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Abstract— This paper presents a robust control design based on constrained optimization using Differential Evolution (DE). The 

feedback controller is designed based on state space model of the plant considering structured uncertainty such that the closed-loop 

system would have maximum stability radius. A wedge region is assigned as a constraint for desired closed loop poles location. The 

proposed control technique is applied to a two-mass system that is known as benchmark problem for robust control design. The 

simulation results seem to be interesting in which the robustness performance is achieved in the presence of parameter variations of 

the plant. 
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I. INTRODUCTION 

Robustness has been an important issue in control systems 

design. A successfully designed control system should be 

always able to maintain stability and performance level in 

spite of uncertainties in system dynamics including 

parameter variations of the plant.  

In robust control theory, H∞ optimization approach and the 

µ-synthesis/analysis method are well developed and elegant 

[1]. They provide systematic design procedures of robust 

controllers for linear systems. However, the mathematics 

behind the theory is quite involved. It is not straightforward 

to formulate a practical design problem into H∞ or µ design 

framework. 

In this paper, we propose an alternative technique of 

robust feedback control design via constrained optimization. 

We employ DE (differential evolution) as a modern 

evolutionary algorithm that is fast and reasonably robust for 

optimization. 

To deal with the plant’s parameter uncertainty, we employ 

complex stability radius as a tool of measuring system 

robustness. In addition, the desired response is automatically 

defined by assigning a regional closed loop poles placement. 

This region will be incorporated in the DE-based 

optimization as a constraint. In other word, the controller 

design technique is based on a constrained optimization to 

obtain a set of feedback controller gains such that the closed-

loop system would have maximum complex stability radius.  

At the end of this paper, we will present the simulation 

results of our proposed control design for two-mass system 

which is commonly known as a benchmark problem for 

robust control design [2-6].    

 

II. BRIEF REVIEW  

 

A. Problem Statement 

Consider a plant model of linear time-invariant 

continuous-time system in state space form: 

)()()( tButAxtx +=&               (1) 

)()()( tDutCxty +=        

where x∈R
n
,  u∈R

m
 and y∈R

p
 are state vector, control input 

and output vector respectively.  It is assumed that the system 

given in (1) is completely state controllable and all state 

variables are available for feedback. One can use state 

feedback controller with feed-forward integral gain (ki) as 

shown in Fig. 1. The controller gains (k:=(k1,k2,k3,…kn) and 

ki)  can be computed based on classical methods such as pole 

placement or linear quadratic optimal control via Riccati 

equation. These methods assume of course that there is no 

plant uncertainty. 
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Fig. 1. State feedback controller with feed-forward integral gain 

 

In this work, constrained optimization using DE is 

employed to find a set of robust controller gains so that the 

plant uncertainty is automatically handled with the use of 

stability radius that will be discussed in the next section. In 

addition, a region of closed loop poles is incorporated as 

optimization constraint to allow the designers to define the 

desired control performance.   

 

B. Stability radius 

In this section, a tool of measuring system robustness is 

presented. It is called as stability radius [7]. It is a maximum 

distance to instability. Equivalently, a system having a larger 

stability radius implies that the system can tolerate more 

perturbations. In general, we can classify stability radius into 

two types; complex stability radius and real stability radius. 

Compared to real stability radius, complex stability radius 

can handle a wider class of perturbations including 

nonlinear, linear-time-varying, nonlinear-time-varying and 

nonlinear-time-varying-and-dynamics perturbations [8]. For 

this reason we use complex stability radius in this work. The 

complex stability radius will be maximized as in the 

optimization. 

The definition of complex stability radius is given here. 

Let C denote the set of complex numbers. C-

={z∈C|Real(z)<0} and C+=C\C- is the closed right half 

plane.  Consider a nominal system in the form: 

)()( tAxtx =& .                 (2) 

A(t) is assumed to be stable. The perturbed open-loop 

system is assumed as: 

)())()(()( txHtEtAtx ∆+=&             (3) 

where ∆(.) is a bounded time-varying linear perturbation. E 

and H are scale matrices that define the structure of the 

perturbations. The perturbation matrix itself is unknown. The 

stability radius of (3) is defined as the smallest norm of ∆ for 

which there exists a ∆ that destabilizes (2) for the given 

perturbation structure (E, H).  

For the controlled perturbed system in the form (2), let: 

EAsIHsG
1)()( −−=               (4) 

be the “transfer  matrix” associated with (A,E,H), then the 

complex stability radius is defined by the following 

definition. 

Definition 1: [7] The complex stability radius, rc: 

1])([max),,,( −

∂∈
+

+

= sGCHEAr
Cs

c

,              (5) 

where +−+ ∩=∂ CCC  is the boundary of C+.  In other words, 

a maximum rc can be achieved by minimizing the H∞ norm 

of the “transfer matrix” G [8]. 

 
III. DE-BASED CONTROL DESIGN  

 

A. Brief Overview of DE 

A DE algorithm is a stochastic search optimization method 

that is fast and reasonably robust. DE is capable of handling 

non-differentiable, non-linear, and multimodal objective 

functions [9]. DE is a one of the most promising novel 

evolutionary algorithms for solving global optimization 

problems [10]. It was proposed by Storn and Price not long 

ago in 1995 [11].  

The structure of DE is similar to other evolutionary 

algorithms. The first generation is initialized randomly and 

further generations evolve by applying the evolutionary 

operators: mutation, recombination and selection to every 

population member until a stopping criterion is satisfied. 

There are some variants of DE. The DE variant called 

DE/rand/1/bin [12] is used here.  

Furthermore, there are only few parameters defined by 

user in DE. Similar to other evolutionary algorithms, users 

have to select number of population, NP. The other control 

parameters are F (mutation scaling factor) and CR (crossover 

rate factor) which are normally valued between [0,1]. Users 

can refer to [13] for the choice of these parameters.   

 

B. Constrained Optimization 

The objective of the optimization is to maximize the 

complex stability radius (rc), however we will convert into 

minimization mode in this work by putting negative sign. 

Based on our approach, the searching procedure of the 

robust controller gains using constrained optimization can be 

formulated as follows (Table 1).  

 
Table 1. Constrained optimization 

Minimize:        )()( XrXf c−=  

 Subject to constraint:   ψλ ∈)(Xn
   for n=1,2,… 

 and boundary constraint:  ],[ bb ulX ∈  

 

 

Fig. 2. A wedge region in complex plane for closed loop poles placement 

 

X=K=(k1,k2,…,kn,ki) is the vector solutions such that 

.
1+⊆∈ n

RSX S  is the search space, and SF ⊆  is the 
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feasible region or the region of S  for which the constraint is 

satisfied. The constraint here is the closed loop poles region; 

in the feasible region, the controller gains are found such that 

the closed loop poles (λ) lie within a wedge region (ψ ) of a 

complex plane as given in Fig. 2. The wedge region can be 

specified by two parameters θ and ρ which are related to 

desired transient response characteristics i.e.: damping ratio 

(ζ) and settling time. 

 

C. Constraint Handling 

An efficient and adequate constraint-handling technique is 

a key element in the design of stochastic algorithms to solve 

complex optimization problems. Although the use of penalty 

functions is the most common technique for constraint-

handling, there are a lot of different approaches for dealing 

with constraints [14].  

Instead of using penalty approach like in [15] where the 

optimizer seemed to be inefficient (high iterations), we adopt 

a dynamic-objective constraint-handling method (DOCHM) 

[16] in order to improve the efficiency. Through defining 

distance function  F(X), DOHCM converts the original 

problem into bi-objective optimization problem 

min(F(X),f(X)), where F(X) is treated as the first objective 

function and f(x) is the second (main) one.  
The auxiliary distance function F(X) will be merely used 

to determine whether or not an individual (candidate of 

solution) is within the feasible region and how close a 

particle is to the feasible region.  If an individual lies outside 

the feasible region (at least an eigenvalue lies outside the 

wedge region), the individual will take F(X) as its 

optimization objective. Otherwise, the individual will instead 

optimize the real objective function f(X). During the 

optimization process if an individual leaves the feasible 

region, it will once again optimize F(X). Therefore, the 

optimizer has the ability to dynamically drive the individuals 

into the feasible region. 
 

 

Fig. 3. Eigenvalue distance to the wedge region in complex plane  

 

 

The procedure of the DOCHM applied to the eigenvalue 

assignment in the wedge region is illustrated in the following 

pseudo-code (Table 2). Referring to Fig. 3, let dn is an outer 

distance of an eigenvalue (λn) to the wedge region. It is noted 

that if an eigenvalue lies within the wedge region, dn=0. F(X) 

is defined by: 

∑
+

=

=
1

1

)))((,0max()(
n

i

nn XdXF λ              (6) 

 
Table 2. Pseudo-code for constraint handling 

 If   0)( =XF  

  )()( XrXf c−=  

Else   

  )()( XFXf =  

End  

 

D.  Stopping criterion 

In literatures, mostly two stopping criteria are applied in 

single-objective optimization: either an error measure if the 

optimum value is known is used or the number of function 

evaluations (number of iterations). There are some 

drawbacks for both. The optimum has to be known in the 

first method, so it is generally not applicable to real-world 

problems because the optimum is usually not known a priori. 

The second method is highly dependent on the objective 

function. Because generally no correlation can be seen 

between an optimization problem and the required number of 

function evaluations (iterations), it has to be determined by 

trial-and-error methods usually. Improper selection of the 

number of iterations to terminate the optimization can lead to 

either premature convergence or expensive optimization runs 

(excessive computational effort). 

As a result, it would be better to use stopping criterion that 

consider knowledge from the state of the optimization run. 

The time of termination would be determined adaptively, so 

the optimization run would be efficient. Several stopping 

criterions are reviewed in [17]. Although the authors did not 

conclude which one is the best for all problems, it is believed 

that performance improvement can be obtained with adaptive 

stopping criterion.  

In this work, we adopt the stopping criterion which is 

distribution-based criterion which considers the diversity in 

the population. If the diversity is low, the individuals are 

close to each other, so it is assumed that convergence has 

been obtained [17]. Standard deviation (σ) of the best 

individuals in each dimension during iterations is checked. If 

it is below a threshold ε  (small number) for sufficiently 

large number of iterations η , the optimization will be 

terminated. It can be formulated as in Table 3; where 
j

dbestx ,
represents the best individual in j-th generation 

(iteration) for d dimension.  

 
Table 3.  Stopping criterion 

If    

 ))min()(max()(
1

,,

1

2

,, dbestdbest

j

dbest

j

dbestd xxxx −<−= ∑
=

ε
η

σ
η

 

 (for d=1,2,…,D) 

  stop iterations.  

End 

 

IV. ROBUST CONTROL DESIGN FOR TWO-MASS SYSTEM 

 

In this section, an illustrative example of the proposed 

method to two-mass system is presented. This system has 

been used as benchmark problem for robust control design 

438



[5]. Consider the two-mass system shown in the Fig. 4. A 

control force (u) acts on body 1 and the position of body 2 is 

measured. Both masses are equal to one unit (m1=m2=1) and 

the spring constant is assumed to be in the range  0.5≤k≤2. 

The system can be represented in state space form: 
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        (12) 

where:  x1: position of mass-1 

    x2: position of mass-2 

    x3: velocity of mass-1 

    x4: velocity of mass-2 

 

 

Fig. 4. Two-mass and spring system  

The plant uncertainty is due to variations of the spring 

constant where the nominal value is selected for the worst 

case of k=0.5. Therefore uncertainties appear in the rows 3-4 

and the columns 1-2 of the state matrix. The scale matrices 

as the perturbation structure for the closed loop system are 

Ecl and Hcl whose diagonal elements in  rows 3-4 of Ecl and 

in columns 2-3 of Hcl are respectively equal to 1. 
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The next is to choose the parameters of the wedge region 

(Fig. 2) whose role is to locate the closed loop poles. The 

damping ratio is usually set to ζ=0.7 to produce sufficient 

overshoot damping in the response.  The transient margin (ρ) 

is specified according to the desired speed of the response. 

This is problem-dependent parameter. Here, we set ρ=1. In 

addition, the main DE-based optimization parameters are 

listed in Table 4.  

 
Table 4. DE-based optimization parameters 

Dimension of the problem D 5 

Population size NP 100 

Mutation scaling constant F 0.9 

Crossover rate constant CR 0.5 

Upper and lower bounds of solution ±BD ±50 

Maximum iteration jmax 2000 

Number of iteration for which stopping criterion 

applies 
η 200 

Standard deviation threshold  for which 

stopping criterion applies 
ε 1% 

 

 

V. RESULTS  

 

The optimization run has been performed in MATLAB 

2006. Since DE is a stochastic optimization, a number of 

optimization runs need to be executed with different initial 

random seeds. To get an optimal solution and to evaluate the 

quality of the solution (robustness, convergence, 

repeatability), 15 runs have been executed here. The mean 

value, the standard deviation of the fitness value (f(X)=-rc) 

and other results are recorded in Table 5.  

 
Table 5. Optimization results for 15 runs 

Average f(X) -0.32 

Median f(X) -3.07 

Standard deviation f(X) 0.005 

Range of f(X) -0.31  to -0.33 

Average number of iteration 715 

Average computation time 0.77 minutes 

 

 

Table 6. Controller gains for two-mass system 

k1 k2 k3 k4 ki Controller 

gains 18.49 19.04 47.27 7.30 -10.54 

 

Form Table 5, it can be seen that the optimization results 

in a robust solution with a small standard deviation, the 

range of the fitness value is also very small. This means that 

the optimizer has a good repeatability property. The 

distribution of  eigenvalues for those 15 runs can be seen in 

Fig.5. All eigenvalues lie within the specified wedge region. 
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Fig. 5. . Distribution of eigenvalues within the wedge region for 15 runs 

 

Furthermore, to see the controller performance, a set of 

controller gains is picked from the median data and it is 

shown in Table 6. Fig. 6 shows 10 random samples (with 10 

random values of the spring constant 0.5≤k≤2) of step 

response (position of mass-2) with the proposed DE-based 

feedback controller (DEFC). For comparison, two 

conventional LQR-based controllers (linear quadratic 

regulator) are also designed with the following sets of Q and 

R matrices  respectively for LQR1 and LQR2: 
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Fig. 6. Ten random samples of step response for DEFC 

 

 

Figs. 7-8 show 10 random samples of the step response (the 

position of mass-2) for LQR1 and LQR2 respectively. It can 

be seen that the proposed controller (DEFC) is more robust 

compared to the two LQR-based controller (LQR1 and 

LQR2) designed in this work. 
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Fig. 7. Ten random samples of step response for LQR1 
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Fig. 7. Ten random samples of step response for LQR2 

VI. CONCLUSIONS AND DISCUSSIONS 

 

A robust state feedback control design via constrained 

optimization using DE has been presented. The designed 

controller has shown a robust performance in the presence of 

parameter variations. The DE-based constrained 

optimization effectively locates closed loop poles within a 

prescribed wedge region and able to maximize the stability 

radius with a good repeatability of the solution.  

Finally, this paper reports a preliminary research. To 

further evaluate the robust performance of the proposed 

controller, it is necessary to analyze in more detail using 

robust control concepts.  Comparison with other robust 

control techniques is also necessary. This will be done in the 

future. 

 

 

REFERENCES 
 

[1].  Gu, D.W.,  Petkov, P.H., Konstantinov, M.M. (2005). Robust 

Control Design with MATLAB. Springer-Verlag, London.  

[2]. Ly, U.L. (1990). Robust control design using nonlinear constrained 

optimization. Benchmark problems for robust control design. Procs. 

of American Control Conference, pp. 968-969. 

[3]. Rotstein, H and Sideris, A. (1991). Constrained H∞ optimization: A 

design example. Procs. of the 30th Conference on Decision and 

Control.  

[4]. Byrns, E.V and Calise, A.J. (1992). A loop transfer recovery 

approach to H∞ design for the coupled mass benchmark problem. 

Journal of Guidance, Control, and Dynamics. Vol. 15, no. 5, pp. 

1118-1124 

[5].  Wie, B and Berstein, D.S. (1990). Benchmark problems for robust 

control design. Procs. of American Control Conference, pp. 961-962. 

[6]. Petersen, I.R., Ugrinovskii, V.A and Savkin, A.V. (2000). Robust 

control design using H∞ method. Springer-Verlag. pp.151-155. 

[7]. Hinrichsen, D and Pritchard, A.J. (1986). Stability radii of linear 

systems. Systems & Control Letters, 7:1–10. 

[8]. Akmeliawati, R., and Tan, C. P. (2005). Feedback controller and 

observer design to maximize stability radius. Proceedings of the 

International Conference on Industrial Technology, pp. 660-664. 

[9]. Weisstein E.W., Vassilis P. (2006). Differential evolution. Web 

resource; http://mathworld.wolfram.com/DifferentialEvolution.html. 

[10]. Yousefi, H., Handroos, H., Soleymani, A. (2008). Application of 

differential evolution in system identification of a servo-hydraulic 

system with a flexible load, Mechatronics 18 : 513–528 

[11]. R. Storn and K. Price. (1995). Differential evolution-a simple and 

efficient adaptive scheme for global optimization over continuous 

spaces. Technical Report, International Computer Science Institute. 

[12]. K. V. Price. (1999). An introduction to differential evolution, in New 

Ideas in Optimization, D. Corne, M. Dorigo, and F. Glover, Eds. 

London: McGraw-Hill, pp. 79–108. 

[13]. R. Storn. (1996). On the usage of differential evolution for function 

optimization. In IEEE Biennial Conference of the North American 

Fuzzy Information Processing Society, pp. 519-523. 

[14]. Coello Coello, C.A. (2002). Theoretical and numerical constraint-

handling techniques used with evolutionary algorithms: A survey of 

the state of the art. Computer Methods in Applied Mechanics and 

Engineering, vol. 191, no. 11-12, pp. 1245–1287. 

[15]. Solihin, M.I, Wahyudi, Legowo, A and Akmeliawati, R. (2009). 

Self-erecting inverted pendulum employing PSO for stabilizing and 

tracking controller. Procs. of 5th  International Colloquium on Signal 

Processing & Its Applications, pp.63-68.  

[16].  Lu, H. and Chen, W. (2006). Dynamic-objective particle swarm 

optimization for constrained optimization problems.  Journal of 

Global Optimization, 12:409-419. 

[17]. Zielinski, K. and Laur, R. (2007). Stopping criteria for a constrained 

single-objective particle swarm optimization. Informatica 31: 51–59. 

                                                           

 

440




