected to an analog pin, AIN0 of
Beaglebone Black. The position control of Servo Motor is
based on pulse width modulation (PWM) signal from pin
P9-P13. The Beaglebone Black control the speed and
direction of two DC motors via an L293D motor driver. The
power supply system has relied on a 5VDC power bank
battery with maximum 2A current.

C. ROS Installation on Beaglebone Black

The Beaglebone Black is communicated through Secure
Shell (SSH) in a Linux system. The command to access SSH
is:

$ ssh ubuntu@192.168.7.2

After that, the system will prompt the user to enter the
username and password. The default username is ubuntu,
and the default password is temppwd. In order to install ROS
on Beaglebone Black, the network access is necessary. The
network of main OS can be shared with the OS on
Beaglebone Black with the following command:
On the Beaglebone Black:

$ sudo ifconfig usb0 192.168.7.2
$ sudo route add default gw 192.168.7.1

On the main OS:
#wlan0 is the main OS internet facing interface, eth1 is the
Beaglebone USB connection.

$ sudo su

$ ifconfig eth1 192.168.7.1
$ iptables –table nat –append POSTROUTING –out-
interface wlan0 –j MASQUERADE
$ iptables –append FORWARD –in-interface eth1 –j
ACCEPT
$ echo 1 > /proc/sys/net/ipv4/ip_forward

Fig. 2 Schematic diagram of electronics circuit

The following installation guideline is based on [6].
Step 1:
Before the installation of ROS, the system locale needs to be
set with the command:

2214

$ sudo update-locale LANG=C LANGUAGE=C LC_ALL=C
LC_MESSAGES=POSIX

Step 2:
The sources.list is set up with the following command to
accept software from ARM mirror on packages.ros.org:

$ sudo sh –c ‘echo “deb http://packages.ros.org/ros/ubuntu
trusty main” > /etc/apt/sources.list.d/ros-latest.list’

Step 3:
Set up the keys with the command:

$ wget
https://raw.githubusercontent.com/ros/rosdistro/master/ros.k
ey -O - | sudo apt-key add –

Step 4:
The ROS packages is installed with the following command:

$ sudo apt-get install ros-indgo-ros-base

Step 5:
rosdep need to be installed first to enable the installation of
system dependencies with the command:

$ sudo apt-get install python-rosdep
$ sudo rosdep init
$ rosdep update

Step 6:
The ROS environment is setup with the command:

$ echo “source /opt/ros/indigo/setup.bash” >> ~/.bashrc
$ source ~/.bashrc

Step 7:
Finally, after all, the requirements are set up, the ROS can be
installed with the following command:

$ sudo apt-get install python-rosintall

D. ROS System Setup

First, a workspace is created as the project folder of ROS.
In ROS, the developer standardizes the project folder of
ROS as catkin workspace. The user can create the catkin
workspace with the following command:

$ mkdir –p ~/catkin_ws/src
$ cd ~/catkin_ws/src
$ catkin_init_workspace

After the workspace is created, it must be built first to insert
the project folder into ROS system. This can be enabled by
the following command:

$ cd ~/catkin_ws/
$ catkin_make

E. Application Software

The programming language for software development is
in Python. Before the coding was written, the overall
software flow-chart should be designed. As in Fig. 3, once
the program is running, the robot will start moving in a
forward direction when no obstacle is detected. The infrared
sensor attached to the servo motor will repeatedly detect the
distance in front from angle 90°→45°→90°→135°. When
the distance of obstacle detected is less than 15 cm, the robot

will stop moving, and the servo motor will turn to 0° and
180° to detect the distance at 0° and 180°. If the distance at
0° is more than the distance at 180°, the motor will turn to
the right (0°). On the other hand, the motor will turn to the
left (180°) if the distance at 180° is more than the distance at
0°. If the distance at left and right is less than 30cm, the
robot will turn backward. After that, the robot will continue
to move in the forward direction until an obstacle is detected.

In Fig. 4, the motor control node consists of a program
that is used to control the rotation direction of the motor.
This node will continuously subscribe to the stop_moving
message and turn_direction message from the sensor node
and compare_distance node. Normally, if no obstacle is
detected, the motor control node will control the rotation of
the motor in the forward direction. If the stop_moving
message is received means obstacle is detected, the motors
will be stopped from rotating to stop the robot from moving.
If turn_direction message is received, motors are triggered
to move the robot in left or right direction depends on the
message received. After the robot finished the move in a
direction, the motor control node will then control the
rotation of the motor to rotate in the forward direction. To
start with, the node should register with the ROS Master to
locate the message passing path to the destination node.

Fig. 3 Obstacle-avoidance software flow-chart

2215

Fig. 4 Motor control system

The sensor node continuously receives data from the
infrared sensor and the data received is converted into
centimeter to indicate the distance detected in the current
moment as shown in Fig. 5. The sensor node is always
subscribed to the check message. When the check message
is received, the sensor node will run the program to detect
the distance obstacle in front. The distance detected is
published as a distance_detected message to the servo motor
node. The distance_detected message will be subscribed by
servo motor node to receive current distance detected by the
robot; this data will be further processed by servo motor
node.

Fig. 5 Infra-red sensor block diagram

In Fig. 6, the servo motor node is responsible for control
the motion of servo motor. This node will always subscribe
to the distance_detected topic. Due to the limitation of the
infrared sensor that is unable to detect object not
perpendicular to the sensor, thus the servo motor is used
together with the sensor. The sensor will always check the
distance in front from the distance_detected topic in 45° to
135° with the use of servo motor; once an obstacle is
detected, the sensor will check the distance of left and right.
The distance detected in the direction of left and right is then
published to compare distance node as a distance_right
message and distance_left message. Then compare distance
node will further process these two messages to decide
which direction to be moved to. Moreover, this node will
also publish an obstacle_detected message when an obstacle
is detected in front.

The compare distance node is constructed to compare the
distance at 0° and 180°. This node is continuously
subscribed to two messages, distance_left message and
distance_right message. Two of this message is sent by
servo motor node when an obstacle is detected. The
messages received are the distance detected at 0° and 180°
which is an Int16 data type. The program of compare
distance node will compare the distance received and
publish a message called direction to DC motor node. If the
distance at 180° is more than the distance at 0°, the

turn_right message is published. Otherwise, a turn_left
message is sent. Fig. 7 shows the block diagram for compare
distance node.

Fig. 6 Servomotor block diagram

Fig. 7 Compare distance block diagram

III. RESULT AND DISCUSSION

The implementation of ROS in obstacle avoidance
system is debugged based on the communication between
nodes. In a ROS system, many nodes are communicating
with each other for an application. roscore is a collection of
nodes and programs that are pre-requisites of a ROS system.
To enable communication of all the nodes, roscore must be
launched. Once the roscore is launched, it will start up: a
ROS Master; a ROS Parameter Server; and a rosout logging
node. All the systems above are required to start up the
communication between nodes. It can be terminated with
keyboard interrupt to shut down the ROS system.

A. ROS Graph

The ROS graph provides a visualization graph for the
ROS computation graph. It is used to visualize the
communication between different nodes [14]. Each of the
nodes initializes a specific topic to communicate with the
specific node. As a result, the sensor node initialized a topic
called distance_detect; this topic was subscribed by servo
motor node by connecting to the same topic. This means that
once the topic is subscribed by a node, communication can
be stabilized by publishing and subscribing to a message.

2216

Fig. 8 ROS graph

Fig. 8 shows the ROS graph for communication between

four nodes. The topic distance_detect is initialized by sensor
node and subscribed by servo motor node to detect the
obstacle distance. Besides, the servo motor initializing three
topics call dist_detect_right, dist_detect_left, and dist_detect.
The topics of dist_detect_right and dist_detect_left are
subscribed by compare distance node to compare the
distance of left and right, and then publish a message to DC
motor by through direction topic. Whereas, the dist_detect
topic is subscribed by DC motor node to stop the robot from
moving. The DC motor node also initializes a topic called
forward to publish a move message to servo motor node.

B. Execution of ROS Nodes

In a ROS system, many nodes are communicating with
each other for an application. roscore is a collection of nodes
and programs that are pre-requisites of a ROS system. To
enable communication of all the nodes, roscore must be
launched. Once the roscore is launched, it will start up:

• a ROS Master
• a ROS Parameter Server
• a rosout logging node

All the systems above are required to start up the

communication between nodes. It can be terminated with
keyboard interrupt to shut down the ROS system. Before
running a roscore, the ROS must be source first to enable the
access to the ROS commands and build into the workspace:

$ cd ~/catkin_workspace
$ source /opt/ros/jade/setup.bash
$ source devel/setup.bash

Fig. 9 and 10 show the source and roscore are run in the
terminal.

Fig. 9 Source of ROS setup bash file

Fig. 10 Execution of roscore

C. Execution of Application Nodes

After the roscore is launched, the application’s program
can be run by using rosrun command. In a ROS system, the
program is called as a node. Most of the nodes in ROS
system are required to communicate with another node to
send and receive a message at that instance. Thus, all the
nodes must be run so that all the features of an application
can be executed. The command to run the program is:

In terminal 1:
$ rosrun ultra_class ultra_class.py

In terminal 2:
$ rosrun servo_class servo_class.py

In terminal 3:
$ rosrun compare_distance compare_distance.py

In terminal 4:
$rosrun dc_motor dc_motor.py

The sensor node and servo motor needed to be executed
together to establish the communication between these two

2217

nodes. When the sensor node was executed, the program
would not be run if the servo motor node was not executed.
This is because the sensor node was always waiting for the
message from the servo motor to detect the distance.

Once the servo motor was executed, communication was
established, message publishing and subscribing were
initiated. The programs of the sensor node and servo motor
node would be executed. Figs. 11 and 12 show the
communication between the sensor node and servo motor
node.

Moreover, compare distance node, and DC motor node
could be executed after the sensor node, and servo motor
node was executed. The compare distance node would
always wait for the message published by a servo motor.
Thus, the program of this node would not be run if the servo
motor node was not executed. Once the compare distance
node received a message from servo motor node, the
direction message would be published after the distance
received was compared. Thus, the DC motor node would
control the DC motors depended on the message received
from compare distance node. Figs. 13 and 14 show the
communication between compare distance node and DC
motor node. The complete prototype of mobile robot system
was successfully built and tested as shown in Fig. 15.

Fig. 11 Execution of sensor node

Fig. 12 Execution of servomotor node

Fig. 13 Execution of distance comparison node

Fig. 14 Execution of DC motor node

Fig. 15 Side view of complete prototype

IV. CONCLUSIONS

As a conclusion, Robot Operating System (ROS) is a
system designed for the development of a robotic system.
The system is an open source where the robotic researchers
or engineers can share their idea or system to the public in
terms of source code, system design or hardware design.
Moreover, the information shared was kept on maintained by
the engineer which the engineer will continuously update
their system. The objective of the research is achieved by
integrating the ROS on the mobile robot designed. The
obstacle avoidance mobile robot is successfully designed
based on the ROS where the communication between the
programs is successfully integrated. Besides, the performance
of the robot is fast and smooth which the delay of
communication between programs is approximately in a
millisecond. Thus, the Beaglebone Black based mobile robot
that equipped with ROS is recommended as a teaching tool
for mobile robotics course.

Some improvement could be made in the future. The
possible improvement found out is to reduce the wobbling
during navigation. Thus, two encoders are recommended to
attach with DC motors for the implementation of
proportional, integral, and differential (PID) control system.
With PID control system, the speed of the two DC motors
can be altered to obtain the same speed in both DC motors.
Another possible improvement of the mobile robot is to
detect a small and thin object due to the limitation of
detection on the infrared sensor. Implementation of vision
technique can solve this limitation to detect the small and

2218

thin object. Thus, a webcam is attached to the mobile robot
so that the current image can be processed by a vision
system.

ACKNOWLEDGMENT

The authors would like to thank the Office of Research,
Innovation, Commercialization and Consultancy (ORICC),
Universiti Tun Hussein Onn Malaysia (UTHM) for the
funding of this paper publication.

REFERENCES
[1] S. F. R. Alves, H. F. Filho, R. Pegoraro, M. A. C. Caldeira, J. M.

Rosário, and W. M. Yonezawa, “Proposal of educational
environments with mobile robots,” in 2011 IEEE 5th International
Conference on Robotics, Automation and Mechatronics (RAM), 2011,
pp. 264–269.

[2] M. Beschi, R. Adamini, A. Marini, and A. Visioli, “Using of the
Robotic Operating System for PID control education,” IFAC-Pap.,
vol. 48, no. 29, pp. 87–92, Jan. 2015.

[3] C. Vandevelde, F. Wyffels, M.-C. Ciocci, B. Vanderborght, and J.
Saldien, “Design and evaluation of a DIY construction system for
educational robot kits,” Int. J. Technol. Des. Educ., vol. 26, no. 4, pp.
521–540, Nov. 2016.

[4] “About ROS.” [Online]. Available: http://www.ros.org/about-ros/.
[Accessed: 26-Mar-2017].

[5] A. Koubaa, Robot Operating System (ROS): The Complete Reference.
Springer, 2016.

[6] Enrique Fernández, L. Sánchez Crespo, A. Mahtani, and A. Martinez,
Learning ROS for Robotics Programming. Packt Publishing Ltd,
2015.

[7] L. Garber, “Robot OS: A New Day for Robot Design,” Computer,
vol. 46, no. 12, pp. 16–20, Dec. 2013.

[8] E. Ruiz, R. Acuña, N. Certad, A. Terrones, and M. E. Cabrera,
“Development of a Control Platform for the Mobile Robot Roomba
Using ROS and a Kinect Sensor,” in 2013 Latin American Robotics
Symposium and Competition, 2013, pp. 55–60.

[9] E. M. H. Zahugi, A. M. Shabani, and T. V. Prasad, “Libot: Design of
a low cost mobile robot for outdoor swarm robotics,” in 2012 IEEE
International Conference on Cyber Technology in Automation,
Control, and Intelligent Systems (CYBER), 2012, pp. 342–347.

[10] V. Bayar, B. Akar, U. Yayan, H. S. Yavuz, and A. Yazici, “Fuzzy
logic based design of classical behaviors for mobile robots in ROS
middleware,” in 2014 IEEE International Symposium on Innovations
in Intelligent Systems and Applications (INISTA) Proceedings, 2014,
pp. 162–169.

[11] A. Araújo, D. Portugal, M. S. Couceiro, and R. P. Rocha,
“Integrating Arduino-Based Educational Mobile Robots in ROS,” J.
Intell. Robot. Syst., pp. 1–18, Feb. 2014.

[12] G. Fu and X. Zhang, “ROSBOT: A low-cost autonomous social
robot,” in 2015 IEEE International Conference on Advanced
Intelligent Mechatronics (AIM), 2015, pp. 1789–1794.

[13] H. I. M. A. Omara and K. S. M. Sahari, “Indoor mapping using
kinect and ROS,” in 2015 International Symposium on Agents, Multi-
Agent Systems and Robotics (ISAMSR), 2015, pp. 110–116.

[14] M. Quigley, B. Gerkey, and W. D. Smart, Programming Robots with
ROS: A Practical Introduction to the Robot Operating System.
O’Reilly Media, Inc., 2015.

2219

